Acknowledgments

OTA would like to thank the members of the advisory panel who commented on drafts of this report and the many individuals and organizations that supplied information for the study. In addition, OTA acknowledges the following individuals who reviewed drafts of this-report:

Ronald T. Acton

University of Alabama, Birmingham

Birmingham, AL

Dan Adams

Office of the Attorney General of Massachusetts

Boston, MA

Robert C. Allen

Medical University of South Carolina

Charleston, SC

Sue Anderson Chicago, IL

Jeffrey Ashton

Assistant State's Attorney

Orlando, FL

Bernard Auchter

National Institute of Justice

Washington, DC

John Ballantine

Office of the Medical Examiner, Suffolk County

Hauppauge, NY

Jan S. Bashinski California DNA Lab Berkeley, CA

Peter G. Beeson

Office of the Attorney General of New Hampshire

Concord, NH

Robert P. Bennett

Office of the Attorney General of North Dakota

Bismarck, ND

Robert A. Bever Genetic Design, Inc. Greensboro, NC

Paul R. Billings

New England Deaconess Hospital

Boston, MA

Edward T. Blake

Forensic Science Associates

Richmond, CA

Bruce Budowle

Federal Bureau of Investigation

Quantico, VA

Brian L. Burgess

Office of the Attorney General of Vermont

Montpelier, VT

Beverly J. Burke

Office of the Corporation Counsel of the

District of Columbia Washington, DC

John E. Burris

National Academy of Sciences

Washington, DC

R. Alta Charo

University of Wisconsin

Madison, WI

Byron Chatfield

Office of the Attorney General of Oregon

Salem, OR

James J. Coman

Office of the Attorney General of North Carolina

Raleigh, NC

Catherine T. Comey

Federal Bureau of Investigation

Quantico, VA

John P. Connor

Office of the Attorney General of Montana

Helena, MT

Edward L. Dance

Crime Laboratory, Kentucky State Police

Frankfort, KY

Steven D. Ebert

Office of the Attorney General of Wisconsin

Madison, WI

John Edward Farley

Office of the Attorney General of Rhode Island

Providence, RI

Paul B. Ferrara

Virginia Bureau of Forensic Science

Richmond, VA

Robert I. Field

Dilworth, Paxson, Kalish & Kauffman

Philadelphia, PA

Barry A.J. Fisher

Scientific Services Bureau, Los Angeles County

Sheriff's Office Los Angeles, CA

William Fitzgerald

Office of the Attorney General of Guam

Agana, GU

Theodore Friedmann

University of California, San Diego

La Jolla, CA

R.E. Gaensslen

University of New Haven

West Haven, CT

Daniel D. Gamer Cellmark Diagnostics Germantown, MD

Barry D. Gaudette

Central Forensic Laboratory, Royal Canadian Mounted Police

Ottawa, Ontario, Canada

Andrew Geiser Gaithersburg, MD

Paul L. Gimenez

Office of the Attorney General of the Virgin Islands

St. Thomas, VI

Jo Ann Given

Naval Investigative Services

Norfolk, VA

Richard Givens Attorney-at-Law New York NY

Dorothy Gordimer

Crime Laboratory, Union County Prosecutor's Office

Westfield, NJ

Lionel H. Grundy Home Office London, England

Laura Lee Hall

Office of Technology Assessment

Washington, DC

Dan Hanaway

Attorney General, Wisconsin

Madison, WI

Rockne P. Harmon

District Attorney's Office, Alameda County

Oakland, CA

Linda F. Harrison

School of Law, Georgia State University

Athens, GA

John W. Hicks

Federal Bureau of Investigation

Washington, DC

Theodore Holder

Office of the Attorney General of Arkansas

Little Rock, AR

Edward E. Hueske

Northern Regional Laboratory,

Arizona Department of Public Safety

Flagstaff, AZ

Robert Ianni

Office of the Attorney General of Michigan

Lansing, MI

Edward Imwinkelried

School of Law, University of California, Davis

Davis, CA

Dirk Janssen

Crime Laboratory, Wisconsin Department of Justice

Milwaukee, WI

Kathleen Jennings

Office of the Attorney General of Delaware

Wilmington, DE

Donald M. Johnson

National Crime Information Center

Washington, DC

Randolph N. Jonakait

New York Law School

New York NY

Roger Kahn

Crime Laboratory, Metro-Dade Police Department

Miami, FL

Michael Katzer

Office of the District Attorney, Albany County

Albany, NY

James J. Kearney

Federal Bureau of Investigation

Quantico, VA

Frank J. Kelley

Attorney General, Michigan

Lansing, MI

Margaret Kuo

Orange County Sheriff-Coroner's Crime Laboratory

Santa Ana, CA

Terry L. Laber

Minnesota Bureau of Criminal Apprehension

St. Paul, MN

Timothy D. Leathers

U.S. Department of Agriculture

Peoria, IL

John N. Linssen

Crime Laboratory, Wisconsin Department of Justice

Milwaukee, WI

Don MacClaren

Crime Laboratory, Washington State Patrol

Seattle, WA

Michael T. McDonnell

Automated Microbiology Systems, Inc.

San Diego, CA

Gary T. Marx

Massachusetts Institute of Technology

Cambridge, MA

Frederick R. Millar, Jr.

Office of the Attorney General of California

San Diego, CA

Keith L. Monson

Federal Bureau of Investigation

Quantico, VA

Laurence Mueller

University of California, Irvine

Irvine, CA

Peter J. Neufeld

New York, NY

Kenneth W. Nimmich

Federal Bureau of Investigation

Washington, DC

Kathleen Nolan

The Hastings Center

Briarcliff Manor, NY

Carla M. Noziglia

Crime Laboratory, Las Vegas Metro Police Department

Las Vegas, NV

Shannon Odelberg

University of Utah

Salt Lake City, UT

Linley E. Pearson

Attorney General, Indiana

Indianapolis, IN

Rickie L. Pearson

Office of the Attorney General of Kentucky

Frankfort, KY

Joseph L. Peterson

University of Illinois, Chicago

Chicago, IL

James M. Pollock

Crime Laboratory, Florida Department of

Law Enforcement

Jacksonville, FL

Warren Price, III

Attorney General, Hawaii

Honolulu, HI

Noreen F. Purcell

New Mexico State University

Las Cruces, NM

Christopher Pyle

Mount Holyoke College

South Hadley, MA

Carlos L. Rabren

Alabama Department of Forensic Sciences

Auburn, AL

Lisa J. Raines

Industrial Biotechnology Association

Washington, DC

Emmet A. Rathbun

Federal Bureau of Investigation

Washington, DC

Richard M. Rau

National Institute of Justice

Washington, DC

Dennis J. Reeder

National Institute of Standards and Technology

Gaithersburg, MD

Priscilla M. Regan

George Mason University

Fairfax, VA

Philip R. Reilly

Shriver Center for Mental Retardation

Waltham, MA

Rex E. Riis

Office of the Attorney General of South Dakota

Pierre, SD

Ira Robbins

Washington College of Law, American University

Washington, DC

Richard Roberts

Cold Spring Harbor Laboratory

Cold Spring Harbor, NY

Stanley D. Rose Perkin Elmer Cetus Emeryville, CA

Anthony Sarcione

Office of the Attorney General of Pennsylvania

Harrisburg, PA

George F. Sensabaugh University of California

Berkeley, CA

Donna-Marie Seyfried The Perkin-Elmer Corp.

Norwalk, CT

David T.Stafford University of Tennessee Memphis, TN ,

David A. Stoney

University of Illinois, Chicago

Chicago, IL

Richard L. Tanton

Palm Beach Sheriff's Crime Laboratory

West Palm Beach, FL

Enrico N. Togneri

Washoe County Sheriff's Crime Laboratory

Reno, NV

Richard E. Tontarski, Jr.

Bureau of Alcohol, Tobacco, and Firearms

Rockville, MD

George L. Trainor

E.I. du Pent de Nemours & Co.

Wilmington, DE

John K. Van de Kamp Attorney General, California

Sacramento, CA

Clifton VanderArk

Central Regional Crime Laboratory, Arizona Department of Public Safety

Phoenix, AZ

Victor Weedn

Armed Forces Institute of Pathology

Washington, DC

Steven Westheimer

Office of the Attorney General of New Mexico

Santa Fe, NM

Raymond L. White

Howard Hughes Medical Institute

Salt Lake City, UT

Jerry Williams

Office of the Attorney General of American Samoa

Pago Pago, AS

Luther S. Williams

National Science Foundation

Washington, DC

Jan Witkowski Banbury Center

Cold Spring Harbor, NY

Fred C. Wood

Office of Technology Assessment

Washington, DC

Harold Young

Office of the Attorney General of Iowa

Des Moines, IA

Marc Zimmerman University of Michigan

Ann Arbor, MI

Additionally, OTA gratefully acknowledges the assistance of two contractors who provided material for this assessment:

Eric S. Lander, The Whitehead Institute for Biomedical Research, Cambridge, MA, "Reliability and Validity of DNA Typing For Forensics," October 1989.

Susan Sanford, MedSciArtCo, Washington, DC.

Acronymns and Glossary

Acronyms

A —adenine

AABB —American Association of Blood Banks
—American Academy of Forensic Sciences
—Automated Fingerprint Identification Sys-

tem

APB —Advisory Policy Board (NCIC)

ASCLD —American Society of Crime Laboratory
Directors

ASHG —American Society of Human Genetics

ASHI —American Society of Histocompatibility and Immunogenetics

BJS —Bureau of Justice Statistics (DOJ)

c —cytosine

CACL — California Association of Criminalists

CACLD —California Association of Crime Laboratory Directors

CLIA —Clinical Laboratory Improvement Amendments of 1988

CTS —Collaborative Testing Services

DHHS —U.S. Department of Health and Human Services

DNA —deoxyribonucleic acid

Doc —U.S. Department of Commerce DOJ —U.S. Department of Justice

FBI —Federal Bureau of Investigation (DOJ)

FSA —Forensic Science Associates FSF —Forensic Science Foundation

FSRTC —Forensic Science Research and Training Center (FBI/DOJ)

G —guanine

HCFA —HealthCareFinance Administration (DHHS)

HGML —Human Gene Mapping Library HLA —human leukocyte antigen

ISFH —International Society for Forensic Haemogenetics

mtDNA --mitochondrial DNA

NCIC —National Crime Information Center

NIH —National Institutes of Health
NIJ —National Institute of Justice

NIST —National Institute of Standards and Technology (DOC)

NLETS —National Law Enforcement Telecommunications System

OMIM —On-Line Mendelian Inheritance in Man
OTA —Office of Technology Assessment

PCR —polymerase chain reaction PDB —Protein Data Bank

PIR —Protein Identification Resource

RFLP —restriction fragment length polymorphism

SSN —social security number

T —thymine

Triple I —Interstate Identification Index (NCIC)
TWGDAM-Technical Working Group on DNA Analysis Methods (FBI/DOJ)

VNTR —variable number of tandem repeats

Glossary of Terms

Allele: Alternative form of a genetic locus (e.g., at a locus for eye color there might be alleles resulting in blue or brown eyes); alleles are inherited separately from each parent.

Autoradiogram: An x-ray film image showing the position of radioactive substances. Sometimes called "Autocad."

Autoradiograph: See autoradiogram.

Autoradiography: A technique for identifying radioactively labelled molecules or fragments of molecules.

Autosome: Chromosome not involved in sex determination. In a complete set of human chromosomes, there are 44 autosomes (22 pairs).

Band shift: The phenomenon of DNA fragments in one lane of a gel migrating slower or faster than identical fragments in another lane. As visualized on an autoradiogram, the overall patterns would be the same, but out of register. Factors responsible for band shift include contaminants, salt concentration, and DNA concentration.

Base pair: Two complementary nucleotides (adenosine and thymidine or guanosine and cytidine) held together by weak bonds. Two strands of DNA are held together in the shape of a double helix by the bonds between base pairs.

Blot: See Southern blot.

Cell: The smallest component of life capable of independent reproduction and from which DNA is isolated for forensic analysis.

Chromosome: A threadlike structure that carries genetic information arranged in a linear sequence. In humans, it consists of a complex of nucleic acids and proteins.

Controls: Tests designed to demonstrate that a procedure worked correctly and performed in parallel with experimental samples. Controls yield certain expected results; when the observed results for the controls deviate from what is expected, then the results for the case samples cannot be considered reliable.

Deoxyribonucleic acid (DNA): The molecule that encodes genetic information. DNA is a double-stranded helix held together by weak bonds between base pairs of nucleotides.

DNA: See deoxyribonucleic acid.

DNA band: Referring to the visual image, e.g., on a autoradiogram or an ethidium bromide stained gel, that represents a particular DNA fragment.

- **DNA probe: Short segment** of DNA that is labeled with a radioactive or other chemical tag and then used to detect the presence of a particular DNA sequence through hybridization to its complementary sequence.
- DNA sequence: Order of nucleotide bases in DNA.
- Electrophoresis: Technique used to separate molecules such as DNA fragments or proteins. In forensic uses of DNA tests, electric current is passed through a gel, usually composed of a substance called agarose, and the fragments of DNA are separated by size. Smaller fragments will migrate farther than larger pieces.
- Enzyme: A protein that acts as a catalyst, speeding the fate at which a biochemical reaction proceeds, without being permanently altered or consumedly the reaction so that it can be used repeatedly.
- Gel: The semi-solid matrix used in electrophoresis to separate molecules. In forensic DNA analysis, the substance usually used is agarose, although acrylamide can also be used
- Gene: The fundamental unit of heredity; an ordered sequence of nucleotide base pairs to which a specific product or function can be assigned.
- Genome: All the genetic material in the chromosomes of a particular organism; its size is generally given as its total number of base pairs.
- Genotype: The genetic constitution of an organism, as distinguished from its physical appearance, or phenotype.
- Hardy-Weinberg equilibrium: In a large, random, intrabreeding population, not subjected to excessive selection, migration, or mutation, the gene and genotype frequencies will remain constant overtime, so that for most single-locus probe analyses, the likelihood of being a homozygote (one band) with genotype $a_i a_i$ will be (pl)2, where p_i is the frequency in the population of allele a_i . For heterozygotes with two bands, the chance that a person will have genotype a_i/a_2 will be $2p_i/2p_2$, where p_i and p_2 are the respective frequencies of how often bands a_i and a_i occur.
- Heterozygous: Having two different alleles at a particular locus. For most forensic DNA probes and individuals, if the person is heterozygous at the locus the probe detects, the autoradiogram displays two bands.
- HLA: See human leukocyte antigen.
- **Homozygous:** Having the same allele at a particular locus. For most forensic DNA probes and individuals, if the person is homozygous at the locus the probe detects, the autoradiogram displays a single band.
- Human leukocyte antigen (HLA): Located on the surface of most cells, except blood cells, these protein-sugar structures differ among individuals and are important for acceptance or rejection of tissue or organ grafts and transplants. The locus of one particular class of these antigens, HLA *DQx-1*, is useful for forensic analysis using PCR.

- **Hybridization: The process** of joining two **complementary strands** of DNA, or of DNA and RNA, together to form a double-stranded molecule.
- Junk DNA: Sequence of DNA for which no specific coding function has yet been assigned. Also called noncoding DNA.
- Linkage disequilibrium: The phenomenon of a specific allele of one locus being associated with an allele of another locus on the same chromosome with a frequency greater than expected by chance.
- Locus: A specific, physical position on a chromosome.
- Marker: A gene with a known location on a chromosome and a clear-cut phenotype that is used as a point of reference when mapping another locus; or, referring to DNA fragments of known base pair length run on gels from which the size of unknown DNA sample fragments can be determined.
- Mitochondria: Structures, or organelles, found within a cell that are responsible for generating the cell's (and hence organism's) energy. Mitochondria contain DNA molecules that are inherited only from an individual's mother. An individual and his or her siblings will share the same mitochondrial DNA pattern-the pattern of their mother (and other maternal relatives, including the maternal grandmother and maternal aunts and uncles).
- Multilocus probe: DNA probe that detects genetic variation at multiple sites in the genome. An autoradiogram of a multilocus probe application yields a complex, stripe-like pattern of 30 or more bands per individual. Compare *Single-locus probe*.
- **Nucleotide: The unit** of DNA consisting of one of four bases—adenine, guanine, cytosine, or thymine-attached to a phosphate-sugar group. The sugar group is deoxyribose in DNA. (In RNA, the sugar group is ribose and the base uracil substitutes for thymine.)
- Phenotype: The appearance of an individual or the observable properties of an organism that result from the interaction of genes and the environment.
- Polymerase chain reaction (PCR): An in vitro process, through which repeated cycling of the reaction reproduces a specific region of DNA, yielding millions of copies from the original.
- Polymorphism: The existence of more than one form of a genetic trait.
- Probe: In forensic applications, a short segment of DNA tagged with a reporter molecule, such as radioactive phosphorus (32P), used to detect the presence of that particular complementary DNA sequence.
- Protein: A biological molecule whose structure is determined by the sequence of nucleotides in DNA. Proteins are required for the structure, function, and regulation of cells, tissues, and organs in the body. Some traditional forensic genetic markers are proteins.
- Recombinant DNA technology: Processes used to form a DNA molecule through the union of different DNA

- molecules, but now commonly used to refer to any techniques that directly examine DNA.
- Replication: The synthesis of new DNA from existing DNA. PCR is an in vitro technology based on the principles of replication.
- Restriction endonuclease: An enzyme that has the ability to recognize a specific DNA sequence and cut it at that sequence.
- Restriction enzyme: See restriction endonuclease.
- Restriction fragment length polymorphism (RFLP): Variations in the size of DNA fragments produced by a restriction endonuclease at a polymorphic locus.
- RFLP analysis: DNA technique using single-locus or multilocus probes to detect variation in the DNA sequence by revealing size differences in DNA fragments produced by the action of a restriction enzyme. See restriction fragment length polymorphism.
- Serology: Scientific discipline concerned with the study of body fluids.
- Single-locus probe: DNA probe that detects genetic variation at only one site in the human genome. An autoradiogram using one single-locus probe usually displays one (homozygote) or two (heterozygote) bands. Compare *multilocus probe*.
- Southern blot: The nylon membrane to which DNA has adhered after the process of Southern blotting.
- Southern blotting: The technique for transferring DNA fragments separated by electrophoresis from the gel to

- a nylon membrane, to which DNA probes that detect specific fragments can then be applied.
- **Standardization:** In forensic uses of DNA tests, refers to a national system that uses a single restriction endonuclease with, in whole or part, certain designated DNA probes; critical to databanking considerations. Compare standards.
- Standards: Criteria established for quality control and quality assurance; or, known test reagents, such as molecular weight standards. Compare standardiza-
- Tandem repeats: Multiple copies of the identical (or nearly identical) DNA sequence arranged in direct succession at a particular site on a chromosome. See variable number of tandem repeats.
- Tag polymerase: DNA polymerase-the enzyme used to form double-stranded DNA from nucleotides and a single-stranded DNA template-isolated from the bacterium Thermus aquaticus, which normally lives in hot springs. Taq polymerase can withstand the high temperatures required in the repeating cycles of PCR.
- Variable number of tandem repeats (VNTR): Repeating units of a core DNA sequence, for which the core number varies between individuals, thus providing the basis for RFLP analysis. See tandem repeats.