
Chapter 4

Controversies Over Software Protection

Legal protection for computer hardware is usually
provided by patentor trade secret; this combination
served fairly well to protect major hardware ad-
vances, as well as more-incremental developments.
Protection for computer programs does not fit neatly
within the traditional forms of intellectual property. l

As a result, the process by which software develop-
ers and users, the courts, and policymakers have
attempted to determine what should or should not be
protected, and what is or is not protected, has been
controversial.

LEGAL CASES
The litigation that has shaped copyright protec-

tion for software has come in three stages or
‘‘waves. The first wave of litigation considered
whether computer programs were protectable at all.
This was settled by the 1980 software amendment to
the 1976 Copyright Act (94 Stat. 3015, 3028), which
confirmed that copyright applied to computer pro-
grams. The second wave explored which aspects of
a program are protectable and which are not. Court
cases have decided that program source code, object
code, audiovisual (screen) displays, and microcode

are protected by copyright.3 The third and continu-
ing wave deals with the more ambiguous aspects of
what in a program is protectable (e.g., “look and
feel”), and how to determine if two programs are
“substantially similar.”4

Copyright and patent lawsuits continue to test and
explore the boundaries of the current laws. Many in
industry and in the legal profession believe that if
properly applied, copyrights and/or patents are
adequate to protect software.5 They argue, more-
over, that sui generis approaches risk obsolescence
and lack the predictability provided by legal prece-
dent (argument by analogy to prior decisions), as
well as an established treaty structure providing
international protection.7 Others consider the devel-
opment of sui generis protections or significant
modifications of current protection are preferable to
forcing software to fit models that are suited to other
types of works and discoveries but maybe ill-suited
for software.8 At the same time that some are calling
for major revisions in software protection, others are
arguing that the current system is not broken and

lsome observers have characterized the d~lculty as due to software’s being “too much of a writing to fit comfortably into tie Pmt SYm ~
too much of a machine to fit comfortably in the copyright system. ” (Pamela Samuelson, “Why the hmk and Feel of Sofiwsre User Interfaces Should
Not Be Protected By Copyright Law,” Communicti”ons of rhe ACM, vol. 23, No. 5, May 1989, pp. 563- 572.)

Others consider that software’s “fit” is no more uncomfortable than that of some other works and argue that the courts can successfully apply
traditional copyright principles to software cases. Anthony L. Clapes, Patrick Lynch, and Mark R. Steinberg, “Silicon Epics and Binary Bards:
DeteminingtheRoper Scope of Copyright Rotation for Computer Rograms,” UCLA LuwReview, vol. 34, June-August 1987; Morton David Goldberg
and John F. Burleigh, “Copyright Rotection for Computer Programs,’’AWLA Quurterty Journal, vol. 17, No. 3, 1989, pp. 2%-297.

2S= ~~ond T. Nirnmer and Patricia kauthtW “Classification of Computer Software for Ugal Protection: international Perspectives,”
Internadond Luwyer, vol. 21, Summer 1987, pp. 733-754

3F~ a ~er~ discWim of wh~ cm ~ ~@@ ~ Cv H. Sheman, H~~ R. Sandiwn, ~d * D. Guren, Computer so~ae PrOttYdOn
Luw (Washingmn, DC: The Bureau of National Affairs, Inc., 1989), sections 203.5(c)-203.7(c).

The copyrightability of microcode as a “computer program” was upheld in February 1989. See discussion of NEC Corp. v. Inrel Corp. (10 USPQ
2d 1177 (N,D. Cal. 1989)) in Goldberg and Burleigh, op. cit., foomote 1, pp. 309-311.)

4 s~~ti~ s~l~~ is a ~bjwtive t- f~ Cop@@t ifingenlent. A plfitiff must &)w ~~ he ~kg~ inm~ w WXXSS to h COpJ@htd

work and that there is substantial similarity between the works at the level of protected expression. An allegedly infringing work need not be 100 percent
identical to another in order to infringe its copyright, but deciding how similar works must be to prove infringement can be troublesome, even for
conventional literary works like plays or novels. For computer programs, the ‘ordinary observer” making the determination may need to be a technical
expert. For discussion see Susan A. Dunn, “Defmingthe Scope of Copyright Protection for Computer Software,’ Sta@ordLmv Review, vol. 38, Jsnuary
1986, pp. 497-534; and Clapea et al., op. cit., footnote 1, pp. 1568-1573.

In detemirdng substantial similarity between a copyrighted work and an accused work, courts look at the worka considered as a whole. For programs,
this means the detailed design, not just individual lines of code (Clapes et al., op cit., footno~ 1, p. 1570).

SF~ me dix~iom of ~ vieW, focming ~ -@t, ~ clap ~ ~., op. cit., foofnti 1; ~d (Md~g d Burkigh, W, cit., f-k 1.

6SUi gem~ is a ~ X ~d to (kscribe a law that is “of its own kind of ChSS. ”
%r example, tk Beme Convention p’ovides reciprocal copyright protection in 79 countries.
sw, f~ exampk, Pamela Samuelson, “CONTU Revisited: The Case Against Cumputer Programs in Machine-Readable Form, Duke Luw Journul,

Septemk 1984, p. 663-769; andl%er S. Menell, “TailoringLegal Protection for computer Software,” SruqfordLuwReview, vol. 39, No. 6, July 1987,
pp. 1329-1372.

-11-

12 ● Computer Software and Intellectual Property

does not need fixing --or at least, can be “fine-
tuned” within the existing legal framework.9

The extent of copyright protection for the logic
underlying a program, as well as its structure and
interfaces, raises complex issues.lo Some of these
issues are currently the subject of well-publicized
copyright lawsuits. What may be at stake in these
cases is the extent to which copyright should be
interpreted to give patent-like protection, especially
since copyright applies for a much longer time and
lacks patent’s standards for novelty, nonobvious-
ness, specificity of claim, and disclosure. Patent
protection for algorithms also raises complex is-
sues.ll Ongoing patent suits concerning software-
related inventions and the recent publicity given to
some patents for algorithms have stimulated debates
concerning the extent to which software-related and
algorithmic inventions should be included in the
patent system, and whether or not computer proc-
esses and algorithms are different enough from other
technologies to warrant special provisions (e.g.,
shorter duration, pre-issuance notice, etc.). These
debates focus on two questions:

1.

2.

the longer term question of whether patent (or
patent-like) protection for software-related in-
ventions and/or algorithms is generally desira-
ble; and
the near-term questions of how well current
United States Patent and Trademark OffIce
(PTO) procedures are working and how to

improve the comprehensiveness of the prior art
available to patent examiners and private
searchers (see app. A).

STAKEHOLDERS AND THEIR
CONCERNS

There is a public interest in the form and level of
software protection and its effects on innovation,
technology transfer, and economic growth. At a
micro level, software users have specific expecta-
tions and concerns, but they are also concerned with
software quality (as for any other product) and with
support and consultation for using the software.
Many users consider technological anti-copying
devices that curtail a program’s use, or prevent
modification of the software, or,their ability to make
backup copies as undesirable.12 Rather than having
to learn a unique set of commands and features for
each program, users want to learn universal skills
applicable to many programs. Cost is a factor,
especially for schools or businesses that have to buy
dozens of the same software package for their
terminals. Devising or enforcing protections, even
against literal copying by private individuals, is
complicated by public sentiment that noncommer-
cial private copying is acceptable.13

The software industry is concerned with unau-
thorized private copying and with commercial
piracy. But issues that arise in one segment of the

9For exmple, a -t fom ~nve~ by the Computer Science and Technology Board (CSTB) kgm with a ~mmt mat it w= not ~v~~
to challenge the legal framework for intellectual-property law, which “isn’t broken and doesn’t need fixing.” (Lewis Branscmnb, opening remarks,
“Intellectual Property Issues in Software: A Strategic Forum, ” CSTB, Nov. 31-Dee. 1, 1989.)

OTA NOTE: Based on discussions at the CSTB forum and comments received by OTA on a draft of this paper, the semantic dividing line between
“modifications’ and ‘free-tuning’ seems to be that the fwst might be interpreted to include statutory changes to copyright and paten~ or sui generis
forms of protection, while ‘free-tuning” would imply incremental judicial refinements through specific cases. Based on reviewer comments on a draft
of this paper, a substantial portion of the controversy over whether software’s fit in the current system is ‘neat’ or ‘comfortable” seems to be motivated
by concerns that any discussions of less-than-perfect fit are intended to support “modification” rather than “fine-tuning.”

1~~ for example: Dennis S. Karjala, “Copyright, Computer Software, and the New Rotectionism,” Jurirnetrics Journal, vol. 27, fall 1987, pp.
33-%; and Peter S. Menell, “An Analysis of the Scope of Copyright Protection for Application Programs, ” Sranjord Luw Review, vol. 41, 1989, pp.
1045-1104.

~lFor ex~ple, see Donald Chisum, “Patentability of Algorithms,” University of Pittsburgh I%W Review, vol. 47, summer 1986, pp. 959-1022.
Chisum argues against exclusion of “mathematical” algorithms from patentable subject matter (Gotrschalk v. Benson) and concludes that lack of
unambiguous patent protection for algorithms may ‘‘induce attempts to rely on other sources of law, such as copyright and trade secrets, that are
inherently less suited to the protection of new tedtnologicai ideas with widespread potential uses” (ibid., p. 1020).

l~onventio~ wi~om is mat Con-er res15tmce 1~ many ~ftw~ prod~s to stop copy -pm~ting qplication-software ~k~~.
13A 1985 OTA smey fo~d hat tie majority of re~ndents consi~~ it a~~le to ~ compu~r pmgr~s with friends in ord~ tO m~e COpiC9

fortheirown use. (U.S. Congress, Office of Technology Assessment, Intellectual Property Rights in an Age of Electronics andl~onnation, OTA-CIT-
302 (Melbourne, FL: Kreiger Publishing Co., April 1986), table H-1.)

Chapter Controversies Over Software Protection ● 13

software industry may not be as important in
another.14 Therefore, policy issues must be analyzed
normatively, taking different industry structures,
incentives, and economics into account.

Individual Software Creators and the
Software Industry

Creators of commercial software are concerned
about profitability. An important rationale for intel-
lectual-property protection for software is to give
commercial software developers adequate market
incentives to invest the time and resources needed to
produce and disseminate innovative products. Direct
revenue losses due to commercial piracy are not the
only concerns of developers. Developers want to
gain and maintain a competitive advantage in the
marketplace. One powerful source of market advan-
tage is lead time: the first company out with an
innovative computer program benefits from its head
start. Trends in software technology, like computer-
aided software development, are eroding lead-time
advantages. Another market advantage is user and/
or machine interfaces. Here, however, the industry’s
goals of expanding the market and a fro’s goal of
maintaining market share can be at odds (see below
and ch. 1, footnote 15).

There are several types of interface “compatibili-
ties”: hardware-to-user, software-to-user, hard-
ware-to-hardware, software-to-hardware, and soft-
ware-to-software (e.g., between an operating system
and application programs). Compatibility and
“openness” in interface standards are important to
the industry as a whole. There is a concern that too
much protection could raise barriers to entry for
small, entrepreneurial companies if large corpora-
tions with more financial and legal resources hold

key copyrights and patents. Another concern is that
“bottleneck” patents or broad interpretations of
copyright protection may block progress in the
industry as a whole.15

Software competitors, and the industry as a whole,
are concerned with shared access to state-of-the-art
knowledge and diffusion of information about pro-
grams and programming, so that programmers can
build on each others’ work, rather than reinvent the
wheel (or rewrite a matrix-multiplication subrou-
tine) for each new application.lb The pace of
innovation can be speeded up if competitors are able
to build on others’ advances. The “PC revolution”
was in large part driven by the desire to decentralize
control and knowledge of computing-to bring
powerful tools to the desktop of millions of users,
rather than have them cloistered in the hands of a few
computer specialists. Part of the “hacker ethic” and
practices that produced the innovative machines and
software that brought about this PC revolution were
based on principles of free access and use of
software and innovative techniques. Almost 15
years after the beginning of the “revolution,” the
“hacker ethic” is at odds with the need for income
from production of software which leads developers
to seek increased software protection.17

A major concern of most PC-software developers
is private copying of an entire program by one’s
current or prospective customers (e.g., making an
unauthorized copy of a spreadsheet program for a
friend). A major concern of most vendors is literal
copying of an entire program for sale by “pirate”
competitors. These concerns can be dealt with fairly
straightforwardly-at least in theory-by copyright
law; in practice, enforcement, especially over pri-

W%r example, commercial piracy is a great concern for PC-software developers; Eleventh-Amendment (States’ rights), private+mpying, and
software-rental issues are also very important to them. The sofiware-rental issues stem iimn developers’ co=ms that most rented software is rented
to copy, -than to “try before buying. ’ PC-software developers perceive theirweapons against unauthorized private copying and commercial piracy
to be education, moral suaaion (including “amnesties” for unauthorized users) and litigation. (Ken Waach, Software F%blishers Association, perscmal
C4XMlUUiCiltim Aug. 28, 1989.)

By contra% &velopem of hard-wired microcode (’”fmware”) are unlikely to womy about private individuals making copies at home, at least with
~~Y availabk technology.

1% need for at 1- some degree of compatibility for 4 ‘network’ technologies like SOftw are-whether through informal (de facto) industry
standds of formalized ones--i s an important consideration in making policy choices about desirable levels of protection and how these are achieved.
Some consider that extending copyright protection to user interfaces and the “look and feel” of programs might lead competitors to offer incompatible
but otherwise similar products (“locking in” users to particular product lines), rather than competing on price and performance features of an
industq-standard product. On the other hand, these types of protection could lead to competition in product design, producing major advances. (See
Joseph Fandl, “StmddmtI“ “on and Intellectual Roperty,” Jurimezrics Journul, vol. 30, No. 1, fall 1989, pp. 35-50.)

lqor e~~, it may be wasteful duplication of effort to have to create an entirely new user interface each time a progr~ is written.
17SCC StWUI hvy, Huc&ers: Heroes of the Compurer Revofusion (Garden City, NY: Anchor FrwJDoubleday, 1984). especi~ly ch. z.

14 •. Computer Software and Intellectual Property

vate copying or overseas piracy, is difficult.18

Copying software is easy and inexpensive. More-
over, private copying of software seems as “natu-
ral” as making home audiotapes or videotapes to
many individuals, and allows them to avoid expen-
sive purchases. Some individuals and businesses
engage in commercial piracy, making and selling
unauthorized copies of software.19

The legal status of some software-engineering
practices is not clear under copyright. Some practi-
tioners think that ‘clean room’ reverse-engineering
procedures might be acceptable practices under
copyright because a second program that is devel-
oped “independently” without access to the pro-
tected expression in a prior program does not
infringe the copyright of the previous one.20 This is
controversial, however, because clean-room prac-
tices vary.21 Some reverse-engineering steps like
de-compiling object code (or dis-assembling assem-
bly-language code) in order to analyze the program’s
functions generally involve making one or more
copies of the code as an intermediate step in the
process of creating a “new” one.22

Software Users

Millions of individuals and thousands of busi-
nesses rely on purchased software products for their
day-to-day activities and livelihood. They care about
the price, quality, functionality, ease of use, and
variety of software products available. Thus, they
care about the health of and level of competition in
the software industry. They also want “common
ground’ (compatibility) that allows them to use new

products with their existing hardware and software
Users care about having “reasonable” rights (e.g
being able to make a backup copy of an expensive
piece of software); some need the ability to modif
“packaged’ software in order to use it efficiently o
meet other specialized needs.

Most businesses and individuals who use soft
ware tools to create other products or services wan
a stable and predictable legal environment so the
know what uses are permitted and which are not, an
which must be licensed from developers. A 198
survey of nearly 200 management-information
system (MIS) executives showed that almost one
third reported that“look-and-feel” lawsuits will
cause them to shy away from software clones.2

legal uncertainties about patented computer proc
esses may have a similar effect, particularly because
patents ‘ “use” rights affect the buyer as well as the
developer.

The “software work force” who use and/or create
software as part of their jobs want to have transfera-
ble skills; thus they are concerned, sometimes only
indirectly, with standards for programming lan-
guages and external consistency of user interfaces.
(For example, learning a new word-processing
package is easier if it has commands and functions
similar to other packages one already knows.) But
users also want more powerful software with im-
proved functions. Sometimes consistent (“stan-
dard”) interfaces can conflict with ease of use and
improved functionality.x

18A tie of thumb in the software indus~ is that at least one unauthorized copy exists for every authorized sale Of a computer program. Some so*m
publkhers think the number of unauthorized copies is even higher-fkom 3 to 7 for every legitimate copy sold. (Estimate by the Software Publishers
Association cited in Peter H. Uwis, “Cracking Down on Sofiware pirates,” New York Times, July 9, 1989, p. F1O.)

l!?Fstim~. of lmws V- and ~w~ of los~s may & somewh~ eve- ~a~ it is n~ cl- hat each un~~oii~ COpy displaces a Sale. ~
Software Publishers Association (SPA) estimated that PC-software producers lost about $1 billion in sales to “piracy” (defined to include both copying
forpersortal useandcopying for commercial profit) in 1986. The bus Development Corp. estimates that over half ($160 million) of the potential sales
for its bus 1-2-3 package am lost every year. Micropro International estimated that it lost $177 million in potential sales for Wordstar in 1984, compared
to $67 million in actual revenues. (Industry estimates cited in Anne W. Branscomb, “Who Owns Creativity? Ropexty Rights in the Information Age,”
!l’echnofogy Review, vol. 91, No. 4, May/June 1988.)

2%= ~mas~e Ufivmity college of Law, Cater for~ st~y of Law, &ie~, ~d Tw&Ao@y (Mil~n R. WCSd, Director), “Thc ‘StruC@,
Sequence and Organization’ and ‘Imok and Feel’ Questions,” LaST Frontier Conference Report, June 1989, pp. 8-12.

ZIIn Om Vmion, a ~fiw=-~velqmat tem reds he ~~e code of a pm~~ ~d ~tes a dmcfiption of its f~ct.ions (i.e., extraCtS the i-
from the expression). The source code may have km obtained by reverse-compiling or reverse-assembling object code. The fnt team’s functional
description is passed to a second team, which designs a new program without “contamination” from the original code.

22The recent decision in fkmito Bours,)nc. v. Thunder Crujt Bours, Inc., 109 S. Ct. 971,9 U. S.P.Q. M (BNA) 1847 (1989) hm rtised con~ovew
over the Supreme Court’s likely view of reverse engineering of computer programs (seethe articles of D. C. Td, Arthur LAne, and Allen R. Grogan
in The Compurer Lawyer, vol. 6, No.7, July 1989, pp. 14-36). Sherman et al., op. cit., footnote 3, Sec. 210.8, question the validity of a “clean room”
defense to a claim of infringement.

~Mich~l ~ex~~r, “titicism Builds Over Impact of Look-and-Feel Litigation,”Compuferworid, vol. 23, No. 18, May 1, 1989, p. 14.
24s= Jo~~~@din, $ ~~ c= ~~tu= ~~WeCmsi~ency,’ co~~c~om of t& ACM, VO1. 32, No. 10, October 1989, pp. 1164-1173.

Chapter 4-Controversies Over Software Protection . 15

Academic Community

Academic research communities value free access
to and exchange of information. Academic software
and computer-science researchers and developers,
motivated by other than commercial potential (e.g.,
professional prestige, tenure, publication in schol-
arly journals), tend to view intellectual-property
protection somewhat differently than do commercial
developers. However, universities and their faculties
are increasingly interested in commercializing tech-
nology and obtaining revenue for use of their
intellectual property.

Many in the academic community are concerned
that what they see as “over-protection” (such as
copyright protection for “look and feel’ and patent-
ing of software processes and algorithms) might
hamper research and long-term growth in their
fields. Some believe that the artistic expression of a
user interface should be protected, but not the way
commands are invoked at the user interface. They
believe that forcing developers to contrive meaning-
less variations in interfaces solely to avoid legal
entanglements will hinder software research and
development. 25

Software is used by students and educators in all
disciplines. 2b Cost, quality, and variety are impor-
tant, and educational institutions face difficult prob-
lems in providing equitable student access to soft-
ware (e.g., 22,000 university students may each need
access to 500 dollars’ worth of software-how
should this be accomplished?) .27 This and other
issues like ethical software use in education, are the
focus of a joint project by the EDUCOM software

initiative (EDUCOM is a nonprofit consortium of
650 colleges and universities) and ADAPSO (the
computer software and services industry associa-
tion).% In contrast to major commercial software
packages, faculties in a number of disciplines
develop “small” software programs to help teach
students. The incentives to develop and use ‘small’
software differ significantly from those for commer-
cial software, as do the means of distribution (e.g.,
over academic computer networks).29

SOME PRIVATE EFFORTS
TO SORT THINGS OUT

In March 1989, several members of the legal and
software-development communities met at an MIT
Communications Forum session on software patent-
ing.30 The session focused on the PC-software
industry. Participants reviewed the history of soft-
ware development and patentability, and stated
different views about the merits of software patents
and their effects on innovation and creativity.

In February 1989, the Arizona State University
College of Law, Center for the Study of Law,
Science, and Technology convened a group of
conferees to identify areas of agreement in the legal
academic community concerning copyright princi-
ples for computer software.31 The conferees reached
consensus on several points:

. Courts will have to adapt traditional copyright
principles to a new and different technology .32

. The phrase “structure, sequence, and organiza-
tion” is unhelpful to describe expressive ele-
ments of programs. It does not distinguish

~Mex~~, op. cit., foomo~ 23. Grudin (op. cit., footnote 24) offers opposing views.

%%me students and educators may use ‘educational software’ programs, which are like books in that they convey information, albeit interactively.
They may use “professional” or “business” sofiware programs for graphics, numerical calculation (number-crunching), and word processing. They
may also use ‘discipline-specific” sofiware (often created with Federal funding) for research and problem-solving in fields like physics, mathematics,
biology, engineering, economics, geography, and architect.

~Dm Cartwri@t, Syracuse University, personal communication, Aug. 30, 1989.

2sSee for example, “Using Software: A Guide to the Ethical and Legal Use of Software for Members of the Academic Community,’ EDUCOM and
ADAPSO, 1987; and “can ‘Intellectual Property’ Be Rotected?” Change (spezial issue), May/June 1989.

%teven Gilbat EDUCOM, personal communication, Dec. 11, 1989.
%iassachusetts Institute of Technology Communications Forum, “Software Patents: A Horrible Mistake?’ (Cambridge, MA: Seminar notes, Mar.

23, 1989). The panel consisted of: Daniel Bricklin (Sofiware Garden, Inc.), Stephen D. Kahn (Weil, Gotshal & Manges), Lindsey Kiang (Digital
Equipment Corp.), Robert Merges (Boston University school of Law), Pamela Samuelson (University of Pittsburgh School of Law), R. Duff Thompson
(WordRrfect Corp.), Brian Ktthin (moderator), and Gail Kosloff (rapporteur),

31~T Fron@ co~~ Report, op. cit., foomote 20, The conferees were Donald S, Chisum (University of Washington), Rochelle Cooper
Dreyfuss (NYU), Paul Goldstein (Stanford), Robert A. Gotman (University of Rnnsylvania), Dennis S. Karjala (Arizona State University), Edmund
W. Kitch (Univesity of Virginia), Peter S. Menell (Georgetown University), Leo J. Raakind (University of Minnesota), Jerome H. Reichman (Vanderbilt
University), and Pamela SamuelSon (Emory University/University of Pittsburgh). Others from the academic and business communities attended parts
of the conference as presenters or observers.

%id., p. 2.

16 • Computer Software and Intellectual property

expressions from processes or procedures.
Moreover, computer programs are functional
works, thus technological constraints on using
them limits the scope of available protection.33

Courts have extended copyright protection
beyond the exact text of a work.34

Achieving compatibility between programs
that serve as software-to-software or hardware-
to-software interfaces is a legitimate goal for
software competitors.35

Some programdevelopment practices that ex-
tract logic and use it in developing another
program do not infringe copyright.36

Copyright law provides a mechanism for pro-
tecting user interfaces, but the protection
should be limited so that, for example, aspects

that optimize in a way that has no “viable
substitute” (i.e., are functionally optimal) are
not protected.37

In other important areas, consensus was not
reached: 3g

The extent to which copyright law protects
interface aspects that are not “functionally
optimal” (see last item above).
The extent to which human factors analysis can
be relied on to determine the scope of copyright
protection.
What the optimal level of software protection
is.
If a sui generis protection regime is desirable.

ssIbid, p. 6.
341bid

351bid, p, 7,
%id., pp. 8-11. Conferees believed that iimited Copyhlg f~ pWpOSeS of exti“on and study of a program’s unprotected elements (including

dittawxmbly or ckxxnpiling to get pseudo-source wde from object code) would fall within the terms of fair use.
3TIbid, pp. 12-17.
%id, pp. 2-17.

