Appendixes

Appendix A

Animal and Plant Technology Workshop Methodology and Procedures

To assess the impacts of emerging agricultural production technologies, two workshops—one for animal technology and the other for plant, soil, anti water technology--were conducted in April 1984. The objective of the workshops was to obtain information about the development and adoption of emerging technologies so that the information could be used to analyze the economic, social, and environmental impacts of technology adoption,

Since the information needed spanned a wide range on the spectrum of the process of technological innovation—from successful completion of research to widespread commercialization of t he technology—participants of the workshops were carefully selected to include expertise in different stages of technological innovation. Participants comprised physical and biological scientists, engineers, economists, extension specialists, agribusiness representatives, and experienced farmers.

The Delphi technique was used to obtain collective judgments from the workshop participants. To facilitate the process of obtaining consensus, an electronic Consensor was employed to tabulate the ratings assigned by each expert, In addition to registering the ratings, the device allowed each expert to weight his rating according to the degree of confidence or expertise he had in his rating. That level of confidence or expertise could be set at zero, 25, 50, 75, or 100 percent,

The Consensor provided an immediate video screen readout of the rating distribution, the weighted average rating, and the average degree of confidence, If the first vote showed a very wide distribution on ratings, those experts with ratings that were outliers were asked to explain their reasons for the ratings assigned. After additional discussion, another vote was taken. Since lack of a consensus after such discussion was, in itself, an indication of considerable uncertainty about the impacts of new tech no log y, no attempt was made to force a consensus beyond a second vote.

The principal tasks accomplished at the work-shops were:

a. Estimation of the year that each technology' was likely to be introduced for commercial adoption,

- b. Estimation of the yield trends for each commodity in *1990* and *2000* under the no-newtechnology environmental
- c. Packaging of technologies that are likely to be introduced in the production of each commodity in 1990 and 2000,
- d. Estimation of the increases in crop and livestock performance measures when the package of technologies is fully adopted by farmers.
- e. Estimation of the adoption profile (i.e., the number of years it takes to reach a certain percentage of adoption and the maximum percentage of adoption) of each package of technologies applied to a particular commodity}',
- f. Discussion of major barriers to the adoption of a particular package of technologies to the production of each commodity.
- g. Identification of public policy options that could remove the barriers or facilitate adoption of the packages of technologies.

Information obtained from this workshop was used to assess the economic, social, and environmental impacts of these technologies. Iowa State's CARD econometric and hybrid models were used to simulate the impacts of these emerging technologies on plant and animal production, inventory, demand, supply, prices, gross farm income, production expenses, and net farm income in *1990* and *2000* under alternative technology environments.

Alternative Environments for the Development and Adoption of Technology

Since the information to be obtained at the workshops depended on the environment under which a new technology would be developed and adopted, it was necessary to make certain assumptions about future environments, or scenarios. Four technology environments were developed and used in the workshops: most likely, more-new-technology, less-newtechnology, and no-new-technology environments.

³Alternative technology environments will be discussed in the next section

The most likely environment is bordered by the more-new-technology and the less-new-technology environments; both deviate from the position of the most likely environment. It is assumed in the most likely environment that the historical trends will continue into the future. Forces, such as gross national product (GNP), population growth, export demand for U.S. agricultural commodities, trade policy, inflation rates, energy prices, and research and extension expenditures, that have shaped the past would continue to evolve as they had in the past decades. Assumptions made for various economic variables under the three environments are shown in table A-1. Factors underlying the more-new-technology environment are generally more favorable for development and adoption of new technologies than those under the most likely environment, and factors underlying the less-new-technology environment are less favorable than those under the most likely environment.

The assumptions under the no-new-technology environment are the same as that of the less-newtechnology environment except for new technologies. It is assumed that all emerging technologies discussed in the two workshops will not be available for commercial introduction before year 2000. Existing technologies will continue to be used. Through education and extension, farmers will learn to use the existing technologies better to increase productivity. Productivity is likely to continue to increase at a decreasing rate and will eventually level off.

Presentation and Discussion Of Technologies

In a plenary session, each author of a technology paper made a lo-minute presentation to give the participants essential information about a technology area so that they would be able to make intelligent projections about the development and adoption of that area. The authors' presentations focused on the following:

- a. When would a significant technology emerge from each major line of research?
- b. What is the output of the new technology? IS it a new product (e.g., a new vaccine for a particular disease) or a new process to produce the same product (e.g., no till)?
- c. How will each technology be used by farmers? Can it be used alone or in combination with other technologies? If it has to be combined with other technologies, how will they be packaged?
- d. What will it take for farmers to adopt it? Do they have to make a capital investment, such as the purchase of new chemicals, instruments, equipment, or machinery?
- e. What specific crops or livestock would be affected by adoption of a specific package of technologies?
- f. How would the package of technologies affect the performance of crop and livestock production?
- g. How would each package of technologies affect the quality of the environment and resource use?

Factors	More new technology	Most likely	Less new technology
	technology	WOSt IKEly	technology
Population growth rate:			
United States	1 .0%	0.7%	0.5%
World	1.8	1.6	1,3
GNP growth rate:			
United States	4.0	3.4	3.0
World	5.0	3.5	2.0
Trade policy	Less protectionist	. Continuation of	More protectionist,
	nore favorable	present trends	less favorable
	erms of trade	process and	terms of trade
Rate of growth of export demand:			
Grain	1.80/0	1.4%	0,80/0
Oilseeds.	2.3	1.8	1.2
Red meat	2.0	1.0	0.0
	2.0	1.0	0.0
Energy price growth rate	5.0	2.0	1.0
(constant dollars)	5.0	3.0	1.0
Growth rate of research and			
extension expenditures	4.0		
(constant dollars)	4.0	2.0	0.0
Inflation rate	8.0	5.0	3.0

Table A-1.—Alternative Technology Environments

SOURCE Office of Technology Assessment

A checklist was given on the above information to the participants. Based on information obtained from the presentation and on interactions with the authors, the participants collectively packaged the technologies and estimated the impacts and the adoption profile for each package of technologies (see section "Packaging of Technologies").

Timing of Commercial Introduction

Since the impact of a new technology on agriculture at a given time depends on when the technology is introduced for commercial adoption, each author at the workshops was asked to make an initial estimate on the probable year of commercial int reduction for each technology. Following each presentation, the entire group evaluated and discussed the author's initial estimate. The entire group then collectively estimated the year of commercial introduction of each technology under the three technology environments. Table A-2 shows the probable years of commercial introduction of animal technologies, and table A-3 shows the same for plant technologies under the three alternative environments.

The years of commercial introduction estimated ranged from the present or possibly earlier-for genetically engineered pharmaceutical products; control of infectious disease in animals; superovulation, embryo transfer, and embryo manipulation of cows; and control of plant growth and development-to 2000 and beyond for genetic engineering techniques for farm animals and cereal crops. Of the 57 potentially available animal technologies, 27 were estimated to be available for commercial introduction before 1990, and the other 30 between 1990 and 2000, under the most likely environment. In plant agriculture, 50 of the 90 technologies examined were projected to be available for commercial introduction by 1990, and the other 40 technologies between 1990 and 2000.

Packaging of Technologies

Since in practice most technologies would be used in combination with other technologies, the 28 areas of technologies were grouped into packages according to their probable impacts on particular commodities under different technology environments. Table A-4 shows different packages of technologies used in producing different commodities under the three alternative environments. In beef production, for example, 12 animal technology areas were grouped into six packages. Since more new technologies would be available for commercial adoption in later years than earliers years, each package of technologies was further categorized as a 1990 package and a 2000 package. For example, package 1990A would include all genetic engineering technologies introduced commercially by 1990, and package 2000A would include all genetic engineering technologies introduced commercially by 2000, including all package 1990A technologies. Thus, there are really a total of 12 packages of technologies for beef production.

Performance Estimates Under the No-New-Technology Environment

To estimate the net impact of emerging technologies on agricultural production, the participants of the workshops were first asked to project the performance measures of crop and livestock production, such as crop yields and livestock feed efficiency, to 1990 and 2000 under the no-new-technology economic environment. Historical trend lines of performance measures of crop and livestock production were provided to the participants as a basis for their discussion, Through the Delphi process, participants collectively projected the performance measures for each of the nine commodities for 1990 and 2000 assuming that all emerging technologies identified and discussed in this study would not be available for commercial adoption by 2000. The performance measures used in this study were as follows:

- Wheat: bushels per acre, percent of planted acreage harvested.
- Corn: bushels per acre, percent of planted acreage harvested.
- Soybeans: bushels per acre, percent of planted acreage harvested.
- Cotton: pounds per acre, percent of planted acreage harvested.
- Rice: bushels per acre, percent of planted acreage harvested.
- Beef: pounds of meat produced per pound of feed, calves per cow per year.
- Swine: pounds of meat produced per pound of feed, pigs per sow per year.
- Dairy: pounds of milk produced per pound of feed, pounds of milk produced per cow per year.
- Poultry: pounds of poultry produced per pound of feed, eggs per layer per year,

The results of the estimates are shown in table A-5. If all the new technologies identified in this study do not become available for commercial adoption

	Technology environments				
Technology	More new technology	Most likely	Less new technology		
	technology	intery	teenneregy		
Genetic engineering:		1000	1000		
Production of pharmaceuticals	1982	1982	1982		
Control of infectious diseases	1983	1983	1983		
Improvements in animal	1990	2000	> 2000″		
production Detection and treatment of	1990	2000	> 2000		
genetic abnormalities:	1000	1005	2000		
Detection Treatment	1990	1995	>2000		
	1990	2000	>2000		
Control of cancer and leukemia	1990	1990	>2000		
Animal production:	1005	4000	4005		
Cycle regulation	1985	1989	1995		
Superovulation, embryo transfer,	1000	1000	1000		
and embryo manipulations	1983	1983	1983		
Improvement of fertility Genetic engineering techniques	1990	1995	1995		
for farm animals	1995	2000	>2000		
		2000	>2000		
Regulation of growth and developn Muscle and adipose tissue	ient:				
accretion	1987	1992	>2000		
Hormone, serum, and tissue	1707	1772	>2000		
factors important to growth	1995	2000	>2000		
Immunological attraction of		2000	2000		
animals	1990	1995	>2000		
Measuring body composition and					
animal identification	1990	1995	>2000		
Animal nutrition:					
Animal product consumption and					
human health	1995	2000	>2000		
Alimentary tract microbiology and					
digestive physiology	1989	2000	>2000		
/oluntary feed retake and					
efficiency of animal					
production	1989	1995	>2000		
Maternal nutrition and progeny	1001		1004		
development	1984	1984	1984		
Aquiculture	1984	1984	1984		
Livestock pest control:	1001				
Slow-release Insecticides	1984	1984	1984		
/accines	1986	1986	1991		
ntegrated systems	1987	1989	1994		
Modification of insect habitat	2000	2000	2000		
nsect-resistant animals	2000	2000	2000		
Jtilizing Immunity systems	1990	1990	1995		
Disease control:					
Data managment and systems	405-				
analysis	1980	1980	1980		

Table A-2.—Timing of	Commercial	Introduction of	of Animal	Technologies
----------------------	------------	-----------------	-----------	--------------

More new Most Less new Technology technology likely technology 1986 1988 Diagnostic methodologies 1986 Selection for disease resistance 1994 1999 >2000 Genetic engineering of microorganisms and embryos Embryos 1995 1999 >2000 Micro-organism 1988 1989 1999 Immunobiology 1983 1983 1983 Environment and animal behavior: Energy conservation Non-Integrated system 1985 1990 2000 Integrated system 1995 2000 >2000 Optimizing total stress 1995 2000 >2000 Stress and immunity 1995 2000 >2000 Photoregulation of physiological 1990 phenomena 1990 >2000 Utilization of crop residues and animal wastes: 1985 1985 Energy from manure 1985 >2000 Chemicals from crop residues 1990 1990 Animal feed from crop residue 1990 1990 >2000 1990 >2000 Animal feed from manure 1995 Monitoring and control technologies: 1985 1985 1985 Sensors Controllers Displayers 1985 1985 1985 1985 1985 1985 Actuators 1985 1985 1985 Communication and information management: 1985 Local communication networks 1985 1985 Data terminals 1985 1985 1985 Software and database systems 1985 1985 1985 Manufacturing management systems 1987 1990 2000 Expert systems 1992 1995 2000 Telecommunications: Digital communication 1990 2000 >2000 Fiber optics 1990 2000 >2000 Personal computers 1985 1985 1985 Videotex and teletext 1985 1985 1985 Value-added networks 1985 1985 1985 Integrated services digital network 1987 1990 2000 Remote sensing 1985 1985 1985 Labor-saving technologies: 1995 2000 >2000 Robotic farming

Technology environments

SOURCE Office of Technology Assessment

by 2000, the performance of crops and livestock could continue to improve through 2000 (but at slower rates), primarily because of better applications of existing technologies through education and extension. For example, corn yields are projected to increase from 115 bushels per acre in 1982 to 117 bushels per acre in 1990 and 124 bushels per acres in 2000. Wheat yields are projected to increase from 36 bushels per acre in 1982 to 38 bushels per acre in 1990 and 41 bushels per acre in 2000. And milk production could increase from 12,300 pounds per cow per year in 1982 to 13,700 pounds in 1990 and 15,700 pounds in 2000.

					T 1		
		ology environn				ology environ	
Technology	More new technology	моsт likely	Less new technology	Technology	More new technology	Most likely	Less new technology
Genetic engineering:				Water and soil-water-plant relations			
microbial inoculums	1990	1990	Never	Understanding drought	•		
Plant propagation	1983-90	1983-90	>1 990'	resistance/tolerance	2000	2020	2050
Genetically engineered plants				Plant breeding	1984	1984	1984
Vegetable	1990	1990	1995	Biotechnology" recombinant DNA			
Soybeans/cotton	1990	1995	2000	Water use efficiency	2010	2030	2050
Cereals	1995	2000	2010	Water management	1984	1984	1984
Enhancement of photosynthetic efficient	ciency:			Photovoltaic systems	1995	1995	2010
Basic process of photosynthesis	1983	1983	1983	Soil erosion, productivity, and tillag	e:		
Photosynthetic control by Internal				Conservation farming systems	1995	1995	1995
and external factors	1983-90	1983-90	1983-2000	Assessing erosion and			
Photosynthetic molecular biology	4000 0000		4000 0000	its impact	1995	1995	2000
and genetics	1990-2000	1990-2000	1990-2000	Reclaiming lands	1995	1995	>2000
Estimation of photosynthesis and				Use of public for soil			
project management	1002.00	1002.00	1983-90	conservation projects	1995	1995	1995
needs Mochanisms of response and	1983-90	1983-90	1703-70	Multiple cropping:			
Mechanisms of response and adaptation to stress	1990	1983-95	2000	<i>Multiple cropping:</i> Breeding crops for intensive			
· · · · · · · · · · · · · · · · · · ·	1770	1703 75	2000	planting systems	1985	1985	1985
Plant growth regulators:				Double croppmg/intercropping	1990	1985	1985
Controlling growth and			4005	Competition by plant species for	1770	1700	1700
development	1984	1984	1985	growth factors	1990	1995	1990**
Resistance 10 disease and Insect	100/	1000	4000	Plant nutrition through fertilizers			
pests	1986	1988	1990	and microbiology	1995	2000	>2000
Overcoming environmental	100/	1000	1990	Mechanization for multiple			
stresses Postharvest preservation	1986 1985	1988 1986	1990	cropping	1987	1990	1987'"
•		1900	1770				
Plant disease and nematode control		1004	4004	Organic farming:			
Breed cultivators	1984	1984	1984	Reduced use of inputs Biocides	1004	1004	1004
Genetic engineering	2000	2000	2025	Reduced soil erosion	1984 1984	1984	1984
Bacteriocides fungicides and nematicides	1988	1990	2000	Self-sufficiency for nutrients	1984	1984 1984	1984 1984
Biocontrol agents	1985	1990	2000	Minimum tillage with minimal	1704	1704	1904
Crop loss assessment	1985	1990	2010	biocide use	1990	1990-95	2000
•	1705	1770	2000	Rotations	1770	1770 70	2000
Management of insects and mites,	1005			Use	1984	1984	1984
Chemical controls	>1995	2000	>2000	Knowledge	1990	1990-95	2000
New chemicals	1984 1988	1984 1990	1984 1995	C C			
Application technology Genetic engineering	1900	1990	1773	Labor-saving technologies:			
Pathogen/c chemicals	1995	2000	2005	Mechanized fruit and vegetable	1985	1005	1005
Plants	2000	2005	2010	operations Robotic farming	1700	1985	1985
Information processing	1984	1984	1984	Robotic farming Fruit and vegetable	1995	2000	2010
Weed control:				Grains	1995	2000	2010
Bioregulation through chemical				Grains	1770	2000	2010
and biological technology	1984-2000	1984-2000	1984-2000	Crop separation, cleaning, and proc	essing:		
Allelopathic chemicals as	1701 2000	1701 2000		New methods for separating and			
bioregulators	1990	1995	2000	cleaning grain	1995	1995	1995
Crop tolerance and susceptibility				Infield or onfarm processing of			
to control agents	1992	1998	>2000	forages and oilseeds:	1004		
IWMS for conservation tillage and				Vegetable	1984 1990	1984	1984
annual multicrop production	1984-2000	1984-2000	1984-2000	Forage Oilseed	1990	1990 1984	2000 1984
Biological nitrogen fixation:				Oliseed	1704	1704	1704
Improved strains of rhizobia	1984	1984	1984	Engine and fuels:			
Stress-tolerant rhizobia	1987	1990-95	1995-2000	Adiabatic compression ignition			
Legumes more active m nitrogen				engines with			
fixation (plant breeding)	1990-95	1990-95	1990-95	turbocompounding	1990	1990	1990
Root zone of cereals	>2000	>2000	>2000	Electronic engine controls	1985-86	1986	1986
Nitrogen-fixmg cereals	>2000	>2000	>2000	Alternative fuels	1004	1004	4004
Chemical fertilizers:				Grams	1984	1984	1984
Increasing efficiency of nitrogen				Cellulose	1995	2000	2010
use	1990	1995	2000	Land management:			
Decreasing energy required	1980	1980	1980	Conservation tillage	1984	1984	1984
Processing of lower quality				Controlled traffic farming	1987	1990	1995
phosphate rock into				Customed-prescribed tillage	2000	2005	2020
fertilizers	1990	1990	1990	MulticroppIng	1984	1984	1984
Ammonia from coal	1995	2000	2000	Organic farming			

Table A-3.—Timing of Commercial Introduction of Plant Technologies

Table A-3.—Timing of Commercial Introduction of Plant Technologies—Continued

	Techno	ology enviror	nments		Technology environments		
Technology	More new Most Less new technology likely technology		Technology	More new technology	Most likely	Less new technology	
Communication and information	management:			Telecommunications:			
Local communication networks	1985	1985	1985	Digital communication	1995	2000	2010
Data terminals	1985	1985	1985	Fiber optics	1990	2000	2010
Software and database systems	1985	1985	1985	Personal computers	1985	1985	1985
Manufacturing management				Videotex and teletext	1985	1985	1985
systems	1987	1990	2000	Value-added networks	1985	1985	1985
Expert systems	1990	1992	1997	Integrated services digital			
Monitoring and control:				network	1990	1990	>2000
Sensors	1984	1984	1984	Remote sensing	1985	1985	1985
Controllers	1984	1984	1984				
Displayers	1984	1984	1984				
Actuators	1984	1984	1984				

_

> = After
*May actually accelerate development m this area if there is increased Interest m resource efficient/sustainable cropping systems

SOURCE Off Ice of Technology Assessment

Table A-4.—Packages of Technologies

Beef:	
	Genetic engineering Animal reproduction Regulation of growth and development Animal nutrition Crop residue and animal waste
Package C:	Pest control Disease control
Package D:	Environment and animal behavior
Package E:	Monitoring and control Communication and information management Telecommunications
Package F:	Labor saving
Swine:	
Package A:	Genetic engineering Animal reproduction Regulation of growth and development Animal nutrition Pest control Disease control
Package B:	Environment and animal behavior Monitoring and control Communication and information management Telecommunications
Package C:	Crop residue and animal waste
Package D:	Labor saving
Dairy: Package A:	Genetic engineering Animal reproduction Pest control Disease control
Package B:	Regulation of growth and development Animal nutrition Environment and animal behavior Crop residue and animal waste
Package C:	Monitoring and control Communication and information management Telecommunications Labor saving
Package D:	Bovine growth hormone
	Genetic engineering Animal reproduction Regulation of growth and development Animal nutrition
Package B:	Pest control Disease control Environment and animal behavior Crop residue and animal waste
Package C:	Monitoring and control Communication and information management Telecommunications Labor saving

Wheat:	
Package A:	Plant growth regulators Plant disease and nematode control Management of insects and mites Weed control Chemical fertilizers Water and soil-water-plant relations Soil erosion, productivity, and tillage Multiple cropping Organic farming Land management
Package B:	Labor saving Crop separation, cleaning, and processing Engines and fuels
Package C:	Communication and information management Monitoring and control Telecommunications
<i>Corn:</i> Package A:	Genetic engineering Plant disease and nematode control Management of insects and mites Water and soil-water-plant relations Communication and information management Monitoring and control Telecommunications
Package B:	Weed control Chemical fertilizers Soil erosion, productivity, and tillage Multiple cropping Land management
Package C:	Organic farming
Soybean:	
Package A:	Genetic engineering Enhancement of photosynthetic efficiency Plant growth regulators Plant disease and nematode control Multiple cropping
Package B:	Management of insects and mites Weed control Biological nitrogen fixation Chemical fertilizers Water and soil-water-plant relations Soil erosion, productivity, and tillage Organic farming Labor saving Crop separation, cleaning, and processing
Package C:	Communication and information management Monitoring and control Telecommunications
Rice: Package A:	Genetic engineering Enhancement of photosynthetic efficiency Plant growth regulators Plant disease and nematode control
Package B:	

Table A-4.—Packages of Technologies—Continued

	Chemical fertilizers		Chemical fertilizers
	Water and soil-water-plant relations		Water and soil-water-plant relations
	Multiple cropping		Soil erosion, productivity, and tillage
	Crop separation, cleaning, and procesing		Multiple cropping
	Communication and information		Labor saving
	management		Engines and fuels
	Monitoring and control		Land management
Cotton:	Telecommunications	Package B:	Communication and information management
Package A:	Genetic engineering		Monitoring and control
Ũ	Enhancement of photosynthetic efficiency		Telecommunications
	Plant growth regulators	Package C:	Biological nitrogen fixation
	Plant disease and nematode control	r dokugo O.	Organic farming
	Management of insects and mites Weed control		Crop separation, cleaning, and processing

SOURCE: Office of Technology Assessment

Table A.5.—Performance Projections Under No. New-Technology Environment

Commodity	Unit	1990	2000
Beef	lb. meat per lb. feed	0.071	0.066
	calves per cow	0.940	0.950
Dairy	Ib. milk per Ib. feed	0.938	0.952
	milk per cow per year		
	(thousand lb)	13.7	15.7
Poultry ,	lb. meat per lb. feed	0.52	0.53
	eggs per layer per year	255.0	260.0
Swine	lb. meat per lb. feed	0.167	0.17
	pigs per sow per year	14.8	15.7
Corn	bushels/acre	116.5	123.5
Cotton	pounds/acre	502.0	511.0
Rice	bushels/acre	108.6	111,9
	bushels/acre	32.2	34.8
Wheat	bushels/acre	37.8	40.8

SOURCE: Office of Technology Assessment