
Chapter 9

Software



CONTENTS
Page

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...221
The BMD Software Debate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ....221
Generic Software Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....223
The Software Crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..........225
The Nature of Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........225
Failures and Errors in Computer Programs. . .......................226
Tolerating Errors. . . . . . . . . . . . . . . . . . . . . . .........................226
Tolerating Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............227
Traditional Reliability Measures . . . . . . . . . . . . . . . . . . . . . .............227
Traditional Reliability Measures Applied to Software . ...............227

Software Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........228
Figures of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...............229
Correctness . .  .  .  . .  . .  . .  . .  . .  . .  . .  . .  . . .  . . .  . . . .  .  . . .229
Error Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................231
Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................231
Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................232
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............233
Security .. .. .. .. .. .. .. .. .. . $ . . . . . . . . . . . . .. .. .. .. .. .$ ...4....233
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .........234
Appropriate Measures of Software Dependability. . ..................234

Characteristics of Dependable Systems . .............................234
Observations of External Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..235
Observations of Internal Behavior .. .. .. .. .. .. .. .. .. .. .. ... ... ....23$
Factors Distinguishing DoD Software Development . ................239
Software Dependability and Computer Architecture . ................241
Software Dependability and System Architecture . ..................241
Software Dependability and System Dependability . .................242
Software Dependability and the SDI . .............................242
Development Approaches That Have Been Suggested. . ..............245

summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . ... 245
Estimating Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....245
Technology for Preventing Catastrophic Failure. . ...................246
Confidence Based on Peacetime Testing. . ..........................246
Establishing Goals and Requirements . .............................247

SDIO Investment in Battle Management, Computing Technology,
and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 247

Conclusions . . . . . . . . . . . . . . . ... ... ..  249

Tables
Table No. Page

9-1. Characteristics of Dependable Systems Applied to SDI,
SAFEGUARD, and the Telephone System . ......................243

9-2. SDIO Battle Management Investment . . . . . . .....................248
9-3. Funding for OTA-Specified problems . ...........................248



Chapter 9

Software

INTRODUCTION

The performance of a ballistic missile defense
(BMD) system would strongly depend on the
performance of its computers. Chapter 8 de-
scribes the pervasiveness of computers in the
operation of a BMD system, and as well as in
its development, testing, and maintenance.1 Se-
quences of instructions called software would
direct the actions of the computers, both in
peacetime and in battle. As shown in table 8-
1, software is responsible both for the actions
of individual components of the system (e.g.,
a radar), and for coordinating the actions of
the system as a whole. As coordinator, soft-
ware maybe thought of as the glue that binds
the system together. As the system manager,
software assesses the situation based on data
gathered by sensors and reports from system
components, determines battle strategy and
tactics, and allocates resources to tasks (e.g.,
the weapons to be fired at targets.)

The role of software as battle manager is cru-
cial to the success of a BMD system. If soft-
ware in a particular component failed-even
if the failure occurred in all components of the
same type simultaneously-other components
of different types might compensate. But if the
battle management software failed catas-
trophically, there would be no way to compen-
sate. Furthermore, the battle management
software may expected to compensate for sys-
temic failures, both because of its role as man-
ager and because software is perceived to be
more flexible than hardware. Consequently, the
battle management software would have to be
the most dependable kind. Thus it is the focus
of most of the SD I software debate.

The BMD Software Debate

The envisaged BMD system would be com-
plex and large, would have to satisfy unique
requirements, and would have to work the first

time it is used in battle. Many computer sci-
entists, and software engineers in particular,
have declared themselves unwilling to try to
build trustworthy software for such a system.
They claim that past experience combined with
the nature of software and the software devel-
opment process makes the SDI task infeasi-
ble. David Parnas has summarized their ma-
jor arguments.2 Other computer scientists,
however, have stated that their belief that the
software needed for a Strategic Defense Ini-
tiative (SDI) BMD could be built with today’s
software engineering technology. Frederick
Brooks, for example, has said:

I see no reason why we could not build the
kind of software system that SDI requires
with the software engineering technology
that we have today.3

Those willing to proceed believe that an
appropriate system architecture and heavy use
of simulations would make the task tractable.
Their arguments are summarized in a study
prepared for the Strategic Defense Initiative
Organization (SDIO) by a group known as The
Eastport Group.4 The critical role played by
the software in BMD makes it important to
understand both positions.

*Table 8-1 illustrates many of the ways in which computers
would be used in a deployed BMD system.

Note: Complete definitions of acronyms and initialisms
are listed in Appendix B of this report.

‘David L. Pamas, “Software Aspects of Strategic Defense
Systems, ” American Scientist, 73:432-40, September-October
1985.

3From a statement by Dr. Frederick P. Brooks at the Hear-
ings before the Subcommittee On Strategic and Theater Nu-
clear Forces of the Committee On Armed Services, United States
Senate, S. Hrg. 99-933, p. 54.

4Eastport Study Group, “A Report to the Director, Strate-
gic Defense Initiative Organization, ” 1985.
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The Role of Software in BMD

Software for BMD would be expected to:

●

●

●

●

be the agent of system evolution, permit-
ting changes in system operation through
reprogramming of existing computers;
perform the most complex tasks in the
system, such as battle management;
be responsible for recovery from failures,
whether they are hardware or software
failures; and
respond to threats, both anticipated and
unanticipated, against the system.

A BMD system would not be trustworthy
and reliable unless both hardware and software
were trustworthy and reliable. Because of rapid
progress in hardware technology in recent
years, and because of differences in their na-
tures, hardware reliability is not as hotly-
debated an issue as software reliability. As
Brooks puts it in his discussion of current soft-
ware engineering technology:

Not only are there no silver bullets now in
view, the very nature of software makes it un-
likely that there will be any-no inventions
that will do for software productivity, relia-
bility, and simplicity what electronics, tran-
sistors, and huge-scale integration did for com-
puter hardware. We cannot expect ever to see
twofold gains every two years.

First, one must observe that the anomaly
is not that software progress is so slow, but
that computer hardware progress is so fast.
No other technology since civilization began
has seen six orders of magnitude in perform-
ance-price gain in 30 years.5

Software Complexity

The software engineer called upon to produce
large, complex software systems is partly a vic-
tim of his medium. Software is inherently flex-
ible. There are no obvious physical constraints
on its design (e.g., power, weight, or number
of parts) so software engineers undertake tasks
of complexity that no hardware engineer

would. Brooks summarizes the situation as
follows:

Software entities are more complex for their
size than perhaps any other human construct
because no two parts are alike . . . In this re-
spect, software systems differ profoundly
from computers, buildings, or automobiles,
where repeated elements abound.

Digital computers are themselves more com-
plex than most things people build: They have
very large numbers of states. This makes con-
ceiving, describing, and testing them hard.
Software systems have orders-of-magnitude
more states than computers doe

Software Issues

Of course, complex systems are successfully
built and used. However, given the current
state of the art in software engineering, com-
plex systems are not trusted to be reasonably
free of catastrophic failures before a period of
extensive use. During that period, errors caus-
ing such failures may be found and corrected.
A central issue in the debate over BMD soft-
ware is whether it can be produced so that it
can be trusted to work properly the first time
it is used, despite the probable presence of er-
rors that might cause catastrophic failures. A
critical point in the debate over this issue is
how one would judge whether or not the soft-
ware was trustworthy. If evaluations of trust-
worthiness were to rely on the results of simu-
lations of battles, then a second critical point
is how closely and accurately actual BMD bat-
tles could be simulated.

A second central issue in the software de-
bate is whether a BMD system imposes unique
requirements on software. Critical points sur-
rounding this issue are:

● whether there are existing similar systems
that could serve as models for the devel-
opment of BMD software;

● whether requirements would be suffi-
ciently well understood in advance of use
so that trustworthy software could be de-
signed;

‘Frederick P. Brooks, Jr., “No Silver Bullet, Essence and Ac-
cidents of Software Engineering, ” IEEE Computer vol. 20, No.
4, April 1987, p. 10. 6Ibid.
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● whether all potential threats against a
BMD system could be anticipated, and,
if not; and

● whether the software could be designed
to handle unanticipated threats during the
course of a battle.

Adding fuel to the debate over whether soft-
ware could meet BMD requirements is the slow
progress in software technology in recent years
when compared to hardware technology.

An obstacle to settling this issue is the cur-
rent uncertainty over the purposes of a BMD
system. Software requirements would depend
on the threat and countermeasures to be faced,
the expected strategies of both the offense and
the defense; and the technology to be used in
the system, e.g., kinetic-energy v. directed-
energy weapons. A system intended to defend
the population would have different require-
ments than one intended to defend only criti-
cal military targets. A system to be deployed
in phases would oblige the software developers
to know the changes in requirements and archi-
tecture to be expected between each phase be-
fore they designed the software for the initial
phase.

Among the developers of large, complex sys-
tems who attended OTA’s workshop on SDI
software, there was unanimous agreement that
software development should not be started
until there was a clear statement of the require-
ments of the system.7 All system requirements
would not have to be known in detail before
software development could be started. But
if the requirements for a system component
could not be written, neither could the speci-
fications for the software that was part of that
component.

Catastrophic Failure
Both critics and supporters of the feasibil-

ity of building software to meet SDI require-
ments agree that large, complex software sys-

7Attendees at the workshop, held Jan. 8, 1987 in Washing-
ton, DC, included software developers who participated in the
development of SAFEGUARD, Site Defense, telephone switch-
ing systems, digital communications networks, Ada compilers,
and operating systems.

terns, such as an SDI BMD system would need,
would contain errors. They disagree on whether
the software could be produced so that it would
not fail catastrophically. Several different
meanings of catastrophic failure have been
used. It is sometimes related to whether or not
a BMD system would deter the Soviets from
launching ICBMs at the United States:

Ballistic missile defense must . . . be credi-
ble enough in its projected wartime perform-
ance during peacetime operations and testing
to ensure that it would never be attacked.8

It can also be taken to mean that
The system has failed catastrophically if the

U.S. bases its defense on the assumption that
the system will function effectively in battle
and then a major flaw is discovered so that
we are defenseless.9

This chapter assumes a technical definition:
a catastrophic failure is a decline in system per-
formance to 10 percent or less of expected per-
formance. A BMD system designed to destroy
10,000 warheads would be considered to have
failed catastrophically if it stopped only 1,000
of the 10,000. The figure 10 percent is an arbi-
trary one; it has been adopted as illustrative
of a worst-case failure.

Generic Software Issues

Much of the debate concerning BMD soft-
ware is about software problems common to
all complex, critical software systems.10 A good
example is whether software can be designed
to recover from failures automatically. BMD
proponents argue that producing trustworthy
BMD software would not call for general so-
lutions to such problems. They feel that the
specificity of the application permits special-
case solutions that would work well enough
for BMD. Opponents argue that BMD soft-
ware would demand better solutions for such
problems as failure-recovery than any system

‘Charles A. Zraket, “Uncertainties in Building a Strategic
Defense, ” Science 235:1600-1606, March 1987.

‘David L. Parnas, personal communication, 1987.
10 AS descri~, for ex~ple, in David L. p~as, “Softw~e

Aspects of Strategic Defense Systems, ” op. cit., footnote 2.
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previously built. They say that approaches pro-
posed for SDI have been tried in the past and
have not been shown to be effective.

This chapter is primarily concerned with
arguments over the generic issues. First, there
are as yet no clear statements of BMD soft-
ware requirements, whether for battle manage-
mentor particular BMD system components,
let alone proposed software designs or pro-
posed solutions for BMD for any of the generic
problems. Application-specific analysis must
await those requirements, designs, and so-
lutions.

Second, there seems to be agreement that
BMD software would be more complex than
any previously built. The first conclusion of
volume V of the Fletcher report was:

Specifying, generating, testing, and main-
taining the software for a battle management

system will be a task that far exceeds in com-
plexity and difficulty any that has yet been
accomplished in the production of civil or mil-
itary software systems.11

Third, tasks for BMD software differ in im-
portant ways from the tasks performed in to-
day’s weapons systems and command, control,
and communications systems. It is true that
many BMD software tasks would resemble
those for current systems: e.g., target track-
ing, weapons release and guidance, situation
assessment, and communications control in
real time. The differences from current systems
are

●

●

●

●

●

●

that a BMD system would:

permit less opportunity for human inter-
vention,
have to handle more objects in its battle
space,
have to manage a larger battle space,
use different weapons and sensor tech-
nology,
contain vastly more elements,
have more serious consequences of failure,

“James C. Fletcher, Study Chairman and Brockway McMil-
lan, Panel Chairman, Report of the Study on Wm.hMting the
Threat Posed by NucJear  BaW”stic  Missiles, Volume V: Battle
Management, Cornmuzu”cations,  and Data Processing (Wash-
ington,  DC: Department of Defense, Defensive Technologies
Study Team, October 1983).

• have to operate in a nuclear environment,
● be under active attack by the enemy, and
● be useless if it failed catastrophically dur-

ing its first battle.

Accordingly, the debate over generic soft-
ware issues is an appropriate one for BMD
software.

The purpose of this chapter is to examine
the key issues in the debate over the feasibil-
ity of meeting BMD software requirements.
This chapter:

1. discusses why there is such a debate and

2

3

4

includes a definition of key terms, such
as “catastrophic failure” and “trustwor-
thiness”;
analyzes properties often claimed to be im-
portant for BMD software-e. g., trust-
worthiness, reliability, correctness, low er-
ror incidence, fault tolerance, security, and
safety, (including a discussion of the mean-
ing of “reliability” as applied to software
and why there is no single, simple meas-
ure of software dependability);
identifies the major factors that affect
software dependability; and
characterize the demands placed on BMD
software and the BMD software develop-
ment process in terms of the factors affect-
ing dependability.

The remainder of this chapter begins with
a brief discussion of Department of Defense
(DoD) software experience, the nature of soft-
ware, traditional reliability measures, and the
pitfalls inherent in applying such measures to
software. Following sections deal with prop-
erties such as trustworthiness, correctness,
fault tolerance, security, and safety, and with
the factors that lead people to have confidence
that systems have such properties. (The avail-
able technology for incorporating these prop-
erties into software is analyzed in app. A.) The
chapter then presents an analysis of Strate-
gic Defense Initiative BMD requirements from
the viewpoint of those factors. The chapter con-
cludes with: a discussion of why BMD soft-
ware development is a difficult job—perhaps
uniquely so; why we are unlikely to have more
than a subjective judgment of how trustwor-
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thy the software is, once produced:
mary of the key software issues.

The Software Crisis

and a sum-

Since the mid-1970s DoD officials have in-
creasingly recognized the difficulties in pro-
ducing command, control, and information
processing software for weapon systems.12 As
Ronald Enfield says:

In the 1970s, the world’s largest customer
for computers–the U.S. Department of De-
fense—changed its focus from hardware to
software as a major obstacle to progress in de-
veloping advanced weapons. Reliable software
is also a crucial component of complex systems
such as nuclear power plants, automatic tell-
ers, and many other technologies that touch
our lives in critical ways. Yet, as the software
for these systems has grown increasingly com-
plicated, it has become more prone to error.13

The complex of problems associated with
trying to produce software that operated prop-
erly, on time, within budget, and maintaina-
bly over its lifetime was dubbed “the software
crisis. ” DoD has found that the software crisis
is sometimes forcing the military to wait for
software to be debugged before it can use new
systems. Progress in alleviating this crisis has
been slow, and the same problems would ap-
ply to producing software for BMD. Both the
Fletcher and Eastport Group reports agreed
that software development for BMD would be
a difficult, if not the most difficult, problem
in BMD development. The Eastport Group
noted that:

Software technology is developing against
inflexible limits in the complexity and relia-
bility that can be achieved.14

To understand why DoD and other devel-
opers of large, complex software systems have
been experiencing a software crisis, it is first

l%An emly ~~y9i9 of the problem can be found in Don~d
W. Kosy, “Air Force Command and Control Information Proc-
essing Requirements in the 1980s: Trends in Software Tech-
nology, ” Rand Report R-1012-PR, June 1974.

18Ron~d L. Enfield, “The Limits of Software Reliability, ”
Technology Rew”ew,  April 1987.

“Eastport  Study Group Report, op. cit., footnote 4.

necessary to understand the nature of software
and the demands made on it.

The Nature of Software

Digital computers are among our most flex-
ible tools because the tasks they do can be
changed by changing the sequences of instruc-
tions that direct them. Such instruction se-
quences are called programs, or software and
are stored in the computer’s memory. Flexi-
bility is attained by loading different programs
into the memory at different times.15 Each
make and model of computer has a unique set
of instructions in which it must be pro-
grammed, generically known as machine in-
structions or machine language.

To simplify their job, programmers  have de-
veloped languages that are easier to use than
machine language. These languages, such as
FORTRAN, COBOL, and Ada, are known as
high level languages, and require the program-
mer to know less about how a particular com-
puter works than do machine languages. The
language in which a program is written is
known as the source language for the program,
and the text of the program is called the source
program or source code.16 A program whose
source language is a high level language must
be translated into machine language before be-
ing loaded into the computer’s memory for exe-
cution. Some lines of text in a source program
may be translated into many machine instruc-
tions, some into just a few.

There are several measures of program size.
One measure is the number of lines in the text
of the source program, also known as lines of
source code (LOC), or number of machine lan-
guage instructions. Size is greatly variable: a
simple program to add a list of numbers may
require 10 or fewer instructions, while a word

ITo  protect them horn change, and to enhance their perform-
ance, some programs are loaded into memories that are either
unchangeable or that must be removed from the computer to
be changed. However, most of the memory in nearly all com-
puter systems is of a type that is reloadable while the computer
is running.

leInstructions  and data are encoded into a computer’s mem-

ory as numbers, and programs are sometimes known as codes.



processing program may take 10,000 LOC (10
KLOC). The Navy’s AEGIS ship combat soft-
ware consists of approximately 2 million in-
structions.

Size alone is not a good measure of program
difficulty. Large programs can be simple, small
ones very complex. The size of a program is
influenced by the language, computer, pro-

grammer’s expertise, and other factors. A more
important question is, “How complex is the
problem to be solved by the program and the
algorithms used to solve it?’’17 Compounding
the problem is the lack of a standard method
for measuring complexity.

Failures and Errors in
Computer Programs

Since a computer can only execute the in-
structions that are stored in its memory, those
instructions must be adequate for all situations
that may arise during their execution.18 Incor-
rect performance by a computer program dur-
ing its operation is known as a failure. Failures
in computer programs result from:

●

●

●

the occurrence of situations unforeseen by
the computer programmer(s) who wrote
the instructions,
a misunderstanding by the programmer(s)
of the problem to be solved (including mis-
understandings among a group of pro-
grammers), or
a mistake in expressing the solution to the
problem as a computer program.

Each of these situations can cause errors in
the instructions making up computer pro-
grams, errors manifested as failures when par-
ticular inputs occur. 19  The effects of errors in

1~~ chap~r  8 for a discussion of algorithms.
18some progr~s, kIMNVII  as self-mdfying progr~st add ti

or modify their own instruction sequences and then execute the
resulting instructions. Nonetheless, the response of the program
to input data is completely determined by the instructions that
are initially stored in its memory.

leErrors  in programs are often called bugs, although the term
originally meant any cause of incorrect behavior. The origin of
the term is described in John Shore, The Sachertorte  A&on”thm,
(New York, NY: Penguin Books, 1986).

programs range from minor inconveniences
(e.g., misspelled words in the program’s out-
put) to catastrophic failures-e. g., the cessa-
tion of all processing by the computer, wrong
answers to problems like computing missile
tracks, or overdoses of radiation to devices con-
trolled by the computer.20 21

Tolerating Errors

Errors in large computer programs are the
rule rather than the exception. Freedom from
errors cannot be guaranteed and is extremely
rare. Since correcting an error requires chang-
ing the list of instructions that make up the
program, the process of removing an error may,
and often does, introduce anew error. For large
software, the process of correcting errors is so
time consuming and expensive that modifica-
tions to the software are distributed only a few
times a year. As a result, lists of known errors
are often published and distributed to users.22

Where there is a high degree of human inter-
action with the program during its operation,
the human user can usually circumvent situa-
tions where the program is known to fail-often
by restricting the data input to the program
or by not using features of the program known
to be failure-prone.

The more critical the task(s) of the program
and the smaller the degree of human interven-
tion in the program’s operation, the smaller
the tolerance for errors. Accordingly, large,
critical programs commonly include con-
sistency checks whose goal is to try to detect
failures, prevent them when possible, and re-
cover from them when not. This approach is

*°For a sample of the variety of problems involving computers
and software, see ACM SIGSOFTSoftware Engineering Notes
11(5):3-35,  October 1986.

ZIThe Occumence  of a failure condition is sometimes known
as anina”dent.  The software may contain instructions that per-
mit it to recover from such an incident. If the software success-
fully corrects the condition, it remains no more than an inci-
dent. Successful recovery from incidents requires good
understanding of their causes and corrections, and requires that
not too many occur at once.

2~Mmu~ PWS  describing programs used with the UNIX oper-
ating system, developed and sold by AT&T Bell Laboratories
and a currently popular operating system, contain as standard
sections a description of the known bugs in the programs.
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discussed in more detail in a later section on
fault tolerance.

Tolerating Change

As previously noted, change is both the
blessing and the curse of the software engineer.
Software is expected to be flexible, and his de-
signs must accommodate change. Without its
flexibility, software would be as useful. Al-
though software does not wear out in the sense
that hardware does, complex software systems
apparently tolerate only a certain amount of
change. The critical point occurs when changes
introduce more errors than they fix, i.e., each
change, on the average, introduces more errors
than it removes.23 It appears likely that increas-
ing the rate of change decreases the time to
reach the critical point. Brooks devotes a chap-
ter to a discussion of the effects of changes
in complex systems, concluding with:

Program maintenance is an entropy-increas-
ing process, and even its most skillful execu-
tion only delays the subsidence of the system
into unfixable obsolescence.24

Although Brooks’s discussion is more than
10 years old, it is still valid. Systems that tend
to be very long-lived, e.g., 20 years old or more,
undergo complete software redevelopment
every few years. As an example, the Navy’s
Naval Tactical Data System, first built in the
early 1960s, has undergone at least five major
rewrites.

Traditional Reliability Measures

Reliability is one measure of system be-
havior. In engineering, reliability is often ex-
pressed as the average time between failures.
For inexpensive consumer items, such as light
bulbs, it is defined as the expected lifetime of
the item, since such items are completely
replaced when they fail. Complicated, expen-
sive systems, such as automobiles, computer

“M. Lehman and L. Belady, “Programming System Dy-
namics,” ACM SIGOPS Third Symposium on Operating Sys-
tem Principles, October 1971.

ZiFrederick p. Brooks, Jr., The Mytlu”caJ  Man-Month: Essays
on Software En~”neering,  (New York, NY: Addison-Wesley,
1975).

systems, and weapon systems, are designed
to outlive any particular component by allow-
ing repair or replacement of components when
they fail. Failure of a windshield wiper blade
only requires the quick, inexpensive replace-
ment of the blade by another that meets the
same specifications as the failed one.

Reliability of complicated systems is tradi-
tionally measured in mean time between fail-
ure (MTBF), or an equivalent measure such as
failure rate. MTBF is measured by counting
failures during operation and then dividing by
the length of the observation period. For sys-
tems with no operational history, MTBF must
be predicted on the basis of estimates of the
MTBF of each of the system’s components.
Usually such an estimate is made using the
assumption that component failures are ran-
dom, statistically independent events. With-
out such an assumption, the analysis is much
more difficult and often impractical for com-
plex systems.

Reliability as measured by MTBF is useful
for systems with the following characteristics:

●

●

●

the time to repair the system is unimpor-
tant to the user, perhaps because a tem-
porary replacement is available or the user
has no need of the system for a while; or
the time to repair the system is important,
but can be kept very short compared to
the MTBF, perhaps by keeping a stock
of replacement parts on hand; and
there are no failures so serious as to be
unacceptable, e.g., failures that could re-
sult in human deaths.

Traditional Reliability Measures
Applied to Software

The concept of MTBF has historically been
of limited use for critical software. For appli-
cations such as BMD, repair time is extremely
important. If the system, or parts of it, were
to fail, the user would have either no response
or a weakened response to an ICBM attack.
Accordingly, the concept of MTBF alone is not
sufficient to judge whether or not the system
would behave as desired. Furthermore, the
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models often used for predicting MTBF are
based on assumptions that are invalid for soft-
ware. Many models assume that component
failures are independent and that they are ran-
dom, i.e., unrelated to system inputs and
states. Software components do not fail ran-
domly: they contain errors that cause failures
in the event of particular inputs and particu-
lar states. The failure of one component often
causes others to fail because software compo-
nents tend to be closely interrelated.

Replacing a software component by a copy
of itself will cause exactly the same failure un-
der the same conditions that caused the origi-
nal to fail. Remedying a failure consists of mod-
ifying a component to remove an error in its
list of instructions, not replacing a failed com-
ponent with a copy. Once modified, the com-
ponent can no longer be considered to be the
same as the original, and previous failure data
do not apply to it. Finally, a failure in one com-

ponent is likely to lead to failures in others.
Consequently, a stock of replacement compo-
nents cannot be kept on hand in hopes of re-
ducing repair time.

Regardless of whether MTBF were used to
indicate software or hardware reliability for
a BMD system, some failures would be clearly
more disastrous than others. To be useful,
MTBF would have to be calculated for differ-
ent classes of failures.

In recent work, researchers have shown that
if inputs are characterized in statistically
sound ways, it is possible in testing to deter-
mine with high confidence a meaningful MTBF
for a program.25 Nonetheless, MTBF remains
inadequate as the sole means of characteriz-
ing software dependability.

~5A~en Cumit, Michael Dyer, and Harlan D. M~s, “Certify-
ing the Reliability of Software, ” L??EE  Transactions On Soft-
ware En&”neering,  SE-12(1), January 1986, pp. 3-11.

SOFTWARE DEPENDABILITY

Computer scientists and software users have
devised a variety of ways to evaluate software
dependability. As in deciding which automo-
bile to buy, the buyer’s concerns should deter-
mine which qualities are emphasized in the
evaluation. Qualities commonly considered are:

●

●

●

●

●

●

correctness-whether or not the software
satisfies its specification;
trustworthiness-probability that there
are no errors in the software that will cause
the system to fail catastrophically;
fault tolerance-either failure prevention,
i.e., capability of the software to prevent
a failure despite the occurrence of an ab-
normal or undesired event—or failure re-
covery, i.e., capability of the software to
recover from a failure when one occurs;
availability-probability that the system
will be available for use;
security-resistance of the software to un-
authorized use, theft of data, and modifi-
cation of programs;
error incidence—number of errors in the

software, normalized to some measure of
size; and

● safety—preservation of human life and
property under specified operating con-
ditions.

For critical software, correctness and trust-
worthiness are important indicators of depend-
ability. Fault tolerance assumes importance
when the system must continue to perform—
as in the midst of a battle—even if perform-
ance degrades. Security is important when val-
uable data or services maybe stolen, damaged,
or used in unauthorized ways. Safety is impor-
tant in applications involving risk to human
life or property. Error incidence is important
in assessing whether or not apiece of software
should stay in use.

OTA’s characterization of BMD software de-
bendability will include all of the above-listed
qualities because:

● national survival may depend on the
proper operation of BMD software;
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● such software would have to be trusted
to operate well during the entire course
of a battle; and

● it would have a long lifetime.

Early versions of a BMD system may not
have goals as ambitious as later, more capa-
ble versions. Nevertheless, we still would want
to be confident that the software would oper-
ate well during the course of a battle, would
do so without undue pause for failure recov-
ery, would be secure, and would be safe to oper-
ate. In addition, since it would surely undergo
continual modification during its lifetime, we
would need to be sure that it was being main-
tained without repeated introduction of new
errors.

Dependability needs to be attended to from
the beginning of software development, for it
is not easily added on later. Software designs
often must be redone after system delivery
when performance has been emphasized at the
cost of such factors as correctness, fault toler-
ance, or security. The cost of redoing software
may greatly exceed the original cost. Software
designed for dependability may contain mech-
anisms for later improving its correctness,
trustworthiness, fault tolerance, security, and
safety later. For example, fault tolerance was
strongly considered in the design of the
SAFEGUARD software. During tests of the
prototype system engineers realized that the
wrong set of faults had been accommodated.
Because the mechanism for detecting and re-
sponding to faults had been incorporated into
the design, the set of faults tolerated by the
system was changed in a matter of only a few
weeks. This change involved perhaps 10 per-
cent of the lines of code in the operational soft-
ware.26

Figures of Merit

No single figure of merit can indicate depend-
ability. Single figures of merit generally focus
on some single characteristic, such as the cost
to discover a password that would permit en-
try to a computer system. Because software

“Victor Vyssotsky, personal communication, 1987.

engineering is a young discipline, software
engineers do not yet know very well how to
evaluate software quantitatively. And because
information permitting numerical evaluation
of software is usually considered proprietary,
few data are available anyway for such analy-
sis. Accordingly, we would not expect a use-
ful quantitative evaluation of BMD software
dependability to be available for many years.
Therefore, only a brief analysis of each soft-
ware property contributing to dependability
follows.

Trustworthiness is probably the most impor-
tant quality for BMD software. The applica-
tion is critical. Software engineers are unable
to produce complex software that is correct
and error-free at the current state of the art.
Although BMD software should still be as
nearly correct, highly available, error-free, se-
cure, and safe to use as possible, we must above
all know whether or not it could be trusted.

Correctness

Software developers work from specifica-
tions, both written and verbal, that are in-
tended to convey the desired system behavior.
The specifications are frequently developed by
people with little familiarity with software, e.g.,
a Naval officer untrained in software develop-
ment who writes specifications for a ship’s
combat management system. “Correct” soft-
ware exhibits exactly the behavior described
by its specifications. To convince himself and
his customer that he has done his job, the soft-
ware developer must somehow demonstrate
that his software is correct.

Mathematical Correctness

Because no single technique has proved com-
pletely effective to demonstrate program cor-
rectness, software developers use a variety of
techniques try to demonstrate that their soft-
ware adequately approximates its specifica-
tions. Computer scientists, in recognition of
the problems involved, have devoted consid-
erable research to such techniques. They have
investigated formal and informal, mathemati-
cal and non-mathematical ideas. Much of the
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research attention has been focused on devel-
oping “program verification’ ’-mathematical
techniques to verify that a computer program
is correct with respect to properties required
of it. Some progress has been made in mathe-
matically proving that programs are correct.
It is unlikely, though, that a sudden break-
through will occur leading to order-of-magni-
tude gains in productivity and greatly im-
proved dependability. Brooks analyzed this
possibility:

Can both productivity and product reliabil-
ity be radically enhanced by following the pro-
foundly different strategy of proving designs
correct before the immense effort is poured
into implementing and testing them?

I do not believe we will find productivity
magic here. Program verification is a very
powerful concept, and it will be very impor-
tant for such things as secure operating sys-
tem kernels. The technology does not prom-
ise, however, to save labor. Verifications are
so much work that only a few substantial pro-
grams have ever been verified.

Program verification does not mean error-
proof programs. There is no magic here, either.
Mathematical proofs can also be faulty. So
whereas verification might reduce the prog-
ram-testing load, it cannot eliminate it.

More seriously, even perfect program veri-
fication can only establish that a program
meets its specification. The hardest part of the
software task is arriving at a complete and
consistent specification, and much of the es-
sence of building a program is in fact the
debugging of the specification.”
Although mathematical techniques for dem-

onstrating correctness are not frequently ap-
plied, other techniques-such as design re-
views, code reviews, and building software in
small increments—are. The one technique al-
ways used by software developers, however,
is testing.

Testing
Program developers test a program by plac-

ing it in a simulated operating environment.28

27 Frederick p. Br~k9, Jr., “NO Silver Bullet, Essence ~d Ac-

cidents of Software Engineering, ” op. cit., footnote 5, p. 16.
~sFor presentation pUrpOSSS,  the discussion Of testing here

is simplified, omitting, e.g., component testing. Appendix A
contains a more complete discussion.

The simulation supplies inputs to the program,
and the testers examine its output for fail-
ures.29 They report any failures to the program-
mers, who correct the relevant errors and re-
submit the program for testing. The sequence
continues until the developers agree that the
program has passed the test. The final stage
of testing developmental software for large and
critical systems, especially military software,
is acceptance testing. A previously agreed-
upon test is run to show that the software
meets criteria that make it acceptable to the
user.

It has been shown that testing of every pos-
sible state of the program, known as exhaus-
tive testing, is not practical even for simple
programs. To illustrate this point, John Shore
calculated the amount of time required to test
the addition program used by 8 digit calcula-
tors to add 2 numbers. He estimated that, at
the rate of one trial per second it, would take
about 1.3 billion years to complete an exhaus-
tive test.30

For large, complicated programs, the num-
ber of tests that can be run practically is small
compared to the number of possible tests.
Therefore, developers apply a technique called
scenario testing. They observe the program’s
behavior in an operational scenario that the
program would typically encounter. They may
establish the scenario by simulating the oper-
ational environment, such as an aircraft flight
simulator. Alternatively, they may place the
software in its actual environment under con-
trolled conditions. For example, a test pilot
may put an aircraft with new avionics software
through a series of pre-determined  neuvers.
In the former case, the simulator must first
be shown to be correct before the results can
be considered valid. If the simulator itself re-
lies on software, showing the validity of the
simulation may be as difficult or more diffi-
cult than showing the correctness of the pro-
gram to be tested.

z9G~ W9ter9 cue~ly determine the inputs to be used in
advance, often including some tests using random inputs, and
some using nonrandom, so as to get representative coverage
of the expected operational inputs.

‘“John Shore, op. cit., footnote 19, pp. 171-172.
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For systems like aircraft, such tests are so
expensive that only relatively few scenarios
can be flown. Flight tests of the avionics soft-
ware for the Navy’s A-7 aircraft, including
land- and carrier-based tests, cost approxi-
mately $300,000. Scenario tests for the SAFE-
GUARD system consisted of installing a test
version of the system at Kwajalein missile
range and firing one or two missiles at a time
at it.

Since exhaustive testing is not practical,
testing cannot be relied upon to show that a
computer program completely and exactly be-
haves according to its specifications or even
that it contains no errors. As stated by com-
puter scientist Edsger Dijkstra:

Program testing can be used to show the
presence of bugs, but never to show their ab-
sence!31

The deficiencies of testing as a means of
showing correctness and freedom from errors
have moved software engineers to seek other
methods, such as mathematical. They have
also sought means of measuring error inci-
dence. In addition, they are developing meth-
ods for random testing that permit statistical
inferences about failure rates.32

Error Incidence

Some assert that error incidence-measured,
for example, by the number of errors found per
thousand lines of source code-measure pro-
gram correctness. Those making this assertion
assume that it is possible to count errors un-
ambiguously and that the more errors a pro-
gram has the less its behavior will conform to
its specifications. They then portray the de-
bate over BMD software dependability as
hinging on the question of whether or not the
software would contain errors, and how many
it would contain.

Both critics and proponents of an attempt
to build SDI software agree that any such soft-
ware would contain errors. As put by the East-
port Group:

Simply because of its inevitable large size,
the software capable of performing the battle
management task for strategic defense will
contain errors. All systems of useful complex-
ity contain software errors.33

Ware Myers notes:
The whole history of large, complex software

development indicates that errors cannot be
completely eliminated.34

David Parnas asserts that:
Error statistics make excellent diversions

but they do not matter. A low error rate does
not mean that the system will be effective. All
that does matter is whether software works
acceptably when first used by the customers;
the sad answer is that, even in cases much sim-
pler than SDI, it does not. What also matters
is whether we can find all the “serious’ errors
before we put the software into use. The sad
answer is that we cannot. What matters, too,
is whether we could ever be confident that we
had found the last serious error. Again, the
sad answer is that we cannot. Software sys-
tems become trustworthy after real use, not
before.35

Trustworthiness

Since correctness and error rates are not the
real issues in the software debate, trustwor-
thiness has become the focus. The issue is
whether or not BMD software could be pro-
duced so that it would be trustworthy despite
the presence of errors. In common usage, relia-
bility and trustworthiness are often considered
to be the same. In engineering usage, reliabil-
ity has become associated with specific meas-
ures, such as MTBF. There have been few at-
tempts to quantify trustworthiness, despite

~lJ, D~, E.W. Dijkstra, and C.A.R. Hoare, “Notes on Struc-

tured Programmingg,” structured Prognunmin g (London: Aca-
demic Press, 1972), p. 6.

‘zSee the discussion on the cleanroom method in appendix A
for more details.

g3Eastport  Study Group Report, Op. cit., footnote 4.
“Ware  Myers, “Can Software for the Strategic Defense Ini-

tiative Ever Be Error-Free?” IEEE Computer XX:61-67, No-
vember 1986.

‘sDavid L. Parnas, “SDI Red Herrings Miss the Boat, ” (Let-
ter to the Editor), 1lL!?lZ Computer 20(2):6-7,  February 1987.
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the desirability of trustworthy systems. One
possible reason may be that trust is determined
qualitatively as much as quantitatively: peo-
ple judge by past experience and knowledge
of internal mechanisms as much as by num-
bers representing reliability. Another possible
reason is that most systems in critical appli-
cations are safeguarded by human operators.
Although the systems are trusted, the ultimate
trust resides in the human operator. Nuclear
power stations, subway systems, and autopi-
lots are all examples.36

As noted in chapter 7, a BMD system would
leave little time for human intervention: trust
would have to be placed in the system, not in
the human operator. Accordingly, it is impor-
tant to be able to evaluate the trustworthiness
of BMD software. One suggested definition is
that trustworthiness is the confidence one has
that the probability of a catastrophic flaw is
acceptably l0W.37 Trustworthiness might be de-
scribed by a sentence such as “The probabil-
ity of an unacceptable flaw remaining after
testing is less than 1 in 1,000.”38 (This meas-
ure of trustworthiness has only recently been
suggested, and no data have yet been pub-
lished to support it.) Estimating trustworthi-
ness consists of testing the software in a ran-
domly selected subset of the set of internal
states with a randomly selected subset of the
possible inputs. The set of possible inputs and
internal states must be known. It must be pos-
sible to recognize a catastrophic test result,
i.e., the expected operating conditions must
be well-understood. For BMD systems, this
means understanding the expected threat and
countermeasures as well as testing under con-
ditions closely simulating a nuclear envi-
ronment.

SeEven when hum~ operators are aware of a problem they
sometimes do not or cannot react quickly enough, or with the
proper procedures, to prevent disaster.

s~Da~d L. prom, “when  Can We Tlllst  $Oftw- SYS~mS’?”

(Kewote  Address), Comput=Assuranm,  Software Systems In-
tegrity: Software Safety and Rvcess secun”ty Conference, July
1986.

~aDa~d L. Panas, person~  Communication, 1987.

Fault Tolerance

Realizing that errors in the code and un-
foreseen and undesired situations are inevita-
ble, software developers try to find ways of
coping with the resulting failures. Software is
considered fault-tolerant if it can either pre-
vent or recover from such failures, whether
they are derived from hardware or software
errors or from unanticipated input. Techniques
for fault tolerance include:

● back-up algorithms,
● voting by three or more different imple-

mentations of the same algorithm,
● error-recovery programs, and
● back-up hardware.
Program verification techniques, discussed

above, attempt to prove correctness by math-
ematical analysis of the code. In contrast, fault-
tolerant techniques attempt to cope with fail-
ures by analyzing how a program behaves dur-
ing execution.

Since a BMD system would have to operate
under widely varying conditions for many
years, its software would have to incorporate
a high degree of fault tolerance. Unfortunately,
there are no accepted measures of fault toler-
ance, and design of fault-tolerant systems is
not well understood. As an example, space
shuttle flight software is designed in a way
thought to be highly fault-tolerant. Four iden-
tical computers, executing identical software,
vote on critical flight computations A fifth, ex-
ecuting a different flight program, operates in
parallel, providing a backup if the other four
fail. On an early attempted shuttle launch, this
flight system failed because the backup pro-
gram could not synchronize itself with the four
primary programs. The failure, occurring just
20 minutes before the scheduled lift-off, caused
the flight to be postponed for a day. It was
a direct result of the attempt to make the soft-
ware fault-tolerant.

The price for fault tolerance is generally paid
in performance and complexity. A program in-
corporating considerable code for the purpose
of detecting, preventing, and recovering from
failures will be larger and operate more slowly
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than one that does not. A successful fault-toler-
ant design will result in a system with higher
availability than a corresponding system built
without regard for fault tolerance. Producers
of non-critical software may not care to pay
the price. Those concerned with critical sys-
tems that must operate continuously often feel
that they must.

Availability

Systems that are intended to maintain con-
tinuous operation are often evaluated by cal-
culating their availability, i.e., the percent of
time that they are available for use. Availabil-
ity is easily measured by observing, for some
interval, the amount of time the system is un-
available (the “down” time) and available (the
“up” time) and then calculating (up time)/(up
time + down time). As with other figures of
merit, availability figures are useful when the
conditions under which they were measured
are well-known. Extrapolation outside of those
conditions is risky. Since prediction of avail-
ability is equivalent to prediction of MTBF and
mean time to repair (MTTR)-measures of up-
and down-times, respectively—availability is
at least as difficult to predict as MTBF and
MTTR are individually.

Security

Computer users concerned with preserving
the confidentiality of data and the effective-
ness of weapon systems, such as banks or the
military, consider security a necessary condi-
tion for dependability. Breaches of security
that concern such users include:

●

●

●

knowledge by an opponent of the al-
gorithms implemented in a computer con-
trolling a weapon system, allowing him
to devise ways of circumventing the strat-
egy and tactics embodied in those al-
gorithms;
access by unauthorized users to sensitive
or classified data stored in a computer;
denial of access by authorized users to
their computers, thereby denying them
the capabilities of the computer and the
data stored in it; and

● substitution of an opponent software for
operational software-(changing  even a few
instructions may be potentially disas-
trous), allowing the opponent to divert the
computer to his own uses.

Many of the preceding concerns only apply
if a computer must use a potentially corrupti-
ble communications channel to receive data or
instructions from another computer or from
a human.39 Any BMD system would contain
such links. (The possibility that a link could
be corrupted and measures for preventing such
corruption are discussed in ch. 8.) Over these
channels one might:

●

●

●

●

load revised programs into the memories
of the BMD computers;
correct errors in existing programs;
change the strategy incorporated into ex-
isting programs; or
accommodate changes to software re-
quirements, such as might be caused by
the introduction of new technology into
the BMD system.

In addition, any BMD architecture would
contain communications channels for the ex-
change of data between battle management
computers and sensors and among battle man-
agement computers.

Since the 1960s, when computers started to
be used on a large scale in weapon systems,
the DoD has expended considerable effort to
find ways of making computer systems secure.
As yet, no way has been found to meet all the
security requirements for computers used in
the design, development, and operation of
weapon systems. As Landwehr points out in
a discussion of the state of the art in develop-
ing secure software:

At present, no technology can assure both
adequate and trustworthy system perform-
ance in advance. Those techniques that have
been tried have met with varying degrees of
success, but it is difficult to measure their suc-
cess objectively, because no good measures ex-

SgPhY9ic~ secu~ty,  i.e., control of physical access to comPut-
ing equipment, is a problem as well, generally unsolvable by
technical means and outside the scope of this report.
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ist for ranking the security of various sys-
tems.40

Although there is no quantifiable measure
of the security of a computer system, the DoD
has developed a standard for evaluating the
security of computer systems.41 The evalua-
tion consists of matching the features provided
by a system against those known to be neces-
sary, albeit not sufficient, to provide security.
For example, the second highest rating is given
to those systems that let users label their data
according to its security level, e.g., Confiden-
tial or Secret, then protect the labels against
unauthorized modification. Furthermore, the
developer must show the security model used
in enforcing the protection and show that the
system includes a program that checks every
data reference to ensure that it follows the
model. As with fault tolerance, incorporating
security features into software exacts penal-
ties in performance and complexity.

Safety

A software engineering
guished between safety and

Safety and reliability are

journal distin-
reliability:

often equated,
especially with respect to software, but there
is a growing trend to separate the two con-
cepts. Reliability is usually defined as the
probability that a system will perform its in-
tended function for a specified period of time
under a set of specified environmental condi-
tions. Safety is the probability that conditions
which can lead to an accident (hazards) do not
occur whether the intended function is per-
formed or not. Another way of saying this is

War] Landwehr, “The Best Available Technologies For ~om-
puter Security,“ IEEE Computer, July 1983, p. 93.

“’’DoD Standard 5200.28, Department of Defense Trusted
Computer System Evaluation Criteria,” (Washington, DC: De-
partment of Defense, Aug. 15, 1983).

that software safety involves ensuring that
the software will execute within a system con-
text without resulting in unacceptable risk.42

Interest in software safety has increased
markedly in recent years. Formal publications
specifically addressing software safety issues
started appearing in the early 1980s.43 As yet,
there are no standard measures or ways of
assessing software safety. Nonetheless, it is
important that BMD software be safe so as
to prevent accidents that are life threatening
and costly. An unsafe BMD system might, for
example, accidentally destroy a satellite, space
station, or shuttle.

Appropriate Measures of Software
Dependability

As should be clear from the preceding discus-
sion, software dependability cannot be cap-
tured in any single measure. Correctness,
trustworthiness, safety,  security  and fault tol-
erance are all components of dependability.  All
should be considered in the development of
software for a BMD system. Attempts to
quantify them in a clear-cut way require speci-
fying too many conditions on the measure to
allow useful generalization. Estimates of the
dependability of BMD software would always
be suspect, since in large part they would al-
ways be subjective. Until we can quantify soft-
ware dependability we cannot know that we
have developed dependable BMD software.
The following sections discuss the factors in-
volved in developing dependable software.

“IEEE Transactions on Software Engineering: Special Is-
sue On Reh”ability  And Safety In Real-Time Process Control,
SE-12(9):877,  September 1986.

‘sNancy Leveson and Peter Harvey, “Analyzing Software
Safety,” IEEE Transactions on Softwaml?ngineering,  SE-9(?),
September 1983, pp. 569-579, was one of the first papers to dis-
cuss software safety.

CHARACTERISTICS OF DEPENDABLE SYSTEMS

Despite the lack of ways of quantifying con- with confidence that they will be reliable when
fidence in software, people trust many com- finished. In this section we discuss why sys-
puterized systems. Further, people are willing terns come to be trusted and give some exam-
to undertake development of many systems pies of trusted systems. We divide methods
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of gaining trust into two classes: those based
on observations of the external behavior of the
system, and those based on understanding how
the system operates internally.

Observations of External Behavior

A system, whether containing software or
not, may be considered to be a black box with
connections to the outside world. One may ob-
serve the inputs that are sent to the box and
the outputs it produces. The next few sections
discuss methods of gaining confidence in soft-
ware and systems based on black-box obser-
vations of the software.

Extensive Use and Abuse

Perhaps the most important factor inspir-
ing confidence in software is that the software
has been used extensively. A good analogy is
the automobile. Confidence comes from
familiarity with cars in general and frequent
use of one’s own car. Having seen that the en-
gine will start when the key is turned hundreds
of times gives one the feeling that it will start
the next time the key is turned. Automatic
teller machines, electronic calculators, word
processors, and AT&T’s long distance tele-
phone network are all examples of systems con-
trolled by software that are trusted to work
properly. The trust is built on extensive ex-
perience: one has high confidence that the tele-
phone will work the next time it is tried be-
cause it usually has in the past.

Confidence is considerably enhanced when
a system continues to work even though
abused. A car that starts on cold and rainy
days inspires increased confidence that it will
start on mild and sunny days. Observing that
calls still get through under heavy calling con-
ditions (albeit not as quickly), that dialing a
non-existent number produces a meaningful
response, and that calls can still be made when
major trunk circuits fail boosts one’s confi-
dence that nearly all one’s calls will get through
under normal conditions. Conversely, system
failure detracts from confidence. Having ob-
served that issuing a particular command to
a word processor sometimes results in mean-

ingless text being inserted into a document
leads one to refrain from using that command.

It is important to note that extensive confi-
dence comes from extensive use and not from
testing that incompletely simulates use. No
one would consider granting a license to a pi-
lot who had spent extensive time in a flight
simulator but had never actually flown an air-
plane. Simulated use inspires confidence to the
degree that the simulation approximates oper-
ational conditions. Real-world complications
are often either too expensive or too poorly
understood to simulate. In testing systems,
simulators are useful for convincing ourselves
that the gain from putting the system into its
operating environment is worth the attendant
cost and risks. They allow the jump to actual
use with some confidence that disaster will not
result.

Predictable Environments

Confidence in software also comes from be-
ing able to predict the behavior of the software
in its operational environment. If the environ-
ment itself is predictable, the job of designing
and testing the software is considerably eased.
For example, engineers can predict and math-
ematically analyze the number of telephone
calls per hour that a particular switching cen-
ter will receive at any time of day. The num-
ber and type of signals that will be received
on the telephone lines (e.g., the 7 digits in a
local telephone number) are known because
their specifications form part of the require-
ments for the telephone system and are deter-
mined by the designers. The software and hard-
ware may then be designed to cope with the
telephone traffic and the signal types based
on the specifications.

Engineers can observe the system in opera-
tion to verify predictions before new software
is placed into operation. Finally, they can ob-
serve the behavior of new software in terms
of number of calls handled, number of calls
rerouted, and other parameters for different
traffic loads. Observing that behavior matches
predictions builds confidence in the operation
of the system. Nonetheless, even when the de-
velopers have extensive experience with a well-
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controlled environment, they sometimes make
mistakes in prediction and do not discover
those mistakes until the system goes into use.

Low Cost of a Failure
Although extensive use and environmental

predictability both strongly influence the
amount of confidence placed in a system, they
are not sufficient to induce users to continue
using a system after significant failures. Large,
complicated software systems inevitably ex-
perience software failures. Therefore, users
don’t have confidence in the software unless
the risk associated with a failure is smaller than
the gain from using the software. A word proc-
essor that loses documents may go unused be-
cause the cost of re-creating the document is
greater than the effort saved by using the word
processor.

If, however, an easy method of recovering
from such losses is available, perhaps by in-
cluding a feature in the word processor that
automatically saves back-up copies of docu-
ments, then the cost to the user of the failure
becomes acceptably low: he can recover his doc-
ument when it is lost. Similarly, the cost of
recovering from a disconnected phone call is
small to the dialer and to the telephone com-
pany. (Although a misdialed phone call is not
really a system failure, the same principle ap-
plies: users can recover quickly and easily.) The
ability to recover from a failure at low cost in-
creases confidence in and willingness to use
a system.

Systems With Stable Requirements
A desire for flexibility is a prime motive for

using computer systems. The behavior of a
computer can be radically altered by chang-
ing its software. Radical changes may be made
to a computer program throughout its entire
lifetime. Because there is no apparent physi-
cal structure involved, the impact of change
may not be readily appreciated by those who
demand it without having to implement it. No
one would ask a bridge builder to change his
design from a suspension to an arch-supported
bridge after the bridge was half built without
expecting to pay a high price. The equivalent

is often demanded of software builders with
the expectation of little or no penalty in sched-
ule, cost, or dependability.

An example is the combat system software
for the first of the Navy’s DD 963 class of des-
troyers. During the development of the soft-
ware, which cost less than 1 percent of the cost
of building the ship, the customers imposed
major changes on the software developer. The
original requirements specified that the com-
bat system need only provide passive elec-
tronic warfare functions. One year into devel-
opment the buyers added a requirement for
active electronic warfare. A year later they re-
moved the requirement for active electronic
warfare. On the ship’s maiden voyage its com-
mander issued a casualty report on the soft-
ware: the ship could not perform its function
because of deficiencies in the software. Al-
though the major requirements changes were
probably not the only reason for the deficien-
cies, they were certainly a prime contributing
factor.

The B-lB bomber is another example of a
system where deficiencies have resulted from
too much change during development. Accord-
ing to a report on the B-l B bomber,

Defense officials blame many of the pro-
gram’s problems on the decision to begin pro-
ducing the aircraft at the same time that re-
search and development efforts were under
way, forcing engineers to experiment with
some systems before they were completely de-
veloped.44

Conversely, a system whose requirements
change little during the course of development
is more likely to work properly. Developers
have a chance of understanding the problem
to be solved: they need not continually reana-
lyze the problem and revise their solution. Sta-
bility of requirements is particularly important
for software because of the many decisions in-
volved in software design. Each subdivision
of a program into subprograms involves deci-
sions about the functions to be performed by
the subprograms and about the interfaces be-

44’’ New Weapon Suffers From Major Defects, ” Washington
Post, Jan. 7, 1987, p. Al.
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tween them. Writing each subprogram further
involves decisions on the algorithm to be used,
the way data are to be represented, the order
of the actions to be performed, and the instruc-
tions to be used to represent those actions.

Decisions made early in the process are more
difficult to change than those made later in the
process because later decisions are often de-
pendent on earlier ones. Furthermore, the proc-
ess of change is more expensive in later phases
of a project because there are more specifica-
tions and other documentation. Using data
from SAFEGUARD software and software
projects at IBM, GTE, and TRW, one expert
has shown that, as a result of the preceding
factors, error correction costs (and costs to
make other software changes) increase expo-
nentially with time. In Boehm’s words:

These factors combine to make the error
typically 100 times more expensive to correct
in the maintenance phase than in the require-
ments phase.45

Clearly then, for systems where require-
ments change little during development, not
only can one have increased confidence in the
software, but one can also expect it to cost less.
Among the developers of large, complex sys-
tems who attended OTA’s workshop on SDI
software, there was unanimous agreement that
BMD software development could not begin
until there were a clear statement of the re-
quirements of the system.46

Systems Based on Well-Understood
Predecessors

As with other human engineering projects,
successful software systems are generally the
result of slow, evolutionary change. Where rad-
ical changes are attempted, failure rates are
high and confidence in performance is low. This

“Barry W. Boehm, Software Engineering llconom”cs  (Engle-
wood Cliffs, NJ: Prentice-Hall, 1981), figure 4-2, p. 40.

attendees at the workshop included software developers who
participated in the development of SAFEGUARD, Hard Site
defense, telephone switching systems, digital communication
networks, Ada compilers, and operating systems.

rule can be seen in endeavors such as bridge
building47 as well as software design.48

With the example and experience of a previ-
ous solution to a problem, a software developer
can have the confidence that a system to solve
a small variation on the problem can be cor-
rectly produced. The structure of the previous
solution and the associated algorithms may
be applied again with small variations. A good
example is the software used by NASA to com-
pute the orientation of unmanned spacecraft.
The orientation, also known as attitude, is com-
puted by ground-based computers while the
spacecraft is in operation. Attitude is deter-
mined from the readings of sensors on board
the spacecraft. The sensor readings are teleme-
tered to earth and supplied as input to an atti-
tue determination  program for the spacecraft.
The algorithms for computing orientation are
well known and have been used many times.
The design of the attitude determination soft-
ware that incorporates the algorithms is also
dependable.

The design of an attitude determination pro-
gram for a new spacecraft starts with the de-
sign of an earlier program and consists of mod-
ifying the design to take into account sensor
and telemetry changes. Many of the subpro-
grams from the earlier program are reused in-
tact, some are modified, and some new sub-
programs are written. A typical attitude
determination program of this type is 50,000
to 125,000 lines of code in size and takes about
18 months to produce. It must be produced
before the launch of the associated satellite,
and must work when needed so that the satel-
lite may be maneuvered as necessary. The de-

47As stated by Henry Petroski in To Engineer Is Human: The
Role of Failure in Successful Design, (New York, NY: St. Mar-
tin’s Press, 1985), p. 219.

. . . departures from traditional designs are more likely than not
to hold surprises.

‘Early  compilers for the new Ada language have been so slow,
unwieldy to use, and bug-ridden that they have been worthless
for real software development. This situation has occurred de-
spite the fact that compilers for older languages such as FOR-
TRAN, for which there have been compilers since the mid-1950s,
are considered routine development tasks. The main contribut-
ing factors were the many features, especially the many new
features, incorporated into Ada.
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veloper’s confidence in his ability to meet these
criteria is based on the success of the previ-
ous attitude determination programs.

The developers of the SAFEGUARD soft-
ware believed they could solve the problem of
defending a small area from a ballistic missile
attack because similar, but somewhat simpler,
problems had been solved in the past. The his-
tory of missile defense systems can be traced
back to World War II anti-aircraft systems,
starting with the T-10 gun director. Next came:
the M-9 gun director, which ultimately at-
tained a 90 percent success rate against the
V-1 flying bombs; the Nike-Ajax missile inter-
ceptor system; then, the Nike-Hercules, im-
proved Hercules, Nike-Zeus, Nike-X, and Sen-
tinel ABM systems.

49 Each system typically
involved some mission changes and a change
of one or two components over the previous
one. Although the last few of these were never
used in battle, constraining judgments of suc-
cess in development, the evolutionary process
is clear.

Note that the evolutionary approach re-
quires the availability of experience gained
from the earlier systems. Experience may take
the form of personal memories or of documen-
tation describing earlier programs. In other
words, most of the problem must be well-
understood and the solution clearly described.
As Parnas put it, following a series of obser-
vations on what makes software engineering
hard,

The common thread in all these observations
is that, even with sound software design prin-
ciples, we need broad experience with similar
systems to design good, reliable software.50

Observations of Internal Behavior

The above approaches to gaining confidence
in software are based on observing the exter-
nal behavior of the software without trying to
determine how it behaves internally. That is,
the software is tested by observing the effects

of executing computer programs rather than
the mechanisms by which those effects are
produced. The next few sections discuss meth-
ods based on observing the internal behavior
of programs-methods that may be called
“clear box” to denote that the internal mech-
anism used to produce behavior may now be
observed.

Simple Designs
It is not practical to give mathematical

proofs that software performs correctly. Given
a simple design and a clear specification of re-
quirements, it is sometimes possible to give
a convincing argument that each requirement
is satisfied by some component of the design.
Similarly, a convincing argument can be given
that a simple design is properly implemented
as a program. As with reliability measures,
how convincing the argument is depends on
subjective judgment. Where only a weak argu-
ment can be given that the design properly im-
plements the requirements and that the code
properly implements the design, there would
belittle reason to trust the software, especially
in its initial period of operation. As one expert
puts it,

. . . the main principle in dealing with complic-
ated problems is to transform them into sim-
ple  ones.51

Put another way, each complication in a de-
sign makes it less trustworthy. Simplicity, is,
of course, relative to the problem. The inher-
ent complexity of a problem it may require
complex solutions. The designer’s job is to
make the solution as simple as he can. As Ein-
stein said:

Everything should be as simple as possi-
ble, but no simpler.52

Disciplined Development
The software development process com-

prises a variety of activities. Describing soft-
ware cost estimation techniques, Boehm iden-

4~he history of missile defense systems given here was sup-
plied in a 1987 personal communication by Victor Vyssotsky,
responsible for development of SAFEGUARD software.

‘“David L. Parnas, op. cit., footnote 1.

51T.C. Jones, Design  Metlxxfs,  Seeds Of Human Futures, (New
York: John Wiley & Sons, 1980).

‘*Personal communication, P. Neumann.
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tifies 8 different major activities occurring
during software development and 15 different
cost drivers.53 Other estimators use different
factors. (One early study introduced more than
90 factors influencing the cost of software de-
velopment.) Fairley lists 17 different factors
that affect the quality and productivity of soft-
ware.54 There is general agreement that many
factors affect software development. There is
still considerable doubt over how to identify
the factors that would most significantly affect
anew project—particularly if there is little ex-
perience with the development environment,
the personnel involved, or the application. Ap-
pendix A describes the typical software devel-
opment process and some of the complicating
factors.

Development of large, complicated software
must be a carefully controlled process. As the
size and complexity of the software increases,
different factors may dominate the cost and
quality of the resulting product. Based on per-
sonal observations, Horning conjectured that:

. . . for every order of magnitude in software
size (measured by almost any interesting met-
ric) a new set of problems seems to domi-
nate.55

Although it is early to expect an accurate
estimate of the size of BMD software, current
estimates of the size of SDI battle manage-
ment software range from a factor of 2 to a
factor of 30 larger than the largest existing
systems (and the the accuracy of some esti-
mates is judged to be no better than a factor
of 3).56 If Horning’s statement is correct, then
there is reason to suspect that currently un-
foreseen problems would dominate BMD soft-
ware development. Solving these problems

“software EngixweringEcononu”cs,  op. cit., footnote 45, p. 98.
“Richard Fairley, Sofiwam Engineering Concepts, (New York,

NY: McGraw-Hill, 1985).
“Jim  Horning, “Computing in Support of Battle Manage-

merit, ’’ACM SIGSOFT  Software En~”neering  Notes 10(5):24-
27, October 1985.

“Barry Boehm, author of Soft ware En~”neering  Econonu”cs,
and deviser of the most popular analytical software cost esti-
mation model in use today, estimated, in a personal communi-
cation, that estimates of the size of SDI battle management
software with which he was familiar could easily be in error by
a factor of 3.

would add to the time and expense involved
in producing the software, and may undermine
judgments of its reliability.

The development process must be geared to
controlling the effects of the dominating fac-
tors. An example is the procedures by which
changes are made. Most software development
can be viewed as a process of progressive
change. At every phase, ideas from the previ-
ous phase are transformed into the products
of the current phase. For very small projects,
the changes may be kept in the mind of one
person. For moderately small projects, verbal
communication among the project members
may suffice to keep track of changes.

For larger projects, the number of people in-
volved and the length of time of the project
require that changes be approved by small
committees and that written lists of revisions
be distributed to all project personnel at regu-
lar intervals. Revised products of earlier phases
are also distributed to those who need them.
For very large projects, formal change control
boards are established and all changes to base-
line designs must be approved before they are
implemented. A library of approved documents
and programs is maintained so that all person-
nel have access to the same version of all
project products. The process of controlling
change becomes a source of considerable over-
head, but is necessary so that all project mem-
bers work from the same assumptions.

Factors Distinguishing DoD
Software Development

There are some similarities between DoD
and commercial software. The environments
where DoD uses software are also found out-
side of DoD. Commercial and NASA avionics
systems perform many of the same functions
as military avionics, and must also work in life-
threatening situations. Furthermore, the soft-
ware must ultimately be produced in the same
form, i.e., as a computer program, often in the
same or a similar language for the same or a
similar computer. But the DoD development
process, as described in appendix A, is often
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quite different from commercial software de-
velopment.

Several factors, in combination, distinguish
DoD software from commercial software. Ele-
ments of all of these factors are found in com-
mercial software applications, but the combi-
nation is usually not.

●

●

●

●

●

●

●

Long lifetime. Military command and con-
trol software often has a lifetime of 20 or
more years. The Naval Tactical Data Sys-
tem was developed in the early 1960s and
is still in use.
Embedded. New DoD systems must in-
terface with other, existing DoD systems.
The interfaces are not under the control
of the developer, and the need for the in-
terface was often not foreseen when the
existing system was developed. Commer-
cial software developers are generally free
to develop their own interfaces, or build
stand-alone systems.
Operating in Real Time. Command and
control systems must generally respond
to events in the outside world as they are
happening. A delayed response may result
inhuman deaths and damage to material.
Life-critical. Command and Control and
weapon systems are designed to inflict
death or to prevent it from occurring.
Large. DoD systems containing hundreds
of thousands of lines of code are common.
The larger systems contain as many as 3
million lines of code.
Complex. Command and control systems
perform many different functions and
must coordinate the actions of a variety
of equipment based on the occurrence of
external events.
Machine-near.  The programmers of com-
mand and control systems must under-
stand details of how the computer they
are using works, how the equipment that
it controls works, and what the interface
between the two is. Many such details are
transparent to commercial programmers
because of the standardization of equip-
ment, such as printers, for which already
existing software handles the necessary
details. The same is not true for new weap-

●

ens, sensors, and computer systems spe-
cially tailored to particular DoD applica-
tions. As an example, the computers used
on board the A-7 aircraft, in both the Navy
and Air Force versions, were designed for
that aircraft and rarely used elsewhere.
The use of non-standard equipment often
means that standard programming lan-
guages cannot be used because they pro
tide no instructions that can be used to
control the equipment. The current DoD
trend is toward standardization of com-
puters and languages, but programmers
still must deal with specialized equipment.
Facing Intelligent Adversaries. DoD bat-
tle management and command, control,
and communications systems must deal
with intelligent adversaries who actively
seek ways to defeat them.

The DoD software development process is
often characterized as cumbersome and ineffi-
cient, but is a significant improvement over
the situation of the early 1970s when there was
no standard development process. It provides
some protection, in the form of required
documentation, against software that is either
unmaintainable or unmaintainable by anyone
except the builders. Minimal requirements for
the conduct of acceptance tests also provides
some protection against grossly inadequate
systems. Nonetheless, the process often still
produces systems that contain serious errors
and are difficult to maintain.57  58 The complex-
ity of BMD software development would prob-
ably require significant changes in the proc-
ess, both in management and technical areas.59

The Fletcher Study concluded that:
Although a strong concern for the develop-

ment of software prevails throughout the civil
and military data-processing community,

S7For exmpla  of problems in such systems ss the SGT YORK
Division Air Defense Gun, see ACM SIGSOFl’Software Engz”-
neering  Notes,  op. cit., footnote 20.

‘nUpgrade of the A-7E avionics software, which is small (no
more than 32,000 instructions), but quite complex (to accom-
modate a new missile cost about $8 million).

‘eAppendix A contains a further discussion of the DoD soft-
ware development process and recent technical developments
that might contribute to improving it.
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more emphasis needs to be placed on the spe-
cific problem of BMD:

● Expanded efforts to generate software de-
velopment tools are needed.

● Further emphasis is needed on simulation
as a means to assist the design of battle
management systems and software.

● Specific work is needed on algorithms re-
lated to critical battle management func-
tions.60

Improving the Process

Software development, a labor-intensive
process, depends for its success on many differ-
ent factors. Improvements tend to come from
better understanding of the process. Further-
more, improvements tend to be made in small
increments because of the many factors influ-
encing the process. To produce a system suc-
cessfully requires, among other things:

● availability y of appropriate languages and
machines,

● employment of properly trained people,
• ood problem specification,
● stable problem specification, and
● an appropriate methodology.61

Current efforts in software engineering tech-
nology development concentrate on providing
automated support for much of the process.
Software engineering tools may contribute to
small incremental improvements in the proc-
ess and the product. Such tools may help
programmers produce prototypes, write and
check the consistency of specifications, keep
track of test results, and manage development

Software Dependability and
Computer Architecture

Variations in computer design can have a
strong effect on the software dependability.
Some architectures are well-suited to certain

@OJ~es C. Fletcher, Study Chairman and Br@way McMil-
lan, Panel Chairman, op. cit., footnote 11.

elIt is o~y k the l-t few years that the job tit]e ‘Jsoftwtire
engineer” has been used. There is no qualification standard for
software engineers, and no standard curriculum. Few universi-
ties or colleges yet offer an undergraduate major in software
engineering, and there is only one educational institution in the
country that offers a master’s degree in software engineering.

applications and make the job of developing
and testing the software easier. As an exam-
ple, some computer systems allow programs
to act as if they each had their own copy of
the computer’s memory. This feature permits
several programs to execute concurrently with-
out risk that one will write over another’s mem-
ory area. The computer detects attempts to
call on memory areas beyond a program’s own
and can terminate the program. The computer
provides the programmer with information
about where in the program the failure
occurred, thus helping him find the error. This
memory sharing technique makes the pro-
grammer’s development job easier and allows
the computer to be be used for several differ-
ent purposes simultaneously.

Other systems permit the programmer to de-
fine an area of the computer’s memory whose
contents are sent at regular intervals to an ex-
ternal device. This feature could be used in con-
junction with a display device to ensure that
the display is properly maintained without the
progr ammer having to write a special program
to do so. Such a feature simplifies the job of
developing software for graphics applications.
Also, at the cost of added hardware, it im-
proves the performance of the computer sys-
tem when used with graphic displays.

Features built into the computer may make
the software development job easier, the soft-
ware more dependable, and the system per-
formance better. The penalty for this approach
may be to make the computer designer’s job
harder and the hardware more expensive. Fur-
ther, the gain in software dependability is, as
in many other cases, not quantifiable. Chap-
ter 8 contains a more detailed discussion of
various computer architectures and their po-
tential for meeting the computational needs
of BMD.

Software Dependability and
System Architecture

Just as an appropriate computer architec-
ture may lead to improved software dependa-
bility, so may an appropriate system architec-
ture. A BMD architecture that simplified
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coordination and communication needs among
system components, such as different battle
managers, would simplify the software design
and might lead to improved software depend-
ability. As with computer architecture, there
would be a penalty: decreased coordination
usually leads either to decreased efficiency or
to more complex components. The increase in
complexity is caused by the need for each com-
ponent to compensate for the loss of informa-
tion otherwise obtained from other compo-
nents. As an example, if battle managers
cannot exchange track information with each
other, then they must maintain more tracks
individually to do their jobs as efficiently. They
may also have to do their own RV/decoy dis-
crimination. Note that an architecture that re-
quires exchange of a small amount of track in-
formation would be nearly as difficult to design
and implement as one that required exchange
of a large amount. The reason is that the com-
munications procedures for the reliable ex-
change of small quantities of data are about
the same as those for large quantities.

The Eastport group estimated that for an
SDI BMD system the penalty for not exchang-
ing track information among battle managers
during boost phase would be about a 20 per-
cent increase in the number of SBIs needed.62

The improvement in software dependability
that might be obtained by architectural vari-
ations is not quantifiable.

Software Dependability and
System Dependability

It is desirable to find some way of combin-
ing software and hardware dependability meas-
ures. As indicated earlier, MTBF, a traditional
hardware reliability measure, is not appropri-
ate as a sole measure of dependability of BMD
software. Certainly it will still be desirable to
measure hardware reliability in terms of
MTBF in order to schedule hardware mainte-
nance and to estimate repair and replacement

62E&.port Study  Group Report, op. cit., footnote 4. The m~Y-
sis and assumptions behind this claim have not been made
available.

inventory needs. The only components of both
hardware and software dependability for which
there may be some common ground for esti-
mation are trustworthiness and availability.
However, there have been few or no attempts
to estimate trustworthiness for systems that
are composites of hardware and software.

In summary, there are no established ways
to produce a computer (hardware and software)
system dependability measure. Furthermore,
there are few good existing proposals for po-
tential system dependability measures.

Software Dependability and the SDI

Although it is not possible to give a quan-
titative estimate of achievable software de-
pendability for SDI software, it is possible to
gain an idea of the difficulty of producing BMD
software known to be dependable. We can do
so by comparing the characteristics of a BMD
system with characteristics of large, complex
systems that are considered to be dependable.
In an earlier section those characteristics were
described. We apply them here to potential
SDI BMD systems, using the architecture de-
scribed in chapter 3 as a reference. Table 9-1
is a summary of the following sections. It
shows whether or not each characteristic can
be applied to SDI software, and provides a
comparison with SAFEGUARD and the AT&T
telephone system software, both often men-
tioned as comparable to SD I BMD software.63

SAFEGUARD and telephone system soft-
ware represent different ends of the spectrum
of large systems that could reasonably be com-
pared to SDI BMD systems. The telephone
system:

● is not a weapon system,
● has evolved over a period of a hundred

years,
egcf. Dr. Solomon  Buchsbaum, Executive Vice President for

Customer Systems for AT&T Bell Laboratories and former chair
of the Defense Science Board and the White House Science
Council:

. . . most if not all of the essential attributes of the BM/CS sys-
tem have, 1 believe, been demonstrated in comparable terres-
trial systems.

S. Hrg. 99-933, op. cit., footnote 3, p. 275.
The system most applicable to the issue at hand is the U.S.
Public Telecommunications Network.
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Table 9-1 .—Characteristics of Dependable Systems
Applied to SDI, SAFEGUARD, and

the Telephone System

Telephone
Characteristic SDI SAFEGUARD system

Extensively used & abused No No Yes
Predictable environment. No No Yes
Low cost of a failure No No Yes
Stable requirements. No Yes Yes
Well-understood predecessors No Yes Yes
Simple design ., Unknown 7 Yes
D isc ip l i ned  deve lopmen t ’ Unknown Yes Yes

SOURCE Of ftce of Technology Assessment 1988

• operates in a predictable environment
with well-understood technology,

● is kept supplied with spare hardware parts
that can be quickly installed, and

● is not designed to be resistant to an at-
tack aimed at destroying it (although it
can be reconfigured in hours by its human
operators to circumvent individual dam-
aged switching centers).

The SAFEGUARD system was a missile de-
fense system that used well-understood tech-
nology, was never used in battle, would have
had to operate in an environment that was not
easily predictable, and was designed to make
its destruction by an enemy attack costly.

Several other systems lie within the spec-
trum defined by SAFEGUARD and the tele-
phone system. Examples are NASA flight soft-
ware systems, such as the Apollo and Space
Shuttle software, and weapon systems such
as AEGIS. All have some of the characteris-
tics of BMD systems. Nearly all are autono-
mous within clearly defined limits, must oper-
ate in real time, and are large. Some that are
viewed as successful developments, such as
AEGIS, have only been used under simulated
and test conditions, but are thought to be suffi-
ciently dependable to be put on operational
status.

None of the examples known to OTA have
been developed under the combined con-
straints imposed by SD I requirements, i.e., an
SDI system would have to:

● control weapons autonomatically;
● incorporate new technology;

●

●

●

●

●

●

be partly space-based, partly ground-
based;
defend itself from active and passive
attacks;
defend against threats whose character-
istics cannot be well-specified in advance;
operate in a nuclear environment, whose
characteristics are not well-understood;
be designed so that it can be changed to
meet new threats and add new technology;
and
perform successfully in its first opera-
tional use.

Even a system such as AEGIS, which is per-
haps DoD’s most technologically advanced de-
ployed system, was not developed under such
stringent constraints, and its success is not
yet fully determined.

Extensively Used and Abused

Although it might undergo considerable test-
ing in a simulated environment, a BMD sys-
tem cannot be considered to have been used
in its working environment until it has been
used in an actual battle. The working environ-
ment for a BMD system would be a nuclear
war. Thus, the first time it would be used would
also likely be the only time. In the telephone
system, components that are put into use even
after extensive testing often fail. A letter to
Congress from designers and maintainers of
AT&T Bell Laboratories switching systems
stated:

Despite rigorous tests, the first time new
equipment is incorporated into the telephone
network, it rarely performs reliably.

Adding new equipment is just the tip of the
iceberg; even the simplest software upgrade
introduces serious errors. Despite our best ef-
forts, the software that controls the telephone
network has approximately one error for every
thousand lines of code when it is initially in-
corporated into the system. Extensive testing
and simulation cannot discover these errors.64

134A copy of the lettir  also appears as “SDI Software, p~t
II: The Software Will Not Be Reliable,” Physics and Society,
16(2), April 1987.
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Predictable Environment

Two aspects of the BMD battle environment
will remain unpredictable until the outbreak
of war. The first is the effect of the nuclear
background caused by the battle and the sec-
ond is the type and extent of the countermeas-
ures employed against the system. In contrast,
the telephone system environment is well-
known and predictable. Call traffic can be
measured and compared to mathematical mod-
els. Furthermore, much of the environment,
such as the signals used in calling, is controlled
by the designers of the system, so they are well-
acquainted with its characteristics. Those who
seek to defeat telephone systems want to use
the environment for their own ends, and gen-
erally do not try to disrupt it. Therefore, al-
though countermeasures are not all known in
type and extent, neither are they intended to
destroy the operation of the system.

Low Cost of a Failure
Software errors manifested as failures dur-

ing a battle would not be repairable until after
the battle. Catastrophic failures could result
in unacceptably high numbers of warheads
reaching their targets; there is no way to guar-
antee or predict that catastrophic failures will
not occur. Even minor failures may result in
failure to intercept some enemy warheads,
causing loss of human life. Telephone switch-
ing centers experiencing catastrophic software
failures generally can be removed from serv-
ice and the software repaired while calls are
rerouted. Minor failures are at most likely to
cause difficulties for a few subscribers.

Stable Requirements
As new threats arose, new strategies de-

vised, new countermeasures found, and new
technology introduced, the requirements for
BMD systems would change, and change con-
tinually. Although some changes could be
planned and introduced gradually, changing
threats and, particularly, countermeasures
would impose changes beyond the control of
the system developers and maintainers. BMD
countermeasures are not subject to close scru-
tiny by the opposition, and new ones might

appear quickly, requiring rapid response. Be-
cause changes in threat and the development
of countermeasures would depend on Soviet
decisionmaking and technology, the rate at
which the U.S. would have to make changes
to its BMD software would partly depend on
Soviet actions. Delays in responding to coun-
termeasures might have serious consequences,
including the temptation for the side that had
anew, effective countermeasure to strike first
before a counter-countermeasure could be de-
vised and implemented.

Well-Understood Predecessors
Earlier BMD systems, such as SAFE-

GUARD, can be characterized as terminal or
late mid-course defense systems. The termi-
nal and late mid-course defense part of an SD I
BMD system could benefit from experience
with these predecessors. There has been no ex-
perience, however, with boost phase and post-
boost phase, and little experience with early
mid-course defenses.65 They are new problems
that will take new technologies to solve. Most
demanding of all, a system to solve these prob-
lems must be trusted to work properly the first
time it is used. There have been approximately
100 years of experience with telephone switch-
ing systems. Each new system is a small
change over its predecessor. If a newly-
installed switching system does not work ac-
ceptably, it can be replaced by its predecessor
until it is repaired.

Simple Design and Disciplined Development
Since the SDI BMD system has not yet pro-

ceeded to the point of a system design, much
less a design for battle management or other
software, one cannot judge whether or not the

eSThe Spatm fi99fle,  US~ by SA F EG U A R D, cm be con-

sidered a late mid-course defense component. However, SAFE-
GUARD was designed to discriminate reentry vehicles from
aircraft, satellites, aurora, and meteors, but not from decoys
of the types expected to be available for use against BMD sys-
tems within the next 10-20 years. The only discriminators avail-
able to SAFEGUARD were phased-array radars. Potential coun-
termeasures against modern BMD systems are discussed in
chapters 10 and 11, and discriminators in chapter 4. Options
considered for both include technologies considerably different
from anything available for or against SAFEGUARD.
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design will be simple. Similarly, one cannot
judge whether or not the development proc-
ess will be appropriately disciplined.

Development Approaches That
Have Been Suggested

In the middle ground between those who be-
lieve that an SDI BMD system could never
be made trustworthy, and those who are sure
that it could, are some software developers who
are unsure about the feasibility. The view some
of them take is that it would be worthwhile
to try to develop BMD software, given that
one were prepared to abandon the attempt if
the system could not be shown to be trustwor-
thy. The approaches they suggest have the fol-
lowing characteristics:

● The purpose of the system would have to
be clearly stated so that the requirements
were known before development started.

●

●

●

●

The development would have to start with
what was best known, i.e., should build
upon the knowledge and results of earlier
U.S. efforts to build BMD systems.
The development would have to be
phased, so that each phase could build
upon the results of the previous one. The
system architecture would have to be con-
sistent with such phasing.
Simulation would be needed at every
stage, and the simulations would have to
be extremely realistic.
Realistic tests would have to be Performed
at each stage of development:

Because failure is a clear possibility, those
who advocate this approach recognize that op-
tions to deal with the possibility must be left
open. If this approach were adopted, and failed,
the cost of the attempt, including maintain-
ing other options, could be high.

SUMMARY

Estimating Dependability

Most of the indices of dependability for large,
complex software systems would be missing in
BMD software systems. In particular, the tele-
phone switching system, often cited as an ex-
ample of a large, complex system, is quite un-
like BMD systems.

The characteristics associated with depend-
ability in large, complex systems include:

●

●

●

●

●

●

●

a history of extensive use and abuse,
operation in a predictable environment,
a low cost of failures to the users,
stable requirements,
evolution from well-understood predeces-
sor systems,
a simple design, and
a disciplined development effort.

The absence of many of these factors means
that technology beyond the present state of
the art in software engineering might have to
be developed if there is to be a chance of pro-
ducing dependable BMD software. It might

be argued that such technology will be in-
vented, but traditionally progress has been
slow in software engineering technology de-
velopment. It appears that the nature of soft-
ware causes progress to be slow, and that there
is no prospect for making a radical change in
that nature.

There is no highly reliable way to demonstrate
that BMD software would operate properly when
used for the first time. One of the long-term pur-
poses of the National Test Bed is to provide
a means of simulating operation of BMD soft-
ware after deployment. Such tests could simu-
late a variety of threats and countermeasures,
as well as the conditions existing in a nuclear
environment. On the other hand, actual envi-
ronments often exhibit characteristics not
reproduced in a simulator. Simulations of bat-
tles involving BMD would have to reproduce
enemy countermeasures—a particularly diffi-
cult task. The usual technique for validating
simulations—making predictions based on the
simulation and then verifying their accuracy—
would be particularly difficult to use. This
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would especially be true when one considers
the complexity of the atmospheric effects of
nuclear explosions and the speculation in-
volved in determining countermeasures. Re-
peated failures in simulation tests would dem-
onstrate a lack of dependability. Successful
performance in a simulation would give some
confidence in the dependability of the system,
but neither the dependability nor the confi-
dence could be measured. Subjective judg-
ments based on simulations would probably
be highly controversial.

Traditional Reliability Measures
Traditional measures of reliability, such as

mean time between failure, are insufficient to
characterize dependability of software. Appro-
priate software reliability measures have yet
to be fully developed. Furthermore, in the de-
bate over BMD software dependability there
is often confusion over the meaning of relia-
bility. Error rate, e.g., number of errors per
KLOC, is often misapplied as a definition of
software reliability. There is no single figure
of merit that would adequately quantify the
dependability of BMD software. A potentially
useful view is that dependability can be con-
sidered to be a combination of qualities such
as trustworthiness, correctness, availability,
fault tolerance, security, and safety. Unfortu-
nately, there are no good ways of quantifying
some of these properties and dependability
would have to be a subjective judgment.

Technology for Preventing
Catastrophic Failure

OTA found no evidence that the software engi-
neering technology foreseeable in the near fu-
ture would make large improvements in the de-
pendability of software for BMD systems. In
particular there would be no way to ensure that
BMD software would not fail catastrophically
when first used. It might be argued that the
most important part of dependability is fault
tolerance, and that there exist large, complex
systems that are fault-tolerant, such as the
telephone switching system. On the other
hand, the fault tolerance of such systems is
small compared to what would be needed for

BMD, since they are not under attack by an
intelligent. adversary interested in destroying
their usefulness. A further complication of the
argument over fault tolerance is that quantifi-
cations of software fault tolerance are not eas-
ily translated into measures of performance.
At the same time, there is no generally ac-
cepted subjective standard of fault tolerance.

Confidence Based on Peacetime
Testing

Confidence in the dependability of a BMD
system would have to be derived from simu-
lated battles and tests conducted during peace-
time. Getting a BMD system to the point of
passing realistic peacetime tests would most
likely require a period of stability during which
there were few changes made to the software.
Unfortunately, the system developers and
maintainers would have to respond to changes
in threats and countermeasures put into effect
by the Soviets. That is, the Soviets would
partly control the rate at which changes would
have to be made to the system. As changes
were made, the system would again have to
pass tests in order for the United States to
maintain confidence in it.

Accommodating Changes During Peacetime
Experience with complex systems shows

that changes eventually start introducing er-
rors at a rate faster than they can be removed.
At such a point all changes must be stopped
and new software developed. The extent to
which changes could be made would depend
on the foresight of the developers during the
design of the software. The better the require-
ments were understood at that time, and the
better the potential changes were predicted,
the more the chance that the software could
accommodate changes as they occurred. The
appearance of an unforeseen threat or coun-
termeasure, or simply the advent of new, un-
expected technology, might require redevelop-
ment of all or substantial parts of the software.
In a sense, the useful lifetime of the software
would be determined by how well the software
developers understood the requirements ini-
tially.
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Establishing Goals and Requirements

Explicit performance and dependability
goals for BMD have not been established. Con-
sequently, one cannot set explicit software de-
pendability goals. Even when BMD goals have
been set, it will be difficult to derive explicit
software dependability goals from them; there
is no clear mapping between system dependa-
bility and software dependability. All agree
that perfect software dependability is unat-
tainable. Only arguments by analogy, e.g., as
dependable as an automobile or telephone,
have been proposed. There is no common agree-
ment on what the dependability needs to be,
nor how to measure it, except that it must be
high.

There is common agreement that standard
DoD procedures for developing software are
not adequate for producing dependable BMD
software in the face of rapidly changing re-
quirements. There are few convincing pro-
posals as yet on how to improve the proce-
dures. The developers should not be expected
to produce an adequate system on the first try.
As Brooks says in discussing large software
systems:

In most projects, the first system built is
barely usable. It maybe too slow, too big, too

awkward to use, or all three. There is no alter-
native but to start again, smarting but
smarter, and build a redesigned version in
which these problems are solved. . . . all large-
system experience shows that it will be done.
Where a new system concept or new technol-
ogy is used, one has to build a system to throw
away, for even the best planning is not so om-
niscient as to get it right the first time. . . .

Hence plan to throw one away: you will, any-
how.66

BMD software may be an order of magni-
tude larger than any software system yet
produced. Early estimates of software size for
projects are notoriously inaccurate, often by
a factor of 3 or more. Some argue that the use
of an appropriate systems architecture can
make SDI software comparable in size to the
largest existing systems. On the other hand,
none of the intermediate or far-term architec-
tures yet proposed would appear to have this
effect, and previous experience with large soft-
ware systems indicates that the size is likely
to be larger than current estimates. Such an
increase in scale could cause unforeseen prob-
lems to dominate the development process.

‘Frederick P. Brooks, Jr., The Mythica/  Man-Month; l?ssays
on Software Engin~ring  (New
1975), p. 116.

SDIO INVESTMENT IN BATTLE MANAGEMENT,
TECHNOLOGY, AND SOFTWARE

Fork, NY: Addison-Wesl~y,

COMPUTING

SDIO’s battle management program serves
as the focus for addressing many of the com-
munications, computing, and software tech-
nology problems discussed in chapters 7,8, and
9. Based on funding and project description
data supplied by SDIO, this section analyzes
how SDIO is spending its money to try to solve
these problems. The battle management pro-
gram is organized into eight areas:

1. software technology program plan: devel-
oping and implementing a software tech-
nology program for the SDIO;

2. algorithms: development of algorithms for
solving battle management problems such

as resource allocation, track data hand-
ing over, discrumination, and coordination
of actions within a distributed system;

3. communications: identifying the require-

4.

5.

ments and technology for establishing a
communications system to link SD I com-
ponents together into a BMD system;
experimental systems: proposing and
evaluating system and battle manage-
ment architectures and the technologies
for implementing them;
networks: the design and development of
distributed systems and of communica-
tions networks that could be used to sup-
port BMD;
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6. The National Test Bed: procurement of
hardware and software needed for the Na-
tional Test Bed;

7. processors: development of computers
that would be sufficiently powerful, radia-
tion-hardened, fault-tolerant, and secure
for BMD needs, and of the software re-
quired to operate them; and
software engineering the technology for
developing and maintaining software for
SDI, including techniques and tools for
requirements specification, design, cod-
ing, testing, maintenance, and manage-
ment of the software life-cycle.

Table 9-2 is a snapshot of the funding for
these areas as of June 1987. Rather than show-
ing the fiscal year 1987 SDIO battle manage-
ment budget, it shows money that at that time
had been spent since the inception of the pro-
gram, that was then under contract, or that
was expected soon to be under contract. It is
a picture of how the SDIO was investing its
money to solve battle management problems
over the first few years of the program. Not
shown is money invested by other agencies,
such as the Defense Advanced Research Proj-
ects Agency, in joint projects. The leverage
attained by SDIO in some areas is therefore
greater than might appear from the table.

The SDIO battle management program
clearly emphasizes experimental systems. Ex-
amination of the individual projects in this area
shows a concentration on the development and
maintenance of simulations and simulation fa-
cilities, such as the Army’s Strategic Defense
Command Advanced Research Center Test

Table 9-2.—SDIO Battle Management Investment

Funding Percent of
Area ($M) total

Software technology program plan . . 2.5 1
Algorithms. . . . . . . . . . . . . . . . . . . . . . . 25.3 9
Communications. . . . . . . . . . . . . . . . . . 8.1 3
Experimental systems . . . . . . . . . . . . . 117.5 42
National Test Bed . . . . . . . . . . . . . . . . 13.0 5
Networks . . . . . . . . . . . . . . . . . . . . . . . . 29.6 11
Processors. . . . . . . . . . . . . . . . . . . . . . . 47.1 17
Software engineering. . . . . . . . . . . . . . 32.8 12

Total . . . . . . . . . . . . . . . . . . . . . . . . . . 275.9 100

Bed, used to run battle simulations; on ar-
chitecture analyses, such as the phase I and
II battle management/C3 architecture studies;
and on the first two Experimental Validation
88 (EV88) experiments.

The funding categories shown in table 9-2
permit considerable overlap; projects in each
category could easily be assigned to a differ-
ent category. To try to draw clearer distinc-
tions among categories and to try to identify
funding targeted specifically at the problems
discussed in chapters 7 through 9, OTA reor-
ganized the funding data supplied by SDIO.
Table 9-3 shows just those funds aimed at ex-
ploring solutions to some of the more signifi-
cant problems noted in chapters 7 through 9.
It does not include all funds shown in table
9-2, - - -

ing.

1.

2.

but does show percentages of total fund-
The categories are defined as follows:

battle management and system simula-
tions: the development of particular simu-
lation algorithms or specialized hardware
for battle management simulations;
simulation technology development: the
development of the hardware and software
for bigger, faster simulations, and for im-
proving techniques for evaluating the re-
sults of simulations;
automating existing software engineering
technology: the development of software
and hardware that would be used to im-
prove the software development and main-
tenance process, which is now based on
existing manual techniques;

Table 9-3.—Funding for OTA Specified Problems

Funding Percent of
Problem ($M)
Battle management and system simulations . . . . . 42.5
Simulation technology development . . . . . . . . . . . . 35.7
Automating existing software engineering

technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2
Computer security. . . . . . . . . . . . . . . . . . . . . . 10,3
Communications networks ... , . . . . . . . . . . . . . 7,8
Software verification . . . . . . . . . . . . . . . . . . . . . 4.6
Fault tolerance (hardware and software) . . . . . . . . 3.1
Software engineering technology development. . . . 2.5

Total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......120.6

15
13

5
4
3
2
1
1

44
a~rcentage  of toul battle  management funding, i.e., Of $275.9M

SOURCE Office of Technology Assessment, 1988, and S010SOURCE: Office of Technology Assessment, 19S8; and SDIO.
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4.

5.

6.

7.

computer security: techniques for detect-
ing and preventing unauthorized access
to computer systems;
communications networks: the organiza-
tion of computer-controlled communica-
tions equipment into a network that could
meet SDI communications requirements;
software verification: the development of
practical techniques for mathematically
proving the correctness of computer
programs;
fault tolerance (hardware and software):
the development of hardware and software
that continues to work despite the occur-
rence of failures; and

8. software engineering technology develop-

works, fault tolerance, and new software engi-
neering technology development.

CONCLUSIONS

1.

2.

ment: the development of new techniques
for improving the dependability of soft-
ware and the rate at which dependable
software can be produced.

Table 9-3 shows that SDIO is investing con-
siderably more in simulations and simulation
technology than any of the other problem areas
in battle management and computing identi-
fied by OTA. Of some concern is the smallness
of the investment in especially challenging areas
such as computer security, communications net-

Based on both the preceding analysis, and
the further exposition in appendix A, OTA has
reached eight major conclusions.

The dependability of BMD software would
have to be estimated subjectively and with-
out the benefit of data or experience from bat-
tle use. The nature of software and our experi-
ence with large, complex software systems,
including weapon systems, together indicate
that there would always be irresolvable ques-
tions about how dependable the BMD soft-
ware was, and also about the confidence to
be placed in dependability estimates. Politi-
cal decision-makers would have to keep in
mind that there would be no good technical
answers to questions about the dependabil-
ity of the software, and no well-founded tech-
nical definition of software dependability.

It is important to note that the Soviets
would have similar problems in trying to
estimate the dependability of the software,
and therefore the potential performance of
the system. Technical judgments of depend-
ability would rely on peacetime tests that
would be unlikely to apply to battle condi-
tions. Political judgments about the credi-
bility of the defense provided would there-
fore rest on very uncertain technical grounds.
No matter how much peacetime testing were
done, there would be no guarantee that the

75-922 0 - 88 - 9

3.

4.

system would not fail catastrophically dur-
ing battle as a result of a software error. Fur-
thermore, experience with large, complex soft-
ware systems that have unique requirements
and use technology untested in battle, such
as a BMD system, indicates that there is a
significant probability that a catastrophic fail-
ure caused by a software error would occur
in the system’s first battle.

It is possible that an administration and a
Congress would reach the political decision
to “trust” software that passed all the tests
that could be devised in peacetime, despite
the irresolvable doubts about whether such
software might fail catastrophically the first
time it was used in an actual battle. Such
a decision could be based upon the argument
that the purpose of strategic forces—even
defensive strategic forces—is primarily deter-
rence, and that a defensive system passing all
its peacetime tests would be adequate for de-
terrence. If deterrence succeeded, we would
never know, and never need to know, whether
the system would function in wartime.

The extent to which BMD software would dif-
fer from complex software systems that have
proven to be dependable in the past raises the
possibility that software could not be created
that ever passed its peacetime tests. This a
possibility exacerbated by the prospect of
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5.

6.

changing requirements caused by Soviet ac-
tions. We might arrive at a situation in
which fixing problems revealed by one test
created new problems that caused the soft-
ware to fail the next test.

No adequate models exist for the develop-
ment, production, test, and maintenance of
software for full-scale BMD systems. Current
DoD models of the software life-cycle and
methods of software procurement appear in-
adequate for the job of building software as
large, complex, and dependable as BMD
software would have to be.

The system architecture, the technologies to
be used in the system, and a consistent set
of performance requirements over the lifetime
of the system must be established before start-
ing software development.67 Otherwise, the
system is unlikely even to pass realistic
peacetime tests.

oTNotg that this does not preclude a phased system, with both
capabilities and requirements growing over time, provided that
the final architecture and final performance requirements are
clear before initial software development begins. Even then, con-
sidering the uniqueness of BMD defense, one would expect to
spend considerable time finding a workable design.

7.

8.

As the strategic goals for a BMD system be-
came more stringent, confidence in one’s abil-
ity to produce software that would meet those
goals would decrease as a result of the in-
creased complication required in the software
design. Even for modest goals, such as im-
proved deterrence, the United States could
not have high confidence that the software
would not fail catastrophically, whether
faced with a modest threat or a severe
threat. Put another way, there is no good
way of knowing that BMD software would
degrade gracefully rather than fail catas-
trophically when called on to face increas-
ing levels of threat. Current techniques for
identifying problems and detecting errors,
such as simulations, would not help, al-
though they could help to reduce the fail-
ure rate. Furthermore, foreseeable improve-
ments in software engineering technology
would not change this situation.

The SDIO is investing relatively small
amounts of money in software technology re-
search in general, and in software engineer-
ing technology, computer security, communi-
cations networks, and fault tolerance in
particular. This investment strategy is of
some concern, since particularly challeng-
ing BMD software development problems
lie in these areas.


