CHAPIER

5

Benefits, Risks, and Costs of Screening

this chapter draws from the literature reviewed in the previous three chapters to analyze the impact of a hypothetical prostate cancer screening program for Medicare-age men. In addition, it uses data on Medicare reimbursements to examine some of the economic implications of early detection in this age group. As explained below, the screening benefit analyzed is designed to be illustrative of the difficulties in drawing unambiguous conclusions about the value of screening, rather than to predict the impacts of a screening benefit as it actually would likely be implemented as part of Medicare.

A number of decision models have been published or presented dealing with prostate cancer screening or treatment (58, 124, 195, 196, 217, 316). These models have yielded different results, due to widely different "base case" assumptions about the probabilities and values of the various outcomes of these clinical policies. The lack of definitive data on which to base such assumption, particularly for the effectiveness of treating
localized prostate cancer, and the different values different patients may place on potential outcomes make it possible to support analyses of screening that use divergent sets of assumptions. ${ }^{1}$

This paper only considers a one-time screening of men at ages 65, 70, and 75. Realistically, a Medicare benefit would most likely cover periodic screening for example, a digital rectal examination (DRE) and pros-tate-specific antigen (PSA) every year as the American Cancer Society (ACS) currently recommends, or every two or three years as Medicare currently does for breast and cervical cancer screening respectively. Understanding the true effects of an actual Medicare benefit would also require accounting for the fact that some men would have already received screening before their 65th birthdays. However, as this analysis will demonstrate, current understanding does not allow a definitive assessment of the cost-effectiveness of even a one-time benefit with its relatively simplified set of assumptions, much less a more complex, but realistic periodic benefit.

[^0]The analysis is presented in three stages:

- The first stage models the health outcomes of a onetime screening program for three cohorts of 100,000 men 65,70 , and 75 years old respectively using a baseline set of assumptions.
- The second stage adds in the costs of screening, treatment, and associated procedures to estimate the costeffectiveness of this illustrative one-time screening in terms of dollars life-years gained compared with not screening at all.
- The third stage examines how much these measures of cost-effectiveness change with changes in the assumptions about the effectiveness of treating prostate cancer and other assumptions important to screening.

MODELNG THE HEALTH OUICOMES OF SCREENING

To estimate the health outcomes of a one-time screening program for each of the three age groups, the model follows a hypothetical cohort of 100,000 men. It assumes a certain underlying distribution of prostate cancers of different types. It subjects the men to a combined DRE/PSA screening program (using a $4 \mathrm{ng} / \mathrm{mL}$ PSA cutpoint) and follows them with assumptions about diagnostic and treatment strategies as well as the probabilities of the different outcomes of these strategies.

Rather than assign different "values," or "utilities," to nonfatal outcomes such as postsurgical incontinence or metastatic disease, which will be valued differently by different patients (317), the analysis simply records the number of patients with these problems and the lifeyears over which these problems must be endured, al-
lowing the reader to weigh the risks and benefits of the decision whether to screen. At this stage, the analysis does not downvalue (discount) future years of life, or account for future life-years that would be of lower quality due to disability, loss of independence, or other health problems (225). ${ }^{2}$

The discussion that follows outlines the assumptions used in this model and ties them to the literature review in the preceding chapters. Table 5-1 summarizes these assumptions for 65- and 75-year-old men. All agespecific probabilities for 70-year-old men are the average of the probabilities for those 65 and 75 .

Assumptions in the Model

The model employs a Markov process that extends one developed for a published study of the outcomes of treating clinically localized prostate cancer (124). ${ }^{3}$ It simulates the clinical course of each cohort of men by allowing them to make transitions from one health state to another in increments of six months. During any six month period, men who harbor prostate cancer in the cohort may present with either local obstruction requiring therapy or develop new metastatic disease. Grade-specific rates of developing metastases come from a patientlevel meta-analysis recently conducted by Chodak and colleagues (83).

Probabilities of Prostate Cancer

The model distinguishes among three types of cancer by size: 1) $<0.5 \mathrm{~mL}$, all assumed to be contained with the prostate capsule; 2) $>0.5 \mathrm{~mL}$ with $<1 \mathrm{~cm}$ of capsular penetration; and, 3) $>0.5 \mathrm{~mL}$ with $>1 \mathrm{~cm}$ of capsular pen-

[^1]TABLE 5-1: BASELNE ASSUMPIONS USED TO MODEL HEALTH OUTCOMES OF PROSTATE CANCER SCREENING OF MEN AGE 65 AND 75 WITH DIGITAL REC TAL EXAM AND PROSTATE-SPECIFC ANTIGEN

Assumption	Probability	
	65-year-old men	75-year-old men
Derivation of poor probabilities of prostate cancer		
1. Probability of any cancer $=(\mathrm{A})$	0.22	0.39
2. Probability of cancer being $<0.5 \mathrm{~mL}$ (insignific ant, assume all confined) $=(\mathrm{B})$	0.60	0.60
3. Probability of cancer being $>0.5 \mathrm{~mL}$ (signific ant) with $<1 \mathrm{~cm}$ of capsular penetration (intracapsular) $=(\mathrm{C})$	$0.4 \times 0.73=.29$	$0.4 \times 0.73=.29$
4. Probability of cancer being $>0.5 \mathrm{~mL}$ (signific ant) with $>1 \mathrm{~cm}$ of capsular penetration (extracapsular) =(D)	$0.4 \times 0.27=.11$	$0.4 \times 0.27=.11$
5. Derived prior probability of insignific ant ($<0.5 \mathrm{~mL}$) cancer $=(\mathrm{AxB})$	0.132	0.234
6. Derived prior probability of signific ant cancer ($>0.5 \mathrm{~mL}$), intrac apsular $=(A x C)$	0.064	0.114
7. Derived prior probability of signific ant cancer ($>0.5 \mathrm{~mL}$), extrac a psular $=(A x D)$	0.024	0.042
Probabilities of cancers having different grades		
Insignific ant cancers (<0.5 mL)		
8. Well differentiated	0.65	0.65
9. Moderately differentiated	0.26	0.26
10. Poorly differentiated	0.09	0.09
Signific ant ($\mathbf{~} \mathbf{0 . 5} \mathbf{~ m L}$) intrac apsular cancer		
11. Well differentiated	0.33	0.33
12. Moderately differentiated	0.56	0.56
13. Poorly differentiated	0.11	0.11
Signific ant ($\mathbf{0 . 5} \mathbf{~ m L}$) extrac apsular cancers		
14. Well differentiated	0.04	0.04
15. Moderately differentiated	0.70	0.70
16. Poorly differentiated	0.26	0.26
Derivation of screening results		
17. Probability of a suspicious DRE or PSA requining biopsy $=(\mathrm{E})$	0.28	0.40
18. Overall probability of detection of cancer (actual yield) $=(\mathrm{F})$	0.042	0.072
19. Proportion of detected cancers with insignific ant ($<0.5 \mathrm{~mL}$) volume $=(\mathrm{G})$	0.11	0.11
20. Derived probability of finding an insignific ant canceramong men who harbor them $=$ $(F x G) /(A x B)$	0.035	0.034
21. Probability that screen detected cancers are extracapsular $=(\mathrm{H})$	0.24	0.40
22. Derived probability of detecting extracapsularcancers among men who harbor them $=(F x H) /(A x D)$	0.42	0.69
23. Derived probability of detecting signific ant, intracapsularcancers among men who harborthem $=\mathrm{Fx}(1-\mathrm{G}-\mathrm{H}) /(\mathrm{AxC})$	0.43	0.31
Probabilities of biopsy complic ations (with antibiotic prophylaxis)		
24. Urinary tract infection	0.056	0.056
25. Urosepsis	0.005	0.005

TABLE 5-1: BASEUNE ASSUMPIONS USED TO MODEL HEALTH OUTCOMES OF PROSTATE CANCER SCREENING OF MEN AGE 65 AND 75 WTH DIGIIAL REC TALEXAM AND PROSTATE-SPECIFC ANTIGEN CONTNUED

[^2]SoURCE: Office of Technology Assessment, 1995. Based on data from M.J. Barmy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the CongressionalOffice of Technology Assessment," OTA contractpaperno, K3-0546.0. Massachusetts General Hospital, J une 30, 1994.
etration. The underlying prevalence of each of these cancers in the population is derived from autopsy data presented in table 2-5 and explained in appendix A. Pathological data from Oesterling's study (263) of 208 nonpalpable, PSA-detected, Stage T1c prostate cancers provide the probabilities of each size of cancer being well differentiated (Gleason Score of 2 to 4), moderately
differentiated (Gleason Score of 5 to 6), or poorly differentiated (Gleason Score of 7 to 10) (256).

Screening and Biopsy

The probabilities that screening yields a suspicious DRE or PSA requiring biopsy (table 5-1, line 17) comes from Richie and colleagues' community-based screen-
ing study (279), ${ }^{4}$ as do the overall probabilities that screenees will have a cancer detected and the probabilities that cancers detected through screening will not be confined to the prostate gland (table 5-1, lines 18 and 21). ${ }^{5}$ The analysis assumes that transrectal needle biopsy (TRNB) is the "gold standard" for confirming or rejecting suspicious DRE/PSA results. In the Richie study, only 69 percent of men ages 60 to 69 with suspicious PSA or DRE results actually received biopsy. For men ages 70 to 79 , the biopsy compliance rate is 68 percent. These compliance rates are implicit in the probabilities that screening will detect cancer in both the Richie study and the analysis in this chapter (table 5-1, line 18). The probabilities that detected cancers will be of small volume ($<0.5 \mathrm{~mL}$) come from Oesterling and colleagues' study of the pathology of nonpalpable T1c cancers described above. ${ }^{6}$

Combining these data on screening results with the data on the prior probabilities of harboring cancers allow the estimation of age- and volume-specific sensitivities for a one-time combined DRE and PSA screening (table $5-1$, lines 20, 22, and 23). ${ }^{7}$

As indicated in chapter 3, biopsy itself can result in infection even with antibiotic prophylaxis. Assumptions about the rates of infections confined to the urinary tract $(16,89$,$) and urosepsis (91$) are taken from the literature.

Treatment Strategies and Cure Rates

Because biopsy cannot determine the volume, grade, and extent of spread of discovered cancers, this analysis assumes all men found to have cancer are offered aggressive treatment. Based on data from Richie (279), 70 percent of 65 -year-old men are assumed to accept that recommended treatment; the analysis assumes a 48-percent compliance rate for 75-year-old men.

[^3]
48 Costs and Effectiveness Of Prostate Cancer Screening In Elderly Men

Because there is no evidence from controlled studies that aggressive treatment (by either radical prostatectomy or radiation therapy) reduces the risk of death compared with expectant management, this analysis assumes that men with cancers confined to the prostatic capsule (absence of complete capsular penetration of more than $1 \mathrm{~cm}^{2}$) are cured by aggressive treatment, regardless of other prognostic factors, such as degree of tumor differentiation. This assumption, which is favorable to screening (all else being held equal) is based on the work of Epstein (118), who has documented a worse prognosis for tumors with established, complete capsular penetration, as opposed to partial capsular penetration. ${ }^{8}$

Although there are two strategies for aggressive treatment (radical prostatectomy and radiation therapy), the baseline analysis examines only radical prostatectomy. This initial assumption seems reasonable despite older data that radiotherapy has been more commonly used, as the urologic literature now strongly endorses radical prostatectomy as the best treatment for localized prostate cancer, and because men with suspicious screening tests would almost always see a urologist for TRUS and biopsy. The rapidly rising rates of radical prostatectomy in the United States also support this initial assumption. Assuming equal effectiveness for radiation therapy (in the absence of strong evidence to the contrary) would result in similar estimated benefits; however, estimated risks would be much lower. ${ }^{9}$

Patients who are found to have distant metastases are assumed to receive hormonal therapy. Patients re-
ceiving such therapy are assumed to be responsive to it for a period of time, but then enter a "refractory" period characterized by no further benefit as well as pain or other discomfort before dying from the cancer or, infrequently, from some other cause.

All patients with intracapsular cancers (whether $>0.5 \mathrm{~mL}$ or $<0.5 \mathrm{~mL}$ in volume) who undergo and survive treatment are assumed to have the same life expectancy they would have had if they never had cancer (14.45 years for 65 -year-old men and 8.95 years for 75 -year-old men). In addition to the extra years of life they gain, these patients also avoid years of both hormone-responsive and refractory disease and associated morbidity. At the same time, though, they do risk the complications of aggressive treatment as outlined in the next section. Treated patients whose cancers are found to have spread beyond the prostate capsule at time of surgery have the same life expectancy as untreated patients with extracapsular cancer.

Finally, the analysis assumes that following radical prostatectomy, no additional cancer treatment is administered unless patients develop documented metastatic disease (as described below). In fact, in a survey of Medicare beneficiaries, 18 percent of men without metastatic disease reported followup radiation therapy within four years of radical prostatectomy, 10 percent reported hormonal therapy, and 15 percent reported orchiectomy (124). As is the case for primary aggressive treatment, there is no evidence from controlled studies that any such interventions (in the absence of documented metastases, at least) improve patient outcomes. Exclusion of

[^4]the costs associated with these additional treatments in the cost-effectiveness analysis later in this chapter reduces the total costs associated with screening, thus generating more favorable cost-effectiveness ratios.

Treatment Complications

Assumptions about the rate of complications following prostatectomy come from the survey of Medicare beneficiaries by Fowler and colleagues (124) since these are the most generalizable data available (see table 4-3). Among these risks, the model uses relatively conservative definitions for incontinence and impotence. Only men who drip more than a few drops of urine every day are considered incontinent ${ }^{10}$; while only preoperatively sexually active men who have had no partial or full erections since surgery are considered impotent. ${ }^{11}$

Although pelvic lymphadenectomy has its own complications (229), we assume no complications for this procedure as some clinicians question whether it is necessary at all. The analysis disregards other, less frequent complications of surgery and radiotherapy, such as rectal injury (230).

Prognosis and Life Expectancy

The analysis assumes that prognosis is determined entirely by grade, rather than extent of tumor; that is, a moderately differentiated cancer has the same prognostic impact whether it is intracapsular or extracapsular. The only exception is for well-differentiated tumors less
than 0.5 mL in volume, which are assumed not to have potential for metastasis, and hence, equivalent to not having cancer at all.

Table 5-1 details life expectancies for untreated cancers. ${ }^{12}$ Age-specific probabilities of death from causes other than prostate cancer used in the model were derived from U.S. life tables (350). Grade-specific rates of developing metastatic cancer come from an individual patient level meta-analysis by Chodak and colleagues (83). These data also generated grade-specific estimates of life expectancy for men with untreated cancers. The impact of treatment on rates of metastasis and these life expectancies are described above.

To model the progression from hormonally-responsive to hormonally-refractory metastatic cancer and the excess mortality associated with advanced prostate cancer, the model incorporates data from a randomized trial of hormonal treatment of late-stage disease (93). The data yield a progression rate to refractory prostate cancer of 36 cases per 100 patient years, and an excess mortality rate from hormonally-refractory metastatic cancer of 80 deaths per 100 patient years. ${ }^{13}$

Men who have prostate cancer are susceptible not only to metastatic disease, but to complications from local progression as well. Obstructive symptoms or bleeding from progression in the prostate may require transurethral resection of cancer tissue for palliation. Men who still have a prostate in place may also eventually re-

[^5]
50 Costs and Effec tiveness Of Prostate Cancer Screening In Elderly Men

quire transrectal resection of the prostate (TURP) for progressive benign prostatic hyperplasia (BPH). This analysis assumes that radical prostatectomy completely eliminates these risks and their associated costs. Assumptions used to calculate costs of transurethral resection for those men with cancer who do not receive radical prostatectomy are reviewed in the section on costs later in this chapter.

The assumptions about prognosis and cure rates from treatment are particularly favorable to screening; to the extent that relatively more future morbidity and mortality result from cancers that have already spread beyond the prostate (a likely scenario), the benefits of screening will be less impressive. Another way of viewing the impact of these assumptions is through the reduction in the rate of metastases through the treatment patients receive. For well-differentiated cancers, the model predicts a 97 percent decrease in the metastatic rate compared with 70 percent for moderately differentiated, and 56 percent for poorly differentiated cancers.

Net Impact of Assumptions

As indicated in the sections above, many of the assumptions made in this baseline analysis of the health outcomes of a one-time screening benefit are favorable to screening. These include relatively high yields of screening itself, high rates of metastasis and cancer-specific death with untreated cancers, and 100 percent cure rates for treated intracapsular cancers. ${ }^{14}$ Given these assumptions, the estimated health outcomes for screening with subsequent aggressive treatment in this baseline
analysis probably represent the maximally attainable benefits of one-time screening.

Results

Tables 5-2 through 5-4 provide "balance sheets" with baseline estimates of the risks and maximal benefits of a one-time screening of 100,000 men ages 65,70 , and 75 with DRE and PSA. Table 5-5 presents estimates of treatment complications that would accrue if all patients undergoing treatment received radiation therapy instead of radical prostatectomy. These estimates are based on rates of complications reported in the literature and summarized in chapter 4 (362).

The model indicates that a one-time screening would result in a very large number of prostatic biopsies (19,330 to 27,200 per 100,000, depending on age), a small number of surgical deaths (18 to 23 per 100,000), and a larger number of men rendered incontinent (260 to 311 per 100,000), impotent (1,357 to 1,622 per 100,000), or both $(405$ to 483 per 100,000$)$ as a result of surgical treatment. Because these complications must be endured from the start, a very large number of life-years with these complications are generated by early detection efforts. Over time, using the optimistic assumptions about the efficacy of treatment, 653 men age 65,570 men age 70 , and 427 men age 75 who would otherwise have developed metastatic prostate cancer (542, 449, and 314 of whom would become hormone-refractory and die, respectively) would die of something else first in each of these cohorts of 100,000 screenees. The net benefit of

[^6]TABLE 5-2: HEALTH OUTC OMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 65-YEAR-OLD MEN WTH DRE/ PSA

No cancer	Cancer $<0.5 \mathrm{~mL}$	Intracapsular	Extracapsular	Total number	V lost	LY morbidity
Numberscreened 78,000	13,200	6,424	2,376	100,000		
Estimated ham						
CA missed by DRE/PSA/biopsy (compliance with biopsy 69\%)	12,744	3,743	1,363	17,850		
CA detected by DRE/PSA/biopsy	456	2,681	1,013	4,150		
Suspicious DRE/PSA				28,000		
TRUS/biopsy (compliance with biopsy 69\%)				19,330		
Urinary tract infections from biopsy				1,083		
Urosepsis from biopsy				96		
Death from urosepsis				1	$(14)^{\text {a }}$	
Radic al prostatectomy (compliance with RPX 70\%)	320	1,877	709	2,906		
Deaths from radical prostatectomy	2	12	,	18		
Life-years lost from radical prostatectomy deaths	(28)	(167)	(50)		(245)	
Morbidity from radic al prostatec tomy						
Incontinence: $\quad$$n$ affected life-years affected						
Impotence: $\quad$$n$ affected life-years affected						
Both incontinence and impotence $\quad \begin{aligned} & n \text { affected } \\ & \text { life-yearsaffected }\end{aligned}$						
Total ham from screening (life-years)					(259)	$(27,510)$
Total harm per patient screened (days)					(1)	(100)
Total ham per patient treated (days)					(33)	$(3,455)$

52 Costs and Effectiveness of Prostate Cancer Screening in Elderly Men
TABLE 5-2: HEALTH OUICOMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 65-YEAR-OLD MEN WMTH DRE/PSA CONTNUED

	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$				Total number	I saved	LY improved
	No cancer	Cancer $<0.5 \mathrm{~mL}$	Intracapsular	Extracapsular			
Estimated maximal benefit							
Survive radic al prostatec tomy		318	1,865	705	2,888		
Hormonally-responsive metastatic cancer							
Number spared by treatment		45	608	0	$653{ }^{\text {b }}$		
Life-years affected		72	731	0			803
Hormonally-refractory metastatic cancer							
Number spared by treatment		38	504	0	$542{ }^{\text {b }}$		
Life-years affected		27	260	0			287
Cancerdeaths prevented		38	504	0	$542^{\text {b }}$		
Additional years of life attained		338	4,274	0		4,612	
	Total benefit from screening (life-years)					4,612	1,090
	Total benefit perpatient screened (days)					174	
	Total benefit perpatient treated (days)					579	137
a Life-years and days lost through screening are presented in parenthesis.							
${ }^{\text {b }}$ Sixadditional cases of homonally-responsive metastatic disease leading to five casesof hormonally refractory metastatic disease and death are a verted through immediate operative deaths; these cases are not counted as benefits.							
KEY: CA: cancer, DRE = digital rectal exa mination; LY = life-years; PSA = prostate-specific antigen; RPX = radical prostatectomy; $\operatorname{TRUS}=$ transrectal ultrasound.							
Source: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detec tion and Treatment of Prostate Cancer Among Older Men: A Report to the Congressional Office of Technology Assessment," OTA contract paper no. K3-0546.0, Boston, MA: Ma ssac husetts General Hospital, June 30, 1994.							

TABEE 5-3: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANC ER SCREENING OF 100,000 70-YEAR-OLD MEN WTH DRE/ PSA

	No cancer	Cancer <0.5 mL	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$		Total number	IY lost	
			Intracapsular	Extracapsular			LY morbidity
Numberscreened	69,500	18,300	8,906	3,294	100,000		
Estimated ham							
CA missed by DRE/PSA/biopsy (complia	with biopsy 69\%)	17,674	5,671	1,460	24,805		
CA detected by DRE/PSA/biopsy		626	3,235	1,834	5,695		
Suspic ious DRE/PSA					34,000		
TRUS/biopsy (compliance with biopsy 6					23,460		
Urinary tract infections from biopsy					1,314		
Urosepsis from biopsy					117		
Death from urosepsis					1	(12)	
Radical prostatectomy (compliance w	59\%)	369	1,909	1,082	3,360		
Deaths from radic al prostatec tomy		2	12	7	21		
Life-years lost from radic al prostate	deaths	(27)	(140)	(66)		(233)	
Morbidity from radic al prostatec tomy							
Incontinence:	n affected				301		
	life-years affected						$(3,229)$
Impotence:	n affected				1,569		
Both incontinence and impotence	life-years affected n affected				467		(6,908$)$
	life-years affec ted						$(5,050)$
		I harm from screening	(life-years)			(245)	$(25,187)$
		I harm per patient screer	reened (days)			(1)	(92)
		I harm per patient tre	ated (days)			(27)	$(2,736)$

TABLE 5-3: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANCER SCREFNING OF 100,000 70-YEAR-OLD MEN WITH DRE/PSA CONTINUED

[^7]TABLE 5-4: HEALTH OUTCOMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 75-YEAR-OLD MEN MTH DRE/ PSA

	No cancer	Cancer $<0.5 \mathrm{~mL}$	Cancer $\boldsymbol{>} 0.5 \mathrm{~mL}$				
			Intrac apsular	Extracapsular	Total number	L lost	LY morbidity
Numberscreened	61,000	23,400	11,388	4,212	100,000		
Estimated ham							
CA missed by DRE/PSA/biopsy (compliance with biopsy 68\%)		22,604	7,843	1,318	31,765		
CA detected by DRE/PSA/biopsy		796	3,545	2,894	7,235		
Suspic ious DRE/PSA					40,000		
TRUS/biopsy (compliance with biopsy 68\%)					27,200		
Urinary tract infections from biopsy					1,523		
Urosepsis from biopsy					136		
Death from urosepsis					1	(9)	
Radic a l prostatectomy (compliance with RPX 48\%)		382	1,702	1,389	3,473		
Deaths from radical prostatectomy		3	11	9	23		
Life-years lost from radic al prostatectomy deaths		(23)	(100)	(71)		(194)	
Morbidity from radic al prostatec tomy							
Incontinence:	n affected				311		
	life-years affec ted						$(2,597)$
Impotence:	n affected				1,622		
	life-years affec ted						$(13,598)$
Both incontinence and impotence	n affected				483		
	life-years affec ted						$(4,062)$
Total harm from screening (life-years)						(203)	$(20,257)$
Total harm per patient screened (days)						(1)	(74)
Total harm per patient treated (days)						(21)	$(2,129)$

TABLE 5-4: HEALTH OUTC OMES OF A ONE-TIME PROSTATE CANCER SCREENING OF 100,000 75-YEAR-OLD MEN WITH DRE/ PSA CONTINUED

[^8]TABLE 5-5: EXPEC TED HARM RROM A ONE-TIME PROSTATE CANCER SCREENING (DRE/ PSA) OF 100,000 MEN, AGES 65, 70, OR
75, FOR CURATIVE RADIATION THERAPY 75, FOR CURATIVE RADIATION THERAPY

Morbidity

Life-years of morbidity

Age 65

	Incontinence	1,385
	Impotence	11,275
	Both incontinence and impotence	593
	Total harm from screening	13,253
	Total harm perpatient screened (days)	48
	Total harm perpatient treated (days)	1,664
Age 70		
	Incontinence	1,269
	Impotence	10,337
	Both incontinence and impotence	544
	Total harm from screening	12,150
	Total harm perpatient screened (days)	45
	Total harm perpatient treated (days)	1,321
Age 75		
	Incontinence	1,023
	Impotence	8,329
	Both incontinence and impotence	438
	Total harm from screening	9,790
	Total harm per patient screened (days)	36
	Total harm perpatient treated (days)	1,029

So URCE: Office of Technology Assessment, 1995. Based on data from M.J . Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the CongressionalOffice of Technology Assessment." OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
screening in each cohort would be 4,353, 2,774, and 1,415 life-years saved (without discounting) for the 100,000 men ages 65,70 , and 75 ; or 16,10 , and 5 days per man screened, respectively.

If, in fact, contrary to our initial, "best case" assumptions, aggressive treatment of prostate cancer is ineffective at reducing the rate of distant metastases and death, these cohorts would loose about 200 life-years due to operative mortality and endure over 20,000 lifeyears with incontinence, impotence, or both. The net benefit predicted by the model is very sensitive to the as-
sumptions regarding the efficacy of treatment. For example, if in this undiscounted analysis the proportion of intracapsular prostate cancers that are cured by aggressive treatment is decreased from 100 to 50 percent, the net days of life saved per patient screened at ages 65,70 , and 75 drops to seven, four, and two days, respectively.

DRE/PSA Together Versus DRE Alone

Many physicians already perform DREs in older men to seek evidence of both prostate and colorectal cancer. What is the marginal value of adding PSA to the

DRE? In the recent combined screening described by Richie and colleagues (279), DRE, which was suspicious in 16 percent of men ages 60-69, had a predictive value of 21 percent, yielding cancer in 2.4 percent of the screenees. Adding PSA increased the detection rate to 4.2 percent. Therefore, since the ratio of intracapsular to extracapsular disease was roughly equal (at 3:1) between the DRE-detected cancers and the cancers detected by combination screening, one can assume that roughly 60 percent of the risks and maximal benefits presented in table 5-2 would be accrued by screening with DRE alone. However, such results would only be seen if DRE were performed with a very low threshold to proceed to systematic biopsies for any minor palpable abnormality, an approach not common in current clinical practice. Again, roughly half the cancers detected using this DREalone strategy would actually be found in palpably normal areas of the prostate as a result of the systematic biopsies. For men ages 70 to 79 in the Richie study, DRE detected cancer in 3.5 percent of screenees versus 7.2 percent for combined DRE/PSA screening, but a lower proportion of DRE-detected cancers was intracapsular compared with all cancers found by combined DRE/ PSA screening (45 percent versus 60 percent). Therefore, about half the risks presented in table 5-4 would be expected to accumulate with DRE screening, accompanied by less than half the maximal benefits.

MODEUNG THE COST-EFECTIVENESS OF ONE-TIME SCREENING

The overall costs of a screening program would comprise the upfront costs of the screening tests themselves, subsequent ultrasound (TRUS) exams and biopsies, staging tests, early treatment, and therapy for treat-
ment complications. To the extent that early detection and treatment are effective, savings accrue from averting costs of subsequent treatment of local cancer progression, metastatic disease, and end-stage cancer. Appropriate discounting diminishes the value of these later savings since policymakers or patients in the present would rather realize benefits now than in the future. Moreover, older men treated for prostate cancer, on average, extend their lives an average of 6 (age 75) to 19 (age 65) months (see tables 5-2 through 5-4), given their risks of death from other causes. ${ }^{15}$

Beyond whether or not a prostate cancer screening benefit would result in net costs or savings for Medicare, one can also consider whether the health benefit realized for each extra dollar spent for prostate cancer screening (and subsequent treatment) is more or less than those of screening programs or other services already covered by Medicare. This ratio of a benefit per dollar spent is the "cost effectiveness" of the screening program. This section models the cost-effectiveness of the illustrative, one-time screening benefit examined in the previous section. As indicated earlier, the actual estimates produced in this analysis are unlikely to be the same as those for an actual Medicare benefit since Medicare would most likely cover multiple, periodic screenings rather than a one-time benefit. However, as will be seen, this simplified analysis does illustrate how sensitive the costeffectiveness of screening is to assumptions about the effectiveness of treating prostate cancer.

Cost Assumptions

The Cost of Specific Resources

To estimate the costs of an early detection program with DRE and PSA among our hypothetical cohorts of

[^9]100,000 men ages 65, 70, and 75, this analysis adopts the perspective of the Medicare program and considers only direct medical care costs. ${ }^{16}$ Cost estimates for resource inputs are based on the 1992 Medicare fee schedule and diagnosis-related groups (DRG) reimbursements for relevant hospitalizations. ${ }^{17}$ Appendix G details these cost estimates. Tables 5-6 through 5-8 combine these costs for individual resource inputs into low, medium, and high estimates of the costs of different steps in the process of early detection and treatment, respectively. The low, medium, and high estimates reflect uncertainty about how resources would be utilized and billed in actual practice. ${ }^{18}$ The analysis discounts all future health care costs and health benefits are both discounted at an annual rate of 5 percent.

Other Cost Assumptions

The analysis assumes the marginal costs for the care of hormonally refractory prostate cancer, compared with all other causes of death, to be $\$ 6,260$ in the last year of life (in 1992 dollars), based on the work of Riley and colleagues (282).

As indicated earlier, men who have prostate cancer but do not receive a radical prostatectomy are susceptible not only to metastatic disease, but to complications from local progression as well. To estimate the costs associated with transrectal resection (TURP) to treat local cancer progression or BPH, the analysis used the weighted average of the only two empirical estimates of the probability of this phenomenon currently available $(176,366) .{ }^{19}$

Also as explained in a previous section, the analysis excludes the cost of any additional cancer treatment (radiation therapy, hormonal therapy, or orchiectomy) unless patients have evidence of metastatic cancer. This assumption again favors early detection and treatment.

In estimating the costs of treating complications of radical prostatectomy (or radiation therapy), the analysis again makes assumptions favoring early detection and treatment. For patients with sexual dysfunction, we ignore all costs other than for penile implants, and assume that no additional patients require surgery for impotence more than four years after surgery. ${ }^{20}$ For men with incon-

[^10]TABLE 5-6: MEDICARE COSTESTIMATES FOR EARIY DEIECTION AND STAGING OF PROSTATE CANCER USING DIGITALRECTAL EXAMS AND PROSTATIC-SPECIRC ANTIGEN

	Low estimate	Mediumestimate	High estimate
Initial testing			
PSA	\$30	\$45 ${ }^{\text {a }}$	\$60 ${ }^{\text {a }}$
DRE	\$0	\$3	\$28 ${ }^{\text {b }}$
Total	\$30	\$48	\$88
Work-up for suspicious results			
Consult (urology)	\$47	\$47	\$47
TRUS (diagnostic)	\$0	\$85	\$85
TRUS-guided biopsy	\$189	\$189	\$189
Pathology (level IV)	\$208c	\$312 ${ }^{\text {d }}$	\$312 ${ }^{\text {d }}$
Total	\$444	\$633	\$633
Staging formen with cancer			
Pelvic CTscane	\$71 (25\%)	\$142 (50\%)	\$213 (75\%)
Bone scane	\$46 (25\%)	\$92 (50\%)	\$138 (75\%)
Lymphadenec tomy ${ }^{\text {e }}$	\$0 (0\%)	\$164f (25\%)	\$328f (50\%)
Visit to disc uss results	\$28	\$28	\$28
Total	\$145	\$426	\$707
${ }^{\text {a }}$ Assumes some repeat testing necessary.			
${ }^{\text {b }}$ Assumes brief office visit specific ally fora prostate evaluation.			
c Four cores examined.			
d Six cores examined.			
e Notall patientsget pelvic CTscan with contrast (cost $\$ 284$), bone scan ($\$ 184$), orlymphadenectomy ($\$ 656$); figuresin parenthesesindic ate percentage of men who get these studies.			
f Includes pathology fee (level IV, two sets of nodes).			
KEY: CT = computed tomography; DRE = digital rectal exam; PSA = prostate-specific antigen; TRUS = transrectal ultra sound.			

So URCE: Office ofTechnology Assessment, 1995. Based on information presented in M.J. Bary, C.M. Coley, C. Fleming, et. al, "The Sa fety, Effectiveness, and Costof Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
tinence, the analysis includes only the costs of an artificial sphincter implantation for the six percent of men who reported corrective surgery for incontinence, ignoring the costs of pads for the 31 percent of prostatectomy patients who report using them (124). While some of these men may have had less aggressive and expensive corrective surgery for incontinence (such as collagen injections), the other cost assumptions make the overall
approach to estimating costs of treatment complications conservative.

For men with urethral strictures following radical prostatectomy, the analysis assumes that 95 percent are treated with a simple stricture dilation in the office, while only 5 percent need in-hospital operative repair. We assume no additional treatments are required beyond

TABLE 5-7: MEDICARE COSTESTIMATES FOR PROSTATE CANCER TREATMENT

Treatment	Low estimate	Medium estimate	High estimate
Radical prostatectomy			
Hospital ${ }^{\text {a }}$	\$5,867	\$6,271	\$6,675
Surgeon	\$1,497	\$1,497	\$1,497
Anesthesia	\$194	\$194	\$194
Pathology ${ }^{\text {b }}$	\$125	\$125	\$125
Total	\$7,680	\$8,084	\$8,488
Extemal beam radiotherapy			
Course	\$3,604	\$3,604	\$3,604
Monitoring post-treatment (annual cost)			
Office visit and PSA	\$59	\$59	\$59
Bone scanc	\$0	\$46	\$92
Total	\$59	\$105	\$151
Diagnosis and treatment			
Metastatic disease			
Bone scan	\$184	\$184	\$184
Orchiectomy	\$4,406	\$4,406	\$4,406
Hormonal therapy ${ }^{\text {d }}$	\$4,224	\$5,748	\$6,953
a Low estimate: 0% diagnosis-related groups 334 (complic ations) at $\$ 7,483$ and 100% DRG 335 (no complic ations) at $\$ 5,867$; medium estimate: 25% DRG 334 and 75% DRG 335; high estimate 50\%DRG 334 and 50\%DRG 335.			
${ }^{\text {b Level VI. }}$			
${ }^{\text {d Annual cost; low estimate: } 100 \% \text { GnRH a gonist a nd } 0 \% \text { fluta mide; medium estimate: } 100 \% \text { G nRH a gonist and } 50 \% \text { fluta mide; high estimate: } 100 \% \text { GnRH agonist and }}$ 100% flutamide; includes monthly fees for an office visit (\$29) with chemotherapy injection (\$4).			
KEY: DRG = diagnosis-related groups; PSA = prostate-specific antigen.			

SoURCE: Office ofTechnology Assessment, 1995. Based on information presented in M.J. Barmy, C.M. Coley, C. Fleming, et. al, "The Safety, Effectiveness, and Costof Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Technology Assessment," OTA contractpaperno. K3-0546.0, Massa chusetts General Hospital, Boston, MA, J une 30, 1994.
four years after surgery, ${ }^{21}$ and ignore costs related to the diagnosis of strictures, such as for cystourethroscopy. ${ }^{22}$

Incorporation of Costs in the Screening Model

The analysis estimates cost-effectiveness by incorporating the costs for early detection, staging, treatment
of clinically localized cancer, diagnosis of metastatic disease, and treatment of metastatic disease by orchiectomy, into the Markov model of prognosis described earlier in the chapter. The model accumulates these costs (with appropriate discounting) as each intervention is

[^11]TABLE 5-8: MEDICARE COSTESTIMATES FOR THERAPY OF PROSTATE CANCER TREATMENTCOMPUCATIONS

	Low estimate	Medium estimate	High estimate
TURP for BPH or local progression of cancer			
Hospitala	\$2,778	\$3,069	\$3,361
Surgeon	\$898	\$898	\$898
Anesthesia	\$147	\$147	\$147
Pathology	\$92	\$92	\$92
Total	\$3,915	\$4,206	\$4,498
Treatment for cancer therapy complic ations			
Incontinence			
(Artific ial sphincter)	-	\$8,080	-
Impotence			
(Penile implant)	-	\$11,350	-
Stric ture			
(Dilation)	-	\$51	-
(Urethroplasty)	-	\$5,259	-

[^12]SOURCE: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and C ost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the congressional Office of Tec hnology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
encountered. The model accumulates ongoing costs, such as post-treatment surveillance and androgen deprivation therapy for metastatic disease, continuously with each Markov cycle patients spend in a particular state.

Cost-Effectiveness Results

Tables 5-9 through 5-11 present estimates of discounted costs (in dollars), discounted effectiveness (in life-years saved), and cost per life year saved for cohorts of 100,000 men ages 65,70 , and 75 receiving a hypothetical, one-time screening under the baseline assumptions described in this chapter. Using the medium set of assumptions about costs, the cost per year of life saved
(compared with doing no screening) would be $\$ 14,200$ at age $65, \$ 25,290$ at age 70 , and $\$ 51,290$ at age 75.

Sensitivity of the Results

These results are extremely sensitive to the assumption about the effectiveness of prostate cancer treatment and, to a somewhat lesser degree, the assumption about the rate at which cancers of different grades metastasize. As indicated earlier, the actual effectiveness of treatment is unknown because of the lack of randomized controlled trials. Similarly, the true rates of future metastasis and prostate cancer death from tumors currently discovered by early detection are also unknown. The assumptions about both treatment and metastasis used in the baseline

TABEF 5-9: MARG INALCOST-EPECTIVENESS OF ONE-TIME HYPOTHEIICALDRE/PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 65) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	3.045	4.341	4.341
Staging	0.602	1.087	1.573
Treatment	22.578	23.751	24.924
Delayed costs			
Monitoring	2.509	4.457	6.383
Future treatment ${ }^{\text {b }}$	-5.929	-9.128	-14.808
Total	\$25.804	\$29.308	\$31.214

		Discounted life-years saved	
Marginal effectiveness	2064	2064	2064
		Dollars per life-year	
Marginal cost-effectiveness	$\$ 12,502$	$\$ 14,200$	$\$ 15,123$

[^13]So URCE: Office of Technology Assessment, 1995. Based on data from M.J . Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Office of Technology Assessment," OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
analysis are favorable to screening. What happens when these assumptions are relaxed?

- Reducing the grade-specific metastatic rates in this model ${ }^{23}$ to those used in the previously published analysis of prostate cancer treatment by Fleming and colleagues (124), the estimate of cost per year of life saved (discount rate 5 percent) ranges from $\$ 42,590$ at age 65 to $\$ 177,094$ at age 75.
- Alternatively, assuming only half (rather than all) in-
tracapsular cancers $>0.5 \mathrm{~mL}$ are cured by radical prostatectomy, the cost per year of life saved ranges from $\$ 30,524$ at age 65 to $\$ 109,721$ at age 75 (same discount rate).
- Assuming that both the lower metastatic rates from the Fleming analysis and the lower proportion of cures represent the true state of affairs, the cost per year of life saved would range from \$94,458 at age 65 to $\$ 506,909$ at age 75 .

[^14]TABLE 5-10: MARGINALCOST-EFECTIVENESS OF ONE-TIME HYPOTHEICALDRE/ PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 70) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	4.462	6.362	6.362
Staging	0.826	1.492	2.158
Treatment	26.114	27.472	28.829
Delayed costs			
Monitoring	2.522	4.478	6.407
Future treatment ${ }^{\text {b }}$	-5.596	-6.165	-10.531
Total	\$31.765	\$36.467	\$39.042
Discounted life-years saved			
Marginal effectiveness	1,442	1,442	1,442
Dollars per life-year			
Marginal cost-effectiveness	\$22,059	\$25,290	\$27,076
${ }^{\text {a }}$ Both future costs and health benefits are discounted at 5\% a nnually.			
${ }^{\mathrm{b}}$ Future treatment forlocal progression of prostate cancer, benign prostatic hyperplasia, metastatic prostate cancer, and therapy complications.			

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Reportto the Congressional Offic e of Technology Assessment," OTA contractpaperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.

To emphasize the sensitivity of the results to these key assumptions, figures 5-1 through 5-3 display the estimated cost per year of life saved for men ages 65,70 , and 75 , using higher (83) and lower $(362,124)$ metastatic rates, and different assumptions about the proportion of intracapsular cancers (of all grades) cured by aggressive treatment. ${ }^{24}$

Another assumption in the baseline analysis is that the metastatic rate is the same for each grade of tumor
(except for well-differentiated cancers less than 0.5 mL in volume), regardless of whether the tumor is intracapsular or extracapsular. If, however, future metastatic events are preferentially generated from extracapsular cancers, a likely scenario, the estimated effectiveness of treatment and screening would diminish considerably. For example, if intracapsular cancers have the gradespecific prostate cancer mortality rates described by Fleming (124), while extracapsular cancers have the

[^15]TABLE 5-11: MARGINALCOST-EFFCTIVENESS OF ONE-TIME HYPOTHEIICALDRE/PSA SCREENING VERSUS NOTSCREENING (100,000 men, age 75) ${ }^{\text {a }}$

Marginal cost	Low Estimates	Medium Estimates	High Estimates
	Cost estimate (millions of dollars)		
Initial costs			
Initial testing	3.000	4.800	8.800
TRUS/biopsy	6.019	8.581	8.581
Staging	1.049	1.896	2.742
Treatment	26.991	28.394	29.797
Delayed costs			
Monitoring	2.208	3.919	5.601
Future treatment ${ }^{\text {b }}$	-5.596	-6.165	-10.531
Total	\$33.671	\$41.424	\$44.990
Discounted life-years saved			
Marginal effectiveness	808	808	808
Dollars per life-years saved			
Marginal cost-effectiveness	\$41.690	\$51.290	\$55.705
a Both future costs and health benefits are discounted at 5% annually.			
${ }^{\mathrm{b}}$ Future treatment for local progression of prostate cancer, benign prostatic hyperplasia, metastatic prostate cancer, and therapy complications. KEY: DRE = digital rectal exam; PSA = prostate-specific antigen; TRUS =transrectal ultra sound.			

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.
mortality rates described by Chodak (83), the cost-effectiveness estimates for early detection (which are based on the curability of the intracapsular lesions) would follow the higher curves in figures 5-1 through 5-3. ${ }^{25}$

Finally, a substantial component of the estimated net benefits come from the early detection and treatment of well-differentiated prostate cancers greater than 0.5 mL in volume. This finding is due to well differentiated cancers having had the same cancer-specific death rates
as moderately differentiated cancers in the Chodak (83) meta-analysis. However, Kolon (194) has recently found that men with well-differentiated cancers treated expectantly among cases reported to the Connecticut tumor registry had the same life expectancy as age-matched men in the general state population. If, in fact, well-differentiated prostate cancers do not result in a higher-than-expected future mortality for men diagnosed at age 65 or above, the estimated number of deaths averted per

[^16]RGURE 5-1: COSF-EFECTIVENESS OF ONE-TIME DRE/PSA SCRENING OF 65-YEAR-OLD MEN FOR PROSTATE CANCER SENSIIVITY ANAIYSS

Fraction of patients with localized prostate cancer cured by radical prostatectomy (intracapsular, $>0.5 \mathrm{~mL}$)

SOURCE: Office of Tec hnology Assessment, 1995. Based on data from M.J. Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the Congressional Office of Tec hnology Assessment," OTA ContractPaperNo. K3-0546.0, Massa chusetts General Hospital, Boston, MA, J une 30, 1994.

100,000 by screening and treatment (as presented in tables 5-2 through 5-4) would drop from 547 to 414 at age 65 , from 431 to 325 at age 70, and from 294 to 224 at age 75 . This would result in a parallel increase in the cost per life-year saved by screening.

Turning from effectiveness to cost, how would changes in the cost assumptions affect the cost-effectiveness ratios? Each increase of $\$ 10,000$ in the costs of caring for terminal prostate cancer above the baseline estimate reduces the present value per person cost of prostate cancer screening only by about $\$ 30$. This relatively small effect on the analysis is due in large part to the discounting of these future expenses.

RGURE 5-2: COSFSCREPIING OF 70-YEAR-OID MEN FOR PROSTATE CANCER SENSIIVITY ANALYSS

Fraction of patients with localized prostate cancer cured by radical prostatectomy (intracapsular, $>0.5 \mathrm{~mL}$)

Source: Office of Technology Assessment, 1995. Based on data from M.J. Bary, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the CongressionalOffice of Technology Assessment," OTA C ontractPaperNo. K3-0546.0, Massachusetts General Hospital, Boston, MA, J une 30, 1994.

Comparisons to Other Medicare Disease Screening

How do these estimates for the cost-effectiveness of one-time screening for prostate cancer compare with previously published estimates for other cancer screening maneuvers among Medicare patients? Such comparisons are problematic since most cost-effectiveness analyses of disease screening for Medicare beneficiaries examine periodic screening rather than only a one-time benefit. However, as part of a previous analysis by the Office of Technology Assessment (OTA), Muller and colleagues (347) found that a one-time screening with cervical Pap smears at age 65 would cost $\$ 1,666$ per life-

RGURE 5-3: COSF-■FECTIVENESS OF ONE-TIME DRE/PSA SCREENING OF 75-YEAR-OID MEN FOR PROSTATE CANCER SENSIIVITY ANALYSS

SoURCE: Office of Technology Assessment, 1995. Based on data from M.J . Bamy, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate CancerAmong OlderMen: A Report to the CongressionalOffice of Tec hnology Assessment," OTA C ontractPa perNo K3-0546.0, Massa c husetts General Hospital, Boston, MA, J une 30, 1994.
year saved. ${ }^{26}$ Among previous OTA analyses of disease screening for Medicare beneficiaries that examined periodic screening (as opposed to one-time screening) are two that make estimates for colorectal and breast cancer screening. The breast cancer study concluded that annual mammography would cost Medicare \$13,200 per year of life saved (346), and the colorectal cancer study estimated that annual occult blood testing beginning at age 65 would cost $\$ 35,054$ per year of life (348). ${ }^{27}$ Medicare
currently covers both cervical and breast cancer screening as periodic benefits.

IMPUCATIONS FOR MEDICARE

What information does the analysis in this background paper yield for policymakers considering coverage of prostate cancer screening as a Medicare benefit?

Although the quantitative analysis in this chapter focused on a hypothetical one-time benefit instead of the periodic benefit more likely to be considered by the Medicare program, it does offer important information for policymakers. Most importantly, the cost-effectiveness of any Medicare prostate cancer benefit is extremely sensitive to whether or not treatment of tumors that have not yet spread extends life or not. The analysis suggests that prostate cancer screening could prove to be as cost effective as other disease screening services already covered by Medicare.

On the other hand, if treatment proves to be less than 100 percent effective (or if rates of metastasis turn out to be less than those assumed in our baseline analysis), prostate cancer screening could end up costing much more per life-year saved than other Medicare disease screenings. At the same time, however, screening carries significant risks of complications. These include the possibility of surgical death in at least six out of 1,000 cases, urinary stricture, heart and lung disease, and years of impotence and incontinence in substantial portions of treated patients.

[^17]
68 Costs and Effec tiveness Of Prostate C ancer Screening In Elderly Men

The evidence of effectiveness and cost-effectiveness of other preventive services already covered by Medicare (e.g.. breast and cervical cancer screening, influenza and pneumococcal vaccines) is substantially stronger than for prostate cancer screening. Although scientific knowledge is currently limited as we await the completion of well-controlled clinical trials, the consequences of prostate cancer and its treatment remain serious. Under such circumstances, an informed and reasonable patient could equally well decide to have screening or forgo it. Patient preferences are also a major component in deciding what to do when screening uncovers a localized cancer. Hence, each patient, in consultation with his physician, must use his own values to weigh the potential benefits of screening against the risks of incontinence, impotence, and other adverse reactions that may result from treating those localized cancers discovered through screening.

Given the state of current knowledge about prostate cancer, it may be reasonable for Medicare to consider reimbursement of the screening test. Reimbursement could be seen as ensuring that out-of-pocket screening
expenses (however small) not impede well-informed discussion and decisionmaking between physician and patient. Such a Medicare screening benefit could be unrestricted as are similar benefits for cervical and breast cancer screening. However, an unrestricted, permanent benefit might imply that science actually has established the benefit of early detection. An alternative would be to offer it on a temporary basis subject to reconsideration as evidence from clinical trials about the effectiveness of screening and treatment becomes available. Such a benefit could also be coupled with efforts by the federal government to involve as many patients as possible in effectiveness research and to ensure patients and physicians are well-informed about potential benefits and risks of treating cancers uncovered by screening. When data from well-controlled trials (including those described in appendix H) tell us if treating prostate cancer is effective, science will be able to provide more definitive guidance in facilitating clinical decisionmaking for patients and in establishing or continuing a screening benefit under Medicare.

[^0]: ${ }^{1}$ Forexample, a recently published paper(30) used one of the dec ision a nalysescited here (124) togetherwith newer, life expectancy data that are more optimistic than those used in the original dec ision a nalysis. The authorsof the more recent paperconclude that theirrea nalysisleadsto conclusionsd ifferent from those dra wn by Fleming and colleagues. Beck and colleagues, the a uthors of the newerpaper, suggest that radic al prostatectomy forlocalized prostate cancermay actually increase quality-adjusted life-years. These authors also endorse the continuation of randomized clinical trialsto resolve issues of cancerprogression rates and the ultimate effectiveness of prostate cancer treatment, the two greatest unknowns in the decision about whether to screen forprostate cancer (30).

[^1]: 2However, the section on cost-effectiveness a nalysis below appropriately discounts both future years of life and future costs.
 ${ }^{3}$ A Markov model isa quantita tive tooluseful in understanding how people move through differentstatesofthe world (in thiscase, statesof health) overtime when: 1) there are a finite numberofstates, 2) a ny individualc an fallinto only one state in a ny given time period, 3) the probability of moving from one state to the next overa ny two periodsoftime isknown, and 4) the periodsof time are uniform in length (335). In thisa nalysis, the Markov modeldesc ribeshow many membersof each cohort of men expenience different typesof cancer, treatment complic ations, othersymptoms, a nd death, when they experience each event, and (asseen later) what costs they incurfor Medicare along the way.

[^2]: a Metastatic ratesforwell ($>0.5 \mathrm{~mL}$), moderately, and poorly differentiated cancersderived from G.W. Chodak, R.A. Thisted, G.S. Gerber, et al., "Resultsof Conservative Management of Clinic a lly Loc a lized Prostate C ancer," New England Journal of Medicine 330:242-248, 1994. Metastatic ratesforthese cancersare assumed not to vary by volume orcapsularstatus(i.e., only by grade), except forwell-differentiated cancers $<0.5 \mathrm{~mL}$, which are assumed not to metastasize. See text fordetails.

[^3]: 4It is interesting to note that the proportion of Medicare-age screenees who would have suspicious results on DRE and PSA testing (28 to 40 percent depending on age) is much higherthan forma mmography (up to 6 percent) (351), fecaloccult blood testing (2 to 5 percent) (348), orPap smears (1 to 13 percent) (347). Thus, the level of intrusiveness of a strategy of early detection of prostate cancer, with recommendationsforbiopsy being generated in overa quarterof screenees, ismuch greater than among other commonly used cancer screening strategies.
 ${ }^{5}$ These estimates of the age-spec ific yield of combined DRE and PSA sc reening, which come from the study by Richie (72,279), favorsc reening since the volunteers who partic ipated in the study may have had an enriched prevalence of cancer. Aspreviously noted in chapter3, a community-based study using the same screening strategy among men ages 40 to 79 found cancer in 5 out of 537 ($<1 \%$) screenees (261).
 ${ }^{6}$ Among prostate-confined cancers, the Richie study (279) doesnot distinguish between the volume categoriesused in thisa nalysis($<0.5 \mathrm{~mL}$ and $>0.5 \mathrm{~mL}$). Hence, this a nalysisusesOesterling's 11 percent probability that detected cancersare 40.5 mL (263) even though the Oesterling data are not age-specific. The resulting mix of cancersdiscovered by screening and coming to radic al prostatectomy predicted by the model at a ge 65 are asfollows: $40.5 \mathrm{~mL}, 11 \mathrm{percent} ;>0.5 \mathrm{~mL}$ a nd intracapsular, 65 percent; and .05 mL and extracapsular, 24 percent. This distribution is actually considerably more favorable than the distribution of Tlc cancerscoming to radical prostatectomy recently described by investigatorsatJ ohnsHopkinsUniversity (52,119): insignific antor "minimal" ($\measuredangle 0.5 \mathrm{~mL}$), 26 percent; " moderate " (includes some cancers with capsular penetration if well ormoderately differentiated), 40 percent; and "advanced," 34 percent. However, those investigators felt that only tumors less than 0.2 mL with a Gleason grade less than seven were truly "insignificant," and candidates for expectant management; this category comprised 16 percent of theirTlc tumors. Oesterling (263), on the otherhand, found that only 11 percent of hisseriesof Tlc cancerswere lessthan 0.5 mLin volume, and Ric hie (279) reported thatonly 24 percent of screen-detected cancers in men thisage were unconfined; asindicated, thismodelreflectsOesterling and Richie'smore favorable probabilities.

 7The model-estimated sensitivities of combined PSA/DRE/biopsy are lowerthan many clinic ianswould predict. Forexample, at age 65 , 3.5 percent of cancers less than $0.5 \mathrm{~mL}, 42$ percent of intrac apsularcancers $>0.5 \mathrm{~mL}$, and 43 percent of extracapsularcancers $>0.5 \mathrm{~mL}$ would be detected. However, if one assumes full compliance with biopsy for suspic ious screening results (instead of 69 percent), the estimated sensitivities of DRE/PSA/biopsy would increase to 5 , 60 , and 62 percent, respectively. These estimated sensitivitiesreflect the assumption thatcancersare distributed by volume according to the a utopsy study by McNeal(233) desc ribed in table 2-5 and appendixA. Assuming differentdistributionsof c ancersby volume would affect the estimated sensitivities, butwould not affect the estima ted benefitsof screening, which are based on the post-test distributionsof cancerreported in screening studies. Forexa mple, if only 20 percent, (ratherthan 40 percent) of prevalent cancersare greaterthan 0.5 mL in size, a sreported in some cystoprostatectomy series(328), the sensitivity of screening at age 65 forcancerslessthan 0.5 mL would drop to 4 percent, and the predicted sensitivitiesofDRE/PSA/biopsy (assuming perfectcompliance) forintracapsularand extracapsularcancers $>0.5 \mathrm{~mL}$ would both be over 100 percent. In otherwords, the yield of cancers $>0.5 \mathrm{mLdesc}$ ribed by Richie (279) would actually be greaterthan the predicted prevalence ofthese lesions.

[^4]: ${ }^{8}$ Although some men with established capsularpenetration and no evidence of the tumoron the outside of tissue removed during prostatectomy (negative surg ic al margins) may be cured aswell, these casesare balanced by Epstein'sobservation that roughly 25 percent of men with only partialcapsularpenetration had in fact demonstrated evidence of progression after eight years.
 ${ }^{9}$ Estimates of the treatment complic ationsthat would accrue if all patientswere treated with radiotherapy, ratherthan radical prostatectomy, are presented later.

[^5]: ${ }^{10}$ If wearing pads is used to define incontinence, the risk would be higher, see table 4-3.
 ${ }^{11}$ Exc luding consideration of all treatment-related complic ationsotherthan the two most common ones, impotence and incontinence, is anotherassumption that favors screening in this a nalysis.

 12The a nalysis incorporatesrelatively high ratesof grade-specific metastatic and cancer-specific death ratesin thismodel; these ratesare calibrated to the 10-year cancer-spec ific survivalsreported in Chodak's(83) individual-patient-level meta-analysis, which excluded studiesof Stage Al cancers, which may well be treated aggressively in some patients in the current environment. These metastatic and death ratesare favorable to screening. Asa result of these assumptions, the model predicts that a 65 -year-old man hasa cumulative probability of eventually dying of prostate cancer of 4.1 percent, while the empiricalepidemiologic evidence documentsthisriskis3percentorless $(308,314)$. Highermetastatic ratesorassignment ofmetastatic potentialto smallvolume, well-differentiated tumorswould cause even greater divergence between the predicted and observed cumulative incidences of prostate cancer mortality.
 13Median survival in this trial once the disease became hormonally refractory was 0.9 years.

[^6]: ${ }^{14}$ The fact that this part of the a nalysis does not "disc ount" future life-years relative to current life-years also favors screening as risks of treatment. Disc ounting accountsforthe factthat future costsand benefitsare valued lessthan the same outcomesencountered in the present. It ispartic ularly signific ant in the case of prostate cancersc reening and treatment since the benefitsof treatment (and risksof cancer) are faced in the future, while the risksof sc reening and treatment are faced in the present. Hence, discounting would diminish the estimated life-yearsgained through screening. The a nalysis doesdiscount future health benefits subsequently when examining the costs a nd cost-effectiveness of screening.

[^7]: SourCe: Office of Technology Assessment, 1995. Based on data from M.J. Barry, C.M. Coley, C. Fleming, et al., "The Safety, Effectiveness, and Cost of Early Detection and Treatment of Prostate Cancer Among Older Men: A Report to the Congressional Office of Technology Assessment," OTA contract paper no. K3-0546.0, Boston, MA, Massachusetts General Hospital, June $30,1994$.

[^8]: Source: Office of Technology Assessment, 1995. Based on data from M.J . Barry, C.M. Coley, C. Fleming, et al., "The Sa fety, Effec tiveness, and Cost of Early Detec tion and Treatment of Prostate Ca ncer Among Older Men: A Report to the congressional Office of Technology Assessment," OTA contract paperno. K3-0546.0, Boston, MA, Massachusetts General Hospital, J une 30, 1994.

[^9]: ${ }^{15}$ Epidemiologic ally, cardiovasculardisease and othercancersare by farthe most likely causes(table 2-1). The costsof these altemative scenariosfordeath further blunt any savings from a verting terminal care costs for prostate cancer.

[^10]: ${ }^{16}$ Beyond the coststo the federal govemment through Medic are, patients also bearthe direct and indirect nonmedical costs associated with screening and any detected disease such astravel coststo receive medicalcare, lost wages, a nd the a nxiety associated with being told they may have canceron the basisof a suspicious screening test result. In addition, patients or third-party private insurers would bearmedic al care costs not covered by Medic are.
 ${ }^{17}$ C ontinuing changes in Medic are reimbursementsfor proceduresassociated with prostate cancerscreening and treatment may make these 1992 costs inaccurate predictors of costs in 1995 or in subsequent years (13a).
 ${ }^{18}$ Forexample, it isunknown exactly what percentage of men would get a pelvic CTscan orbone scan aspart of a staging evaluation, orwhat percentage of men undergoing radic al prostatectomy would be billed underDRG 335 (withoutcomorbidity/complic ations) versusDRG 334 (with comorbidity/complic ation). An October 1993 public a tion by the Americ an Urologic alAssociation entitled, "Coding Tipsforthe Urologist'sOffice," washelpful in preparing the a mbulatory component of these estimates.
 19J ohansson (176) recently updated the outcomes in his Scandina vian series of "watchful waiters" at an annual Americ an Urological Association meeting in San Antonio. At 12.5 yearsof a verage followup, 30 untreated cancerpatientshad required TURP overa pproximately 1,610 person-years(a rate of 0.019 TURPsperpersonyear); in 16 men the pathology report showed cancer, while in 14 the diagnosiswasBPH. Whitmore (366), on the otherhand, found that a mong men with 72 cancers treated expectantly, 23 patients required 37 TURPs in approximately 803 person-years of followup (a rate of 0.046 perperson year); 27 men had cancer in their resected spec imenswhile 10 had only BPH. We use an average of these two rates(a weighted average based on person-yearsof followup would be closerto that of the largerJ ohansson study) to calculate the costs of treatment for local progression of cancer and for BPH among men with cancer.
 ${ }^{20}$ Formen treated with radical prostatectomy, the survey of Medic are prostatectomy patientsby Fowlerand colleagues(127) found that actually 15-percentreport postoperative treatment forsexual dysfunction within two to fouryearsaftersurgery: eight percent with a vacuum device, 7 percent with pharmacologic erection therapy, and 3 percent with a penile implant.

[^11]: ${ }^{21}$ Since stric tures are often recurent, this assumption is partic ularly conservative.
 ${ }^{22}$ In Medic are survey (127), 20 percent of men reported at least one dilation orsurgic al procedure forwhat they believed to be stricturestwo to four yearsfollowing radical prostatectomy; 11 percent required treatment at least twice.

[^12]: a Low estimate: 0\% DRG 336 (complic ations) at \$3,943 and 100\% DRG 337 (no complic ations) at \$2,778; medium estimate: 25\% DRG 336 and 75\% DRG 337; high estimate 50\%DRG 336 and 50\%DRG 337.
 KEY: BPH = benign prostatic hypertrophy; DRG = diagnosis-related group; TURP = transurethral resection of the prostate.

[^13]: a Both future costs and health benefits are discounted at 5% a nnually.
 ${ }^{\mathrm{b}}$ Future treatment for local progression of prostate cancer, benign prostatic hyperplasia (BPH), metastatic prostate cancer, and therapy complic ations. KEY: TRUS = transrectal ultra sound.

[^14]: ${ }^{23}$ Asmentioned earlier, the ratesused in thisa nalysisresult in a lifetime cumulative risk of prostate cancerdeath more thana third higherthan the risk a ctually observed in the literature.

[^15]: ${ }^{24}$ The costs peryear of life saved are displayed on a log scale because of the steep escalation in costs as the favorable initial assumptions are rela

[^16]: ${ }^{25}$ Thisset of assumptionsactually resultsin a prediction of the cumulative probability of a prostate cancerdeath formen age 65 of 2.5 percent, within the empiric ally observed probability range of 2.5 to 3 percent.

[^17]: ${ }^{26}$ Thisstudy also found that the cost perlife-yearrose asthe screening frequency increased. It was $\$ 1,453$ forscreening every five yearscompared with no screening, was $\$ 5,956$ perlife-yearsaved when moving from a five-yearto a three-yearscreening cycle, and was $\$ 39,693$ forannual screening compared with screening for every 3 years.
 ${ }^{27}$ A more recentanalysisofbreastcancerscreening found thata one-time mammography forMedic are-age womencost $\$ 23,212$ peryearof life saved atages 65 to 69 and $\$ 27,983$ per year of life saved at age 70 to 74 (224).

