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Appendix A

Technology for Producing
Dependable Software

Introduction

Chapter 9 of this report often refers to the tech-
nology of specific phases in the software life cycle.
The application of such technology is known as
software engineering.    This appendix describes the
state of the art in software engineering and
prospects for improvements in the state of that
art. It serves as a tutorial for those unfamiliar with
Department of Defense (DoD) software develop-
ment practices. It provides supporting detail for
the discussions in chapter 9 of the technology avail-
able for producing dependable systems.

Origins of Software Engineering

The term “software engineering” originated in
1968. Around that time, computer scientists be-
gan to focus on the difficulties they encountered
in developing complicated software systems. A re-
cent definition of software engineering is:

. . . the application of science and mathematics by
which the capabilities of computer equipment are
made useful to man via computer programs, pro-
cedures, and associated documentation.1

Another recent definition adds requirements for
precise management and adherence to schedule
and cost:

Software engineering is the technological and
managerial discipline concerned with systematic
production and maintenance of software products
that are developed and modified on time and within
cost estimates.2

The Institute of Electrical and Electronic Engi-
neers (IEEE) defines software engineering as:

The systematic approach to the development,
operation, maintenance, and retirement of
software. 3

Before the late 1960s, managers paid little at-
tention to the systematizing of software construc-
tion building. Most software systems were not
complicated enough to occupy large numbers of
people for long periods of time. Existing computers

‘Barry W. Boehm,  Software Engineering Econom”cs (Englewood
Cliffs, NJ: Prentice-Hall, 1981), p. 16.

*Richard Fairley,  Software Engineering Concepts, (New York:
McGraw-Hill, 1985), p. 2.

‘IEEE  Standard Glossay  of Software Enp”neering  Terminology,
IEEE Standard 729-1983.

were not big or fast enough to solve very compli-
cated problems:

As long as there were no machines, Program-
ming was no problem at all; when we had a few
weak computers, Programming became a mild
problem, and now that we have gigantic com-
puters, Programming has become an equally gigan-
tic problem.4

Software engineering technology has improved
since 1972, but not as quickly as the capabilities
of computers. Studies in software engineering tech-
nology transfer show that ideas typically take 18
years to move from research environments, such
as universities and laboratories, to common uses
During this time, considerable experimentation
and repackaging occur.

Advances in software engineering technology
often take the form of better techniques for pro-
gram design and implementation. Some techniques
demand no more than a pencil and paper and an
understanding of their concepts. Most, however,
become partially or fully automated. The form of
automation is generally a computer program,
known as a “software engineering tool. ” One ex-
ample is the compiler-which helps to debug other
programs; another is a program that checks the
consistency of software specifications. Because
software engineering tools themselves take the
form of complex computer programs, they are sub-
ject to the typical problems involved in producing
complex, trustworthy software. This fact helps ex-
plain why software engineering technology lags
hardware engineering technology.

The trend toward use of software engineering
tools seems to be growing, as evidenced by such
projects as:

● DoD’s Software Technology for Adaptable,
Reliable Systems (STARS), whose purpose has
been to produce an integrated set of tools for
DoD software engineers;

4Edsger W. Dijkstra, “The Humble Programmer, ” Communications
of the ACM, 15(10):859-866,  1972.

‘William E. Riddle, “The Magic Number 18 Plus or Minus Three: A
Study of Software Technology Maturation, ” ACM Software Engineer-
ing Notes, vol. 9, No. 2, 1984, pp 21-37.

The figure of 18 years for technology transfer is consistent with other
engineering fields during periods of technological innovation, as ana-
lyzed in Gerhard O. Mensch, Stalemate in Technolo&Cambridge,  MA:
Ballinger,  1979).
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●

●

the Software Productivity Consortium,
formed to produce software engineering tools
for its client members, including many of the
nation’s largest Aerospace companies; and
the Microcomputer and Electronics Consor-
tium, one of whose purposes is to produce bet-
ter software engineering technology for its cli-
ent members.

State of the Art in Software
Engineering

This section discusses the current state of the
art in software engineering technology. It consid-
ers the application of that technology to system-
atic approaches to software development. Finally,
it reviews recent proposals for improvements in
software engineering to aid in the development of
ballistic missile defense (BMD) software.

The Software Development Cycle
The process of developing and maintaining soft-

ware for military use is described in DoD military
standards documents as the “software life cycle. ”
The description here is simplified for the purposes
of this report. The activities described are common
to nearly all DoD projects, though they vary in the
amount of attention paid to each, the products
produced by each, and the number and kind of
subactivities in each.

Furthermore, the initial set of activities de-
scribed encompasses only development, up to the
point of acceptance of the system by DoD. Our
description lumps activities following development
into the category of “maintenance,” which is dis-
cussed in a separate section. Finally, the activities
described here generally conform to the model of
development set forth in the DoD Standard (No.
2167) for software development. Commercial de-
velopment and advanced laboratory work may fol-
low considerably different procedures (although all
tend to produce documentation similr in intent
to that described in the following sections).

Feasibility Analysis

The first phase of development is an analysis of
the DoD’s operational needs for the proposed sys-
tem. This phase may start with a series of studies
of the feasibility of meeting those needs. The re-
ported results of the feasibility studies are often
based on computer simulations of the situations
that the system would have to handle. The envi-
ronment in which the system would operate may

be characterized in terms of quantifiable parame-
ters. This process is analogous to telephone com-
pany analyses of the traffic load–the number of
calls per hour expected at different times of the
day, week, and year-to be placed on a new switch-
ing center. The feasibility analysis may be per-
formed on a contract basis by systems analysts
who are not software engineers. In the case of the
Strategic Defense Initiative (SDI), systems
analysts who are familiar with BMD have done
much of the feasibility analysis as part of the com-
petitive system architecture contracts (see ch. 3).

Feasibility analysis sometimes includes con-
structing a software prototype designed to inves-
tigate a few specific issues, for example, what the
mode of interaction between human and computer
should be or which tracking algorithms would work
best under different circumstances. Most system
functions are not implemented in prototypes. To
save time, the development of prototype software
does not follow the standard cycle. Software in the
prototype is not usually suitable for reuse in the
actual system. The prototype is usually discarded
at the end of the software development cycle.

The end-product of the feasibility analysis is a
document that describes what functions the new
system needs to perform and how it will work. This
report is sometimes called a “concept of opera-
tions” or an “operational requirements” document.
The operational requirements document will form
the basis for a request for proposals to potential
development contractors. Once the contract has
been awarded, the document will underlie the state-
ment of requirements to be met by the system—
that is, the description of what the contractor must
build. The (SDI) battle management software de-
velopment project is currently in the feasibility
analysis stage.

Software Requirements Analysis
and Specification

Software engineers enter the software develop-
ment process at the software requirements analy-
sis and specification phase. From their interpreta-
tion of the operational requirements document,
they write a requirements or performance “speci-
fication” for the software (including how it is to
interface with other systems). Upon government
approval, this specification document supplies the
contractual criteria of acceptability of the software
to the government. The specification differs from
the operational requirements as follows:

● It is more detailed than the operational re-
quirements statement. Where the latter may
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vaguely describe the functions to be per-
formed, such as “simultaneously track 10,000
missiles, ” the requirements specification will
describe a sequence of subfunctions needed to
implement the operational requirement. The
description of each subfunction will include a
description of the input supplied to the sub-
function, the output produced by it, and a brief
explanation of the algorithm by which the in-
puts are transformed into outputs.

For example, a subfunction of tracking may
be to update the track for a particular missile.
The inputs of that subfunction are the current
file of tracks and a new track report. Its out-
put is an updated track file. The algorithm
might consist of the following steps:

—retrieve the existing track for the missile
from the track database;

—update the position, velocity, acceleration,
and time of last report components of the
missile track; and

—store the updated track entry back into
the database.

● It describes the interfaces between the new
system and all the other systems with which
it must interact. Sometimes these interfaces
are described in a separate document.

● It describes the interfaces to the hardware de-
vices that the software must control, such as
weapons, or from which the software must ob-
tain information, such as navigation devices
like inertial guidance units.

When the requirements specification is complete,
the government holds a “requirements review” at
which it decides what, if any, changes must be
made. The specification becomes a contractually
binding document and is passed on to the software
designers. The review is the last time at which re-
quirements errors can be corrected cheaply: few
assumptions have yet been made about the way
the requirements will be implemented as computer
programs. Procedures known as “configuration
control” are established. These ensure that the
specification is not arbitrarily changed. The speci-
fication becomes the “baseline requirements speci-
fication. ” All further changes go through a formal
approval cycle, requiring the concurrence of a com-
mittee known as a “configuration control board. ”

Design
The purpose of the design phase is to produce

a “program design specification” of how a  c om-puter program can be written to satisfy the require-
ments specification. The design specification usu-

ally describes the division of the software into
components. Each component may be subdivided
again, with the subdivision process eventually end-
ing in subcomponents that can be implemented as
individual subprograms or collections of data. The
components resulting from the first subdivision,
sometimes called “configuration items, ” are used
to track the status of the system throughout its
lifetime.

The organization that emerges from the design
process is known as the structure of the software,
and the criteria used are called “structuring cri-
teria.” The relationship among components de-
pends on the criteria used in the subdivision proc-
ess. For example, if the criterion for subdivision
is function, at the first subdivision a component
called “tracking” might be formed. At the second
level one might find tracking subdivided into func-
tions such as “obtain object track” and “update
object track. ” Such a subdivision is called a “func-
tional decomposition. ”

A very different criterion is type of change. At
the first level one might then see components such
as all decisions that will change if the hardware
changes and all decisions that will change if soft-
ware requirements change. At the second level one
might find hardware decisions subdivided into de-
cisions about sensor hardware, decisions about
weapons hardware, and decisions about computer
hardware. Such an organization is called an “in-
formation hiding decomposition. ”

The structuring criteria are key to understand-
ing the design and the trade-offs it embodies.6

Those who use functional decomposition argue
that it results in software that performs more effi-
ciently. Those who use information hiding argue
that it results in software that is easier to main-
tain because it is easier to demonstrate correct and
easier to understand. Other criteria optimize for
other factors, for example, fault-tolerance, security,
and ease of use. As might be expected, there is no
single criterion that simultaneously optimizes all
design goals.

An important purpose of the design specifica-
tion is to describe the “interfaces” among compo-
nents. The interfaces consist of the data to be
passed from one component to another, the se-

%ood  designers find it useful to structure the design in several differ-
ent ways to permit study of different trade-offs. For example, an
information-hiding decomposition is useful in optimizing for changes
later in the life-cycle of the software. A functional decomposition helps
ensure that all functions are performed and makes it easy to analyze
the efficiency of software. An important problem for the designer is to
be able to represent the different design structures so that they are con-
sistent with each other.
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quences of events to be used in coordinating the
actions of the components, and the conditions un-
der which the components interact. Once the in-
terfaces are established, individual design teams
may design each component. Since each component
may interact with several others, agreement on the
interfaces is crucial for effective cooperation among
the design teams.

Such agreement is equally important for those
who must later implement the design as a com-
puter program. A mistaken assumption about an
interface will result in an error in the software and
a failure in the operation of the software. A change
in an interface requires agreement among all those
working on the interfacing components, and may
result in redoing weeks or months of work. Get-
ting the interfaces right is generally agreed to be
the most difficult part of developing complex
software.

During the design process several reviews of the
design are held. The purpose of the reviews is to
ensure that the design is feasible and correctly im-
plements the requirements. Early reviews on will
be a “preliminary design review.” When the de-
signers feel that the design specification is suffi-
ciently complete to be turned into computer pro-
grams, they hold a final, “critical design review. ”
Errors found at this point can still be corrected
relatively cheaply. Once they become embedded in
programs they are very much more difficult to find
and correct. Each design review results in changes
to the design specification. Once the changes are
completed, the design specification becomes the
basis for producing computer programs. It is then
placed under configuration control, much as the
approved requirements specification is.

Code

The process of translating the program design
specification into computer programs is known as
“coding.” By DoD policy, command and control
systems, weapons, and other software develop-
ment projects must use a DoD standard program-
ming language.7 Individual programmers work
from the design specification to implement the
components as computer programs. The more com-
pletely and precisely the components and their in-
terfaces are defined, the less communication is re-
quired among the programmers. They can then
work independently, in parallel. An incomplete or

‘Current DoD policy mandates the use of Ada as a standard program-
ming language, unless the developer of a system obtains a waiver. Prior
to the advent of Ada, each service had its own standard programming
language.

ambiguous specification requires the programmers
to make design decisions, often with incomplete
and unrecorded communication among each other.

Programming is writing instructions for a com-
puter to perform a function described in the de-
sign specification. The instructions are packaged
together as a subprogram or a set of subprograms
that cooperate to perform the function. Before it
can be executed, a subprogram must be translated
by a compiler from the programming language into
machine language. Part of the programming job
is to devise and perform tests on each subprogram
to show that it works properly. A programmer usu-
ally goes through several cycles of writing, test-
ing, and revising a subprogram before he is ready
to declare it finished. When a programmer is satis-
fied that his subprograms perform correctly, he
submits it to a test group.

Test

A separate group has the sole responsibility to
devise, perform, and report on the results of tests.
With no knowledge of the design, this group de-
vises tests based on the requirements specification.
It sends components that fail tests back to their
developers with descriptions of failures and no at-
tempts to diagnose the reasons for failures.

Test performance is the primary basis for confi-
dence (or no confidence) that a system behaves as
it is supposed to. A variety of techniques tests
trustworthiness, fault-tolerance, correctness, secu-
rity, and safety. It is during testing that compo-
nents of the system first operate together and as
a whole. The following sections describe the steps
in the integration and testing process. At each
step, each of the reliability aspects maybe tested.

The test process resembles a reversal of the de-
sign process. Subprograms are first tested in-
dividually, then combined into components for in-
tegration tests. Components are integrated again
and tested as larger components, the process con-
tinuing until all components have been combined
into a complete system. To a large extent, integra-
tion testing may be thought of as testing the in-
terfaces between components. It is in integration
testing that mistaken assumptions about how
other programs behave first manifest themselves
as failures.

Early tests in the process often include supply-
ing erroneous input data to components or plac-
ing them under atypical operating conditions. Such
conditions might include heavy computational
loads or undesired events that, while abnormal,
might occur. Such “stress” tests are designed to
find out how fault-tolerant the system will be.
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As integration progresses, the total number of
possible states of the formed component is the
product of the number of states of its constituents.
Combining component A with N states and com-
ponent B with M states results in component C
with M times N states. If R tests were performed
on A, and T tests on B, combining each test of A
with each test of B would require performing R
times T tests on C. For large systems, it is imprac-
tical to perform the number of tests needed: at each
integration stage the number of tests performed
relative to the number of possible states becomes
quite small. The tests performed on the entire in-
tegrated system include only a few typical ex-
pected scenarios.

The integration procedure described above is
called “bottom-up,” since it starts on the lowest
component level and proceeds upward. A second
integration technique that is becoming more com-
mon starts with top-level components. It attempts
to test interfaces as early as possible. This tech-
nique requires the writing of dummy subcompo-
nents that simulate only some of the actions of the
actual future subcomponents, but that use the
same interfaces. The dummies, called “stubs,” are
gradually replaced with the actual subcomponents
as system “top-down” integration proceeds.

When the developer deems the system ready for
delivery, a contractually-specified formal test pro-
cedure is performed to ensure that the system is
acceptable to the government. This “acceptance
test” consists of running several scenarios, and it
may test endurance and handling of stress. Accept-
ance tests are performed under government obser-
vation under conditions as closely approximating
real use as possible. If included, an endurance test
consists of continuous simulated use of the sys-
tem for a minimum of 24 hours. Endurance tests
are important for systems that are expected to
operate continuously once placed in service. Once
a system has passed its acceptance tests, it is de-
livered to the government and enters the remain-
ing phase of its life cycle, known as maintenance.

Despite elaborate test procedures, all complex
software systems contain errors when delivered.
As previously noted, software tests cannot be
exhaustive and cannot be relied upon to find all
errors. As an example, during the operational
evaluation of the AEGIS system on the U.S.S.
Ticonderoga, 20 target missiles were fired while
the ship was at sea under simulated battle condi-
tions. Some of the target missiles were fired simul-
taneously into the area scanned by the AEGIS
combat system; thus, the 20 targets constituted
fewer than 20 scenario tests. The tests revealed

several software errors, costing approximately
$450,000 to fix.8

Since errors do remain in software after accept-
ance testing, the correction of errors continues as
a major activity after a system has been delivered
and put into use.
Maintenance

Unlike hardware, software contains no physical
components and does not wear out as a result of
continuing use. Maintenance is really a misnomer
when applied to software:

In the hardware world, maintenance means the
prevention and detection of component failure
caused by aging and/or physical abuse. Since pro-
grams do not age or wear out, maintenance in the
software world is often a euphemism for continued
test and debug, and modification to meet chang-
ing requirements.9

Errors emerging during system use must be cor-
rected, and the system must be retested to ensure
that the corrections work properly and that no new
errors have been introduced. Correcting an error
may entail reanalyzing some requirements and do-
ing some redesign; it almost certainly demands re-
writing some code. Accordingly, all of the devel-
opment activities also occur during maintenance.

Even when requirements appear to be complete
and consistent, as users gain experience with a sys-
tem they may change their minds about the per-
formance they desire from it. The automobile is a
case in point. Drivers’ behavior and expectations
about the performance of their vehicles changed
as new possibilities for travel emerged and as new
technology became available. Behavior also
changed as economic and political situations
changed. For example, wartime conditions affected
the cost and availability of cars and auto parts,
and oil production decisions affected the price of
fuel. Similarly, as writers have switched from type-
writers to word processors, both their writing
habits and the features they expect in a word proc-
essor have changed.

Maintenance costs are now becoming the major
component of software life-cycle costs. Some data
show that by 1978, 48.8 percent of data process-
ing costs were spent on maintenance activities.10

‘Discussion of the results of the Ticonderoga operational evaluation
testsmaybe found in U.C. Congress, Senate Committee on Armed Serv-
icesthe record of the hearings before the Committee on Armed Serv-
ices, United States Senate, 98th Congress, second session on S.2414
part 8, Sea Power and Force Projection, Mar. 14, 18, 29, Apr. 5, II,
May 1, 1984.

“D. David Weiss, U.S. Naval Research Laboratory, ‘‘The MUDD
&port:  A Case Study of Navy Software Development Practices, ” NRL
Report 7909, May 1975.

IOBoehm,  Softwsre Engineering Econo~”cs, op. cit., footnote 1, figure
3-2, p. 18.
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New technology, new strategies, and new computa-
tional algorithms would cause envisioned BMD
systems to evolve over many years, Their long-
lifetime, complexity, and evolutionary nature will
magnify the general trend towards relatively larger
software maintenance costs.

Interaction Among the Phases

In the preceding sections the different phases of
the software life cycle are described as if they oc-
cur in a strict sequence. In fact, there is consider-
able feedback among the phases. Changes in re-
quirements, design, and code occur continually.
Large systems may be subdivided into subsys-
tems, for each of which there is a separate require-
ments specification and a separate development
cycle. These separate developments may proceed
in parallel or sequentially.

The first planned delivery in a sequential devel-
opment is called the initial operating capability
(IOC). Sequencing the delivery of different versions
of the system over time permits faster delivery of
some capabilities, but it introduces additional prob-
lems into all of the development phases. The sys-
tem must be designed so that added capabilities
do not require large changes to existing design or
code. In particular, interfaces must be designed to
take into account potential future changes in ca-
pabilities. This is another example of a problem in
large, complex systems that does not occur in small
systems, where the entire system is delivered at
once.

The requirements analysis and design phases
usually consume about 40 percent of the develop-
ment effort, the coding phase about 20 percent, and
the testing phase about 40 percent. For long-lived
systems, the maintenance phase consumes 60-80
percent of the total lifecycle cost. For this reason,
the trend in large, long-lived systems is to try to
develop the software so as to make the mainte-
nance job easier. Since the principal activity in
maintenance is change, an important development
consideration is how to make change easier.

Software Engineering Technology

Software engineering technology research and
development tend to focus on particular phases of
the software life cycle. For example, work on im-
proving design techniques is often independent of
work on improving techniques for translating high-
level languages to machine code. One reason is that
the different phases present very different prob-
lems for the software engineer.

The next few sections briefly describe the state
of the art, the state of the practice, and the direc-
tion in which software technology is currently mov-
ing, particularly within DoD. Much of the work in
the last few years has concentrated on creating
automated support for software development tech-
niques. Such support usually consists of one or
more programs, called tools.ll

Constructing Prototypes

During the feasibility analysis and requirements
specification stages, software engineers sometimes
quickly produce prototypes to help feasibility anal-
ysis and to explore different ways in which users
might interact with the completed system. Such
rapid prototype are intended to allow exploration
of only a few issues: they are not intended to be
models of the final software. They are often exe-
cuted in different languages, on different com-
puters, and using a different development process
than the final software. Usually less than 10 per-
cent of development effort is spent on such pro-
totypes.

Sometimes software engineers do full prototyp-
ing. Full prototyping means building a complete
prototype system and then discarding it. This ap-
proach has been advocated by Brooks:

Inmost projects, the first system built is barely
usable. It may be too slow, too big, too awkward
to use, or all three. There is no alternative but to
start again, smarting but smarter, and build a re-
designed version in which these problems are
solved. . . . all large-system experience shows that
it will be done. Where a new system concept or new
technology is used, one has to build a system to
throw away, for even the best planning is not so
omniscient as to get it right the first time....

Hence plan to throw one away: you will, any-
how.”

Specifying Requirements

Software requirements specifications constitute
an agreement between the customer and the soft-
ware developers. In stating what the software
must do, the specifications must be unambiguous,
precise, internally consistent, complete, and cor-

tlRather  th~ trying  to describe even the few most notable example%
this appendix just indicates general trends. For a more detailed survey
of software technology that maybe applicable to SDI, the reader should
see the following Institute for Defense Analysis report on the subject
prepared for the SDIO:  Samuel T. RedWine, Jr., Sarah H. Nash, et al.,
SDI Prelirnimuy Software Technology Integration Plan, IDA paper P-
1926, July  1986.

1~Frederi&  p. Br~ks,  Jr., The Mythical lkf~-lfonth:  ESSZ?YS  On Soft-

ware En~”neering  (New York, NY: Addison-Wesley, 1975).
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rectly representive of the customer’s desires and
developers’ intent. By systematizing the process,
methodologies for analyzing and expressing re-
quirements are intended to help the analyst be
complete, consistent, and clear. Some tools partly
automate the process—sometimes by providing
mechanisms to support a particular methodology,
sometimes just by providing storage and retrieval
of documentation.

Before 1975, nearly all requirements were man-
ually produced. Although they might contain
mathematical equations, they used no formalisms
or notations tailored to the job of writing software
specifications. The underlying methodology fo-
cused on describing functions the software had to
perform and specified the input to and the output
from each function. By about 1980, two or three
new methodologies had appeared, incorporating
novel methods of decomposition and correspond-
ing notations and formalisms.

Also appearing were several tools representing
somewhat clumsy attempts to automate the proc-
esses of storing and retrieving requirements speci-
fications and of performing internal completeness
and consistency checks. More advanced tools have
added some simulation capability, enabling the re-
quirements analyst to run a simulation of his sys-
tem based on the description stored by the tool.
The early tools enjoyed a brief popularity that has
not been sustained.

Recent technology includes attempts to combine
automated support for methodologies with micro-
computer systems, resulting in so-called “software-
engineering workstations. ” Simpler workstations
may use word processors to automate the text
maintenance and production process. More com-
plex workstations use document control systems
on minicomputers to manage the entry, mainte-
nance, and production of requirements documen-
tation; such systems may feature version control
and graphics support. The more tedious jobs of pro-
ducing and maintainingg text have been automated,
but the more difficult jobs of assuring that require-
ments are complete, consistent, and feasible to im-
plement have not yet been much affected.

Design

Design technology is in a similar state to that
of requirements specification. There is still little
agreement on the appropriate techniques for rep-
resenting and specifying designs. A few design
methodologies have become popular in the last 10
years, and there are a few supporting tools that
help the designer. There are a few serious attempts

to integrate requirements specification and design
support technology, but they have not been very
successful. DoD has concentrated on finding de-
sign techniques that are compatible with Ada (the
recently adopted standard DoD programming lan-
guage), then developing tools that support those
techniques.

Recent software design technology is on a par
with requirements specification technology: the de-
velopment of workstations and personal computer
tools aimed at supporting the designer’s job has
followed the development of similar tools on larger
computers.

Validating and Verifying
Requirements and Design

According to one estimate, errors in large projects
are 100 times more expensive to correct in the
maintenance phase than in the requirements
phase.19 Supporting data suggest that the relation-
ship between the relative cost to fix an error to the
phase in which the error is detected and corrected
is exponential. Accordingly, products of the soft-
ware development phases undergo some kind of
validation and verification several times during
each phase and at the end of each phase.

Although simulation is used to verify the results
of feasibility and requirements analyses, much of
the verification and validation of requirements and
design is done by review. A review is a labor-
intensive process. Users, designers, system engi-
neers, and others scrutinize a specification for er-
rors, usefulness, and other properties. Then, in a
series of meetings, they discuss comments and ob-
jections to the specification. There is little auto-
mated support for reviews, and there have been
few advances in the past 10 years in the way they
have been conducted. Although many of the cleri-
cal aspects of such reviews are ripe for automation,
the more difficult parts are likely to remain highly
labor-intensive.

Coding

Coding activities generally consume about 10-
20 percent of the effort in large-scale software de-
velopment, but they have been more highly auto-
mated than any other part of the process. Perhaps
the largest advance was the development of com-
pilers that translate high-level languages into se-
quences of machine instructions. In addition, there
is a continuing stream of new tools that help the
coder to enter, edit, and debug his code.

ljB~hm,  ~ftwue  Enp”neering  Economics, op. cit., footnote 1, P. 40.
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Advanced coding tools include editors, com-
pilers, and debuggers that:

● incorporate syntactic knowledge of the lan-
guage being used,

• allow the programmer to move freely between
editing and debugging programs, and

• provide him with powerful means of browsing
through the text of a program and analyzing
the results of its execution.

Such tools generally reside either on a time-shared
computer or on a workstation that is at the sole
disposal of the programmer.

Current practice varies widely, from compilers
used on batch machines (i.e., noninteractively, with
little or no editing or debugging tools and with
programmers relying principally on printouts for
information), to state-of-the-art systems.

Showing Correctness and Utility of Code

Because code is the means of directing a com-
puter’s actions, it is the realization of the require-
ments and the implementation of the design. Al-
though earlier stages in the development process
might conceivably be reduced in scope and effort—
or even eliminated-code to implement the system
must still be written. To show that it is the accurate
realization of the desired system, the code must
be demonstrated to execute correctly and usefully.
Technology to support such demonstrations has
followed several different approaches.

The traditional approach is to test the software
over a range of inputs that are deemed adequate
to demonstrate correctness and usefulness. (The
criteria for adequacy are generally determined by
those responsible for accepting the software as ade-
quate.) Testing technology is discussed in the next
section.

Code reviews, similar to design and requirements
reviews in structure, function, and labor-intensive-
ness, are also generally used during the coding
process to find errors. As with other reviews, the
nonclerical aspects of the process are unlikely to
be automated.

Correctness proofs based on mathematical tech-
niques are discussed in chapter 9 of this report.
Although work in automating proofs of program
correctness and finding and applying techniques
that work for large programs started about 20
years ago, the technology is still inadequate for
large, complex programs. There are no current
signs of ideas that may lead to rapid progress.

Testing

Although there are different types of testing for
different situations, the principles underlying
different tests are the same: the program is exe-
cuted using different sets of inputs and its be-
havior, particularly its output, is observed. Test-
ing technology has advanced to the point where
test inputs can often be automatically generated,
test output can be automatically compared with
desired output, and the parts of the program that
have been executed during the test can be auto-
matically identified. As with coding, the current
practice varies widely. For simple, noncritical sys-
tems, none of the process maybe automated. For
critical systems, considerable investment is often
made in automating tests. For such systems, it is
often important that test results be made visible
and understandable to nontechnical users. As an
example, elaborate computer-driven simulations
are used in pre-flight testing of aircraft flight soft-
ware. A pilot can test the behavior of the flight
software without any knowledge of the code.

Integrated Support

Early tools designed to support software devel-
opment or maintenance were aimed at solving spe-
cific problems, such as translating high-level lan-
guages to machine instructions, and were designed
either to work alone or in cooperation with one or
two other tools. Requirements and, particularly,
design support tools did not interface well with cod-
ing and testing tools. More recent attempts at au-
tomating the software development and mainte-
nance processes are aimed at developing software
engineering environments: tools that are compat-
ible with each other, that make it easy for the soft-
ware engineer to switch his attention among differ-
ent tasks in different phases of the software life
cycle, and that support the entire software life cy-
cle. Such environments are still in the development
stage.

In recent years, efforts to provide automated
management support have appeared. Such support
might consist of providing an automated database
containing information about the progress of a
software development or maintenance project. Ef-
ficient tools for providing integrated management
support should be appearing on the market shortly.
One area that has enjoyed automated support for
some time is change control, that is, keeping track
of changes that have been proposed and made to
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a system during its lifetime, long recognized as an
important management need. Automated support
systems designed just for change control have been
available for at least 10 years.

Incremental Development

To avoid the problems associated with attempt-
ing to develop a large, complex system at one time,
an incremental development technique is often
used. Systematic approaches for incremental de-
velopment have been described in the literature for
more than 10 years; example variations are itera-
tive enhancement, and program family develop-
ment.14 More recently, incremental development
has been incorporated into a risk-based approach
to development called the spiral approach.15 In this
approach, each developmental increment is accom-
panied by risk analyses. When deemed worth the
risk, a complete development cycle, which maybe
similar to the one described in the preceding, is
used. Incremental development has been used by
DoD in a variety of forms for a number of years,
and should not be expected to result in a major
improvement in software dependability or produc-
tivity.

Other Paradigms

The preceding discussion is oriented towards the
standard DoD software life cycle. Other paradigms
for the software life cycle have been suggested.
Some expand on the life cycle, such as a recently
proposed model by Boehm that incorporates risk-
assessment and incremental development. Others
attempt to eliminate or merge existing steps, such
as object-oriented programming using languages
like Smalltalk that lend themselves to rapid
change. Some introduce new or improved technol-
ogy to change the nature of existing steps, such
as the Cleanroom method.

Object-Oriented Programming

Object-oriented programming is based on sev-
eral different ideas that are used differently by ad-
vocates of the technique.

“V.R.  Basili  and A.J. Turner, “Iterative Enhancement: A Practical
Technique for Software Development, ” IEEE Transactions on Software
Engineering SE-1(4):390-396, December 1975. See also D. L. Parnas,
“Designing Software for Ease of Extension and Contraction, ” IEEE
Transactions on Software Enp”neering  5(2), March 1979.

“B.  Boehm,  TRW Corp., A Spiral Model of Software Development
and Enhancement, TRW technical report 21-371-85, 1985.

The term object-oriented programming h a s  b e e n
used to mean different things, but one thing these
languages have in common is objects. Objects are
entities that combine the properties of procedures
and data since they perform computations and
save local states.16

In many versions of the object-oriented model,
the role of formal requirements and design speci-
fication is reduced in favor of quickly producing
different versions of a program until one is attained
that exhibits the desired behavior. Although this
technique appears to work well on a small-scale,
it has yet to be tried on large-scale programs that
require the cooperation of many programmers and
that are to be long-lived. Most likely, some of the
ideas and tools that facilitate change in languages,
like Smalltalk, will be incorporated into the soft-
ware engineering environments under development
for the standard DoD life cycle, where they will
help make a modest improvement in productivity.

The Cleanroom Method

The Cleanroom method is an approach to soft-
ware engineering recently developed at IBM.17 The
method requires programmers to verify their pro-
grams, using mathematically-based functional ver-
ification methods developed at IBM. Programmers
are not permitted to debug or test their own pro-
grams; testing is done by a separate test group.
Furthermore, the test process is based on statisti-
cal methods that permit statistically valid esti-
mates of mean time to failure to be calculated from
test results.18 Reported Cleanroom experience in-
cludes three projects, the largest containing 45,000
lines of code. There is no reported accumulated
operational experience with software developed
using this technique. Proponents believe the tech-
nique will scale up to programs of the size and com-
plexity needed for SDI.

Automatic Programming

In another suggested paradigm that would elim-
inate much of the requirements and design phases,
programs would be automatically generated
directly from a requirements specification lan-
guage that might read like a mathematized ver-
sion of English. This idea is not new; the term auto-

1mM~k s~fik ~d Dtiel  G. Bobrow, “Object-Oriented programming:
Themes and Variations,” The AI Magszine 6(4):40-62,  winter 1986.

ITH~l~ D. Mfi,  “Cle~wm  Software Engineering, ” to be published
in IEEE Transactions on Software Engineering

‘*P. Allen, Michael Dyer, and D. Harlan, “Certifying the Reliability
of So ftware, ” IEEE Transactions on Software Engineering, SE-12(l):3-
11, January 1986.
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matic programming was applied in discussions of
programming languages as early as 1948.19 As pro-
gramming languages became more powerful, the
level of expectation for automatic programming
rose. The technology to implement this paradigm
in such a way that design specifications, as now
used, would be unneeded, is still well beyond the
state of the art.

Artificial Intelligence

Artificial intelligence (AI) is sometimes asserted
to be a technology that would be needed to build
the software for an SDI BMD system. In a critique
of AI as applied to SDI, David Parnas points out
two different definitions of AI that are currently
used:

AI-1: The use of computers to solve problems
that previously could only be solved by applying
human intelligence.

AI-2: The use of a specific set of programming
techniques known as heuristic or rule-based pro-
gramming. In this approach, human experts are
studied to determine what heuristics or rules of
thumb they use in solving problems. Usually they
are asked for their rules. These rules are then en-
coded as input to a program that attempts to be-
have in accordance with them. In other words the
program is designed to solve a problem the way
that humans seem to solve it.20

Much of the investment in AI technology today
seems to be based on AI-2. The result is likely to
be several systems that work well in limited appli-
cations where the rules for solving a problem are
well-known, relatively few in number, and consist-
ent with each other. For battle management and
other complex SDI computing problems, such an
approach is unlikely to apply: the rules for conduct-
ing a battle in space against an opponent, who may
use unforeseen strategy or tactics, are not well
known.

Since AI-1 may be considered as a set of prob-
lems, such as writing a computer program that can
translate English to Russian, it cannot be truly
characterized as having an underlying technology.
Solutions to such problems may or may not use
AI-2, or any other technology. Accordingly, the
state of the art in AI-1 can only be considered on
a problem-by-problem basis, and a technological
assessment cannot be made. Since it lacks a unify-

ISFOT  a discussion  of automatic progr amming, See David L. Parnas,
“Can Automatic Progr amming Solve The SDI Software Problem, ” in
“Software Aspects of Strategic Defense Systems,” American &“entist,
September-Oct&er  1985, pp.432-40.

*“David L. Parnas,  “Artificial Intelligence and the Strategic Defense
Initiative, ” ibid.

ing concept or technology, there is not much sense
in talking about “applying’ AI-1 to SDI battle
management problems until a specific set of bat-
tle management ’problems and their solutions is
specified.

Technology Summary

Much of the current software technology work
may be viewed as consolidation: the development
of tools to support existing methodologies. This
view is especially true for DoD, whose recent soft-
ware technology investments are aimed at provid-
ing automated support for software to be devel-
oped in the Ada language. Both within and without
DoD, particular emphasis is being given to soft-
ware  engineering environments:  tools that are com-
patible with each other, that make it easy for the
software engineer to switch his attention among
different tasks in different phases of the software
life cycle, and that support the entire software life
cycle. This emphasis is likely a result of a growing
recognition by software engineers that although
they have spent considerable time helping to au-
tomate other industries, they have been slow to
automate the software development and mainte-
nance industry.

The difficult problems of how to go about creat-
ing, analyzing, specifying, and validating require-
ments and design, and validating that implemen-
tations satisfy requirements, are still open research
problems on which progress is slow.

Measuring Improvement

Because the quality of software depends so
strongly on the quality of the software develop-
ment process, both the process and the product
need to be measured to understand where process
improvements are needed and what their effect is.
As previously noted, increases in product scale re-
sult in a shift in the factors determining success.
Measurements made on small scale developments
cannot be generalized to large scale developments.
As a result, laboratory-style measurements are of
little help in trying to determine the factors affect-
ing the development of BMD software. To be use-
ful, measurements must be made of the actual pro-
duction process, with the attendant risks of
affecting the process. Since data from such meas-
urements gives considerable insight into the prac-
tices used by a company, it is considered by most
companies to be sensitive and is rarely available
for study outside of the company. As a result, there
is little to chance to separate the effects of differ-



ent factors by comparing data from different de-
velopment environments. Outside of internal com-
pany studies, the few studies of software available
from measurements in production environments
come either from NASA’s Software Engineering
Laboratory, or from the Data and Analysis Cen-
ter for Software, supported by the Rome Air De-
velopment Center.

Scaling up to the size estimated for the SDI bat-
tle management software means that new devel-
opmental problems will be encountered and that
existing measurements will not apply well. Esti-
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mates for the size of the SDI battle management
software range from 7 million lines of code to 60
million lines of code, depending on the estimator
and system architecture. The largest operational
systems today that could be said to be similar to
BMD systems contain about 3-4 million lines of
code. 21

“The AEGIS software is in this category. The software for AT&T’s
5ESS TM switching system, although not a good model for BMD soft-
ware, is also in this size range. The SAFEGUARD system, not currently
operational, was slightly smaller.


