
Appendix F

Case Study: The Software Industry

CONTENTS
Page

INTRODUCTION .
GLOBAL SOFTWARE MARKETS AND THE HEALTH OF THE U.S.

SOFTWRE INDUSTRY .
Software Supply and Demand .
Software Quality .
Foreign Competition .
International Software Protection and Trade Policies .
Hardware’s Impact .
R&D Investment .
CONVERGENCE/DIVERGENCE OF CIVILIAN AND MILITARY

SOFTWARE TECHNOLOGY .
Convergence of Civilian and Military Software Technology .
Divergence of Civilian and Military Software Technology .
Divergent Acquisition Procedures and Lifecycle Model .
Ada .
BARRIERS TO MILITARY ACCESS TO CIVILIAN SOFTWARE SECTOR

AND VICE VERSA .
Acquisition Regulations .
Data Rights . -------
Ada .
Military Hardware Requirements .

97

98
99

101
102
103
104
105

105
105
106
108
109

110
110
111
112
113

Appendix F

Case Study: The Software Industry

NOTE: This case study, along with those in Appendixes D and E, is presented in condensed
form in chapter 9 of the main report, Holding the Edge.

INTRODUCTION
The word “software” means different things to

different people. It encompasses everything from
operating systems to home video games, missile
guidance systems to database managers, file servers
to compilers and translators. A more rigorous
definition of software is: the combination of data
and computer instructions written in any of a variety
of languages used to instruct or enable computer
hardware to perform computational or control
functions. It includes computer programs, i.e., a
series of instructions or statements in a form
acceptable to a computer, designed to cause the
computer to execute an operation or operations.

The software industry has advanced rapidly since
it emerged in the early 1950s. At that time, computer
programs were written in binary machine code
specific to a particular mainframe computer. By
1955, assembly language, composed of abbreviated
symbolic codes, replaced binary code as the com-
puter instruction set. Soon after, the high-order
languages FORTRAN (FORmula Translation)
and COBOL (COmmon Business Oriented Lan-
guage) were introduced, providing programmers
with a more natural language interface to comput-
ers.1 Since the late 1950s the computer industry has
added a multiplicity of languages to the industry. By
1975, the Department of Defense alone used more
than 450 computer languages and derivations of
languages for its embedded systems.2

During this same period, advances in the hard-
ware industry increased the performance of comput-
ers by six orders of magnitude and reduced the cost
of computers by about the same amount.3 Improve-
ments in hardware have resulted in computer config-
urations ranging from personal computers (PCs) to
mini-, micro-, and mainframe computers. Each type
of computer is designed for a particular market and
a different scale of applications. The variety of
computers available at reasonable cost to the general
public has stimulated a market for all types o f
software—the demand for some of which the
software industry cannot currently meet.4

Increased demand, coupled with a global shortage
of trained computer programmers and an exponen-
tial rise in the cost of developing and maintaining
software, has created what some have called a
“software crisis.”5 But the crisis presents ample
opportunity to U.S. software fins, which have
dominated the world software market since its
inception, controlling 70 to 75 percent of the market
share. The number of U.S.-based software firms has
increased from 4,340 in 1982 to over 25,000 in 1987,
with a corresponding increase in revenue from
approximately $10 billion to $17.6 billion. The
increase in the number of software firms can be
explained in part by the introduction of the PC by
IBM in 1981 and the resultant increase in demand for
Software. 6

Increases in both demand and revenues from
software are expected to continue in the foreseeable
future, but there are factors that may adversely affect

1(J. S. Department of commerce, “A Competitive Assessment of ‘I%c U.S. Software Industry,” December 1984.
z~~~ ~omputm ~ pm of a lmrr (nonamputcr) ~~cm; a~omobile~ missdes, ~ microwave OVenS all rely on embedded computers for

their operation. Missile guidance systems are an example of embedded systems. Benjamin ElSon, “Software Update Aids Defense Program,” Awation
Week & Space Technology, Mar. 14, 1983, p. 209. See also: Jeremy Tennen baum, ‘The Military’s Computing Crisis: The Search For a Solution” (New
York, NY: Saiomon Brothers, Inc., Sept. 22, 1987), p. 3,

JFredticlc Brooks, Jr,, “NO Silver Bullet: Essence and Accidents of Software Engineering,” Co??QtUer, April 1987, PP. l@~9.
4jo~ Morocco, 1* Cofig L-p Shon in softw~,” Air Force Maguzuw, February 1987, p. 64; and U.S. mpartment of comme~e~ oP. cit., foomote

1, p. 7.
sDiet= ~~, Th G~o~lRace in ,U1croelec~oM~: ~wv=tion and co~or~ s~~gies in a Perbd of Crtiti (Frankfurt: C~pUS Verlag, 1983).
15u.s. ~~mt of Comme, op. cit., footnote 1; ad”~ gramming the Fumre,” Tk Economist, Jan. 30, 1988, pp. 3-18.

-97-

98 . Holding the Edge: Maintaining the Defense Technology Base, Volume 2
.

the prosperity and health of the U.S. software
industry in the world market. These include increas-
ing competition from foreign companies, R&D that
often focuses on short-term, application-specific
software projects, foreign barriers to U.S. exports,
inadequate intellectual property protection for U.S.
developed software, and the failure of software
technology to keep pace with advances in the
hardware industry.

The health of this industry is vital to the nation’s
defense technology base because it profoundly
affects DoD’s ability to acquire and operate com-
puter systems. In a very practical sense, software
runs DoD. It controls communications systems
among the Services, monitors force logistics, mod-
els scenarios of nuclear and conventional warfare,
controls missile guidance systems, maintains ac-
counting and payroll data provides office automa-
tion systems, and coordinates Command, Control,
Communications and Intelligence (C3I) operations.7

The Office of Technology Assessment (OTA) is
examining software as a dual use technology from
the perspective of its contribution to the United
States military. This case study examines the trans-
fer of software technologies between the civilian-
based and defense-related software industries, and
the ability of the DoD to acquire and use the best
available software technology.

This case study addresses three central questions.
First, what is the current status and relative health of
the United States software industry, both the de-
fense-based and civilian-based industry? Second,
what are the similarities and differences between the
two sectors? Third, what procedural, institutional,
technical or other barriers preclude the exchange of
software technology between the defense and civil-
ian sectors? Several policy options and problems

generated from these three questions conclude this
appendix.

GLOBAL SOFTWARE MARKETS
AND THE HEALTH OF THE U.S.

SOFTWARE INDUSTRY
Software is categorized in several ways-by its

end-use application, by the size or scale of applica-
tion, and by the degree to which it is customized.
Industry and economic analysts use a variety of
software classification schemes, and in some cases
fail to distinguish between software as a service and
as a product. It is therefore difficult to make
generalizations about the software industry’s nature,
health, and future. Despite the lack of consistent
economic data, the U.S. software industry clearly
appears to be strong and competitive, in both the
defense-based and civilian sectors.8

In 1981, U.S. software firms held 70 percent of the
$10.3 billion international market for all types of
software. In 1983, U.S. industry again controlled 70
percent of the world market, but the market had
increased to $18.5 billion, putting the U.S. share at
$13 billion.9 These figures are based on the interna-
tional market for packaged software, integrated
systems software, and custom-built software.10 In
1983, approximately 60 percent of U.S. revenues
came from packaged software, 25 percent from
custom software, and the remainder from integrated
systems software. In contrast, the other major
software producing nations, Japan, France and the
United Kingdom, receive most of their revenue from
custom-built software, followed by integrated sys-
tems-software designed primarily for their respec-
tive domestic markets.11

7softw~’s significance to the defense technology base should not be undemsbad : mcettt estimates show that DoD spends approximately $12
billion a year on its embdded software needs alone. l’bud software rests (including systems development and maintenance) are expected to ccmsume
10 percent of the total DoD budget by 1990. See Jeremy Tennenbaum, op. cit., foomote 2; Jonathan Jacky, ‘The Star WaIX Defense Won’t Compute,”
Atkmtichfonddy, June 1985, pp. 18-30; U.S. Congress, Office of Technology AssesamenL SD/: Technology, Survivabdisy, and Sofhvare, OTA-ISC-353
(Washington, DC: U.S. Govcrnm ent Printing Office, June 1988), p. 225; and National Rexarch Council, The Narionai Challenge in Computer Science
and Technology (Washington, DC: National Academy Press, 1988), p. 31.

Es= fw Cxmple, “N~o~ ~~my ~s w Computkg’s FULUR,” Science, vol. 241, Sept. 16, 1988, p. 1436; ~d U.S. ~~ent of co~er~~
op. cit., foomote 1.

W.S. Department of Commerw, op. cit., foomote 1, pp. 32-34. In contrast to rhe Department of Commerce’s figures, INPUT/ADAPSO repotted
that in 1982, U.S. f- had revcmtcsof $26.5 billion for the aggregate of: software products, data processing sewices, professional (consulting) sewiccs,
and turnkey systems; Sofrware: An Emerging industry (part 9 of the series, “Information Computer and Communication Policy”) (Paris: Organization
for Economic Co-opmm“on and Development, 1985), pp. 63-64.

10~~@~n is comm=l~ydeve]~ ~dbro~y mm~ted+ Int~t~ SyS@UM ~W~ is acomplcte system that is sold @ integrated
with a specific hardware architecture. Custom software is developed to meet a user’s specific needs.

1 IU.S. qm~ of Commerce, op. cit., foonote 1, p. 32.

Appendix F—Case Study: The Software Industry ● 99

By 1986, the U.S. share of the worldwide market
for packaged software alone, including applications
tools, generic solutions, and systems software, was
$17.6 billion.12 The worldwide market for packaged
software is forecast to grow at a compound annual
growth rate of 22 percent; and under this scenario,
U.S. firms would reach revenues of $47.35 billion by
1991. 13 Various software industry estimates high-
light the fact that no “hard” dollar figures are
available since 1986, but most experts believe that
regardless of the dollar amount, the United States
still dominates the entire software industry.14 The
discrepancies in these estimates, forecasts, and
reported revenues are partly attributable to an
economic slump in the sales of hardware after
forecasts were made, to variations in exchange rates,
and to the classifications and methods used to report
these figures.15 They indicate the need for accurate
measurement of the various types of software sold so
that better analysis of the industry can be made.l6

Although the U.S. software industry presently
dominates the world market-both technically and
economically-its continued superiority will de-
pend on a number of complex factors. First, the
industry faces a growing demand for all types of
software-packaged, integrated systems, and cus-
tom built. Second, international competition in the
industry is increasing as other nations-particularly
Japan, France, the United Kingdom, Korea, and
India—increase their software production capacity
and penetrate the global software market. Third,
U.S. software firms are increasingly forced to deal in
an unfavorable international market where trade
tariffs and national policies directly and indirectly
restrict U.S. software exports to many foreign
countries. And trade that does occur often fails to
provide adequate intellectual property protection.
Fourth, the gap between advances made in the

hardware industry and those of the software industry
continues to widen, making it difficult for the
technologies of both industries to complement one
another. Fifth, current software R&D activities
relating to state-of-the-art technologies are insuffi-
cient. Finally, as the world market continues to
grow, its composition will undoubtedly change, and
the demand for new types of software may outpace
that for current types, creating an advantage for
newly established foreign companies. Each of these
factors is addressed in a separate section below.

Software Supply and Demand

The ability of the U.S. industry to meet the overall
demand for software depends on the various types of
software that exist and current market trends associ-
ated with those types. Software is often categorized
as either custom-built or packaged software. Cus-
tom-built software is developed according to a user’s
specific or unique requirements. An example is
software developed to meet the requirements speci-
fied by a missile guidance system. Packaged soft-
ware17 consists of standardized software designed to
be marketed widely. Examples of packaged software
include operating systems, compilers, word process-
ing systems, and database management systems.
Prior to the existence of standardized operating
systems and high-order languages, custom-built
software dominated the U.S. software market. Since
these developments, and as the cost of software has
continued to increase relative to that of hardware,
packaged software has increasingly dominated sales
in the software market. Custom software accounted
for almost one third of U.S. revenues in 1981. By
1983, the custom segment had fallen to about one
fourth of total software sales with an annual growth
rate of 16 percent. During that same period, pack-
aged software sales grew at an annual rate of 40

12*4comW= ~~q R~ew & FOITX~, 1982.1991 ,“ Special ReporL International Data ~tion (IDC), WtobCr 1987. P. 109. ~is fi~
eXChl@ custom-built SOftWSfC.

131bid.
lq~fm~lm ~id~ a thc J~y 1988 Workshop on the Relationship Between Military & Civilian Software (hereinafter called OTA Software

Workshop) suggested that t.k U.S. controUed art estunated 80 to 90 pxcertt of the worldwide software mark~ for revenues of $30 billion, in 1988.
15_ding on tie ~ ~ ~m of ~ftw=, ~mu~~= ~ ~P~ ~~ SCv~ Stantid Ixtdu.st.riaJ Classification (SIC) codes and other

indusuy “de facto” classillcadons. For example, custom-built software is often accounted for in professional ~ccs, and integramd systems may be
included partially in hardware sales and semiccs For further information, see: Intcrmm‘onal Data Corporation, op. cit., foomote 12, pp. 108-109: and
U.S. Dcpartrrmtt of Commerce, op. cit., footnote 1, pp. 3, 10-11.

16s0-: ~A ~ftw= w~shop. Merncs of ~ indm~ ad accur~c cl~~lc~on of wh~ constitut~ SOftWWC ~ needed not OIl]y tO study
indusny trends, but to clarify how software is treated with respect to intellectual property protections, tax law% accounting procedures and product
liability laws. So@vare: An Emerging industry, op. cit., foomotc 9, p. 11.

17pa@~ SOftW= is alSO rcfcmed to as comrnercialaff-the-sheif (COTS) a Non-Dcvdopmcntal km (NDi) sofiw~.

100 ● Holding the Edge: Maintaining the Defense Technology Base, Volume 2

percent. This trend is expected to continue,18 and is
significant for the military which predominately
acquires custom-built software for its applications.19

Packaged software can be further classified as
systems software, including operating systems and
systems support software; applications tools, in-
cluding database managers, compilers, program
development tools and environments; and applica-
tions software, software designed for a specific
end-user problem, including generic banking, ac-
counting, and office automation programs. Each of
these segments of the packaged market is expected
to grow in the future. Systems software, which
currently makes up the largest share of revenues for
U.S. firms, is expected to increase at the slowest rate
and to decrease its market share. This reflects this
market’s symbiotic relation with the hardware in-
dustry. Systems software is typically developed for
a particular size computer or specific hardware
architecture, and recent fluctuations in the hardware
market-particularly for mainframe computers-
have negatively affected sales of these types of
software. 20

The ability to meet the growing demand for
software, and of the United States to maintain its

dominance of the softvare market, largely depends
on the supply of computer programmers and the
technology available to them. The United States
cannot meet the demand for ail types of software
with the present number of computer programmers.
This shortage is not limited to the United States.21 In
1985, the shortage of U.S. software professionals,
including programmers, software engineers, and
managers, was estimated at 50,000 to 100,000.
There are many indications that this gap will
continue to grow in the immediate future.22

The lack of qualified software developers maybe
part of a larger shortfall in trained science and
engineering professionals in the United States.
Beyond any doubt, there is a serious shortage of
rigorous software engineering programs at U.S.
colleges and universities. The poor performance of
American students in the sciences shows no immedi-
ate signs of reversal,23 and while the number of
students entering the computer science field seems
to be increasing, demand outpaces estimates of
future supply.24 Finally, while there are signs that
universities are adding more computer science and
engineering courses to their curricula, an increasing

‘sU-S. ~t of C--= w. cit- foomom L PP.17-22. ”
19-~~g~GAO, ~of 1983, betw~% and98 percent of all sofiwaredeveloped for U.S. Government agencies was custom built. So-: Uni:d

States General Accounting Office, “Federal Agencies Could Save Time and Money With Better Computer Software Alternatives,” GAO/AFMD-83-29,
May 20, 1983, p. 4. It seems likely that the DoD has propordonately as least as much custom software as other Federal agencies, based on the DoD’s
numerous embedded systems, uniqu systems and languages, and ~urity requirements. What has been acknowledged by many experta is that the DoD
is incteasingly using COTS software in its applications.

m~ternaticmal Data Copratim, op. cit., footnote 12, pp. 112-113. In 1986 systems software made up approximately 43 percent of the revenues
received by U.S. firms in the packaged wftwam market, applications tools made up 25 percent and applications software, 32 percent of that same
market. By 1991, these sham are estimated to be 39 perccn~ 28 perccnL and 33 Percznt XS~tiVd)f.

21_dy ~ ind- ~ons ~ a critical shorta~ of “softw~ ~ialists,” and most member nations of the Organization for Economic CO-
operadon and Ikvelopmcnt (OECD) identify this situation as the most impmtant policy issue the software industry faces. So@are: An Emerging
Itubtry, op. cit., footnote 9, pp. 131-137. See also: U.S. Department of commerce, op. cit., foomote 1, p. 72.

%stimatesthatthis shortfall will reach 1 million by 1990 in the U.S. alone am often cited, as are projections that demand for software professionals
will exceed supply by 40 percent. See for example: John Morrocco, op. cit., foomote 4, p. 6% Paul J. Meilvaine, “Software bgistics: A Sleeping Gian~”
Concepts, Autumn 198Z p. 157; Parker Hcxiges, ‘The New Maturity of Computer Science,” Datamatio n, ScpL 15, 1988, p. 40; Jeremy Tennenbaum,
op. ci~, foomote 2, p. 3; and S@ware: An Emerging Industry, op. cit., footnote 9, p. 131.

23s= f~ ex~ple, “Science ~hi~ ement in Schools Called Distressingly h,” Science, Sept. 30, 1988, p. 1751, which indicates that the poor
scientific understanding demonstrated by 9, 13, and 17 year4ts poses a serious threat to our national security. AIso: American Electronics Associatmn,
“Engineering & Technical Education Program,” Septexnbcr 1987.

l~e supply of computer programmers is estimated to grow at a rate of 4 percent annually (Jeremy Tennenbaum, op. ci[., foomote 2, p. 3), while
the demand for computer pmgrammexs will grow at 70 percent and demand for computer analysts will grow at 76 percent (Ed”torial Research Reports,
Sept. 9,1988, p, 446). see also: Parker Hodges, ‘The New Maturity of Computer Science,’’Datumtzo‘ w Sept. 15, 1988, pp. 37, 40; CMfkeofthe Under
Semtary of Defense for kquisition, Report of the ll~eme Science Board Tark Force on Military Soyhare, Washington, DC, September 1987, p. 38;
U.S. Congress, Office of Technology Assessment, Demographic Trends and the Scient@c and Engineering Work Forci+tl Technical Memorandum,
(Springfield, VA: National Technical Information Service, December 1985); and American Electronics Association, op. cit., footnote 23.

Appendix F—Case Study: The Software industry ● 101

percentage of students enrolling in these courses are
foreign nationals.25

Software Quality

While efforts are underway to increase the num-
ber of individuals entering the software industry
through improved education programs, these are
long-term investments with payoffs not expected in
the immediate future. Of more pressing concern is
the quality of individuals entering the software
engineering profession, and of those already in it.
The complexity of applications, and the variety of
hardware architectures that software is designed for,
require scientific and engineering skills beyond
those defined as computer programming.

Programming can be defined as the translation or
written representation of a system design to a form
interpretable by a computer. The actual translation
or coding of statements in a high-order language
requires minimum training to master. The difficulty
in developing software is in the formulation of that
design—the specification of data, data relationships,
mathematical formulas and functions-in a rigorous
and precise manner.26 This process requires the
software developer to conceptualize system com-
plexity, interfaces to other systems, and future
changes to the system. It is complicated by the fact
there are no methods readily available that accu-
rately represent the abstraction of all possible states
that software can assume. The written computer
program is a sequential translation that reflects only
one such state. Graphical representations, such as
flow charts or data flow diagrams, are similarly
unable to capture all possible states, so that in both

cases the design concept is retained only in the
developer’s mind.27

The difficulty in developing software is aggra-
vated by what many consider to be the focus of
computer science courses on software as a soft
science, synonymous with coding, rather than an
engineering science.28 As a result many new pro-
grammers are unskilled in large-scale systems devel-
opment and in the maintenance of such systems.29

They may have limited experience working as part
of a project team, but do not understand the
engineering and design principles necessary to build
real-world systems. Because the capabilities of
computer programmers and software engineers di-
rectly affect the productivity and health of the
industry as a whole, rigorous educational and
training programs are a critical factor in the health of
the software industry.

The software development process can be im-
proved through the use of formalized and automated
engineering techniques that support the iterative
building and testing of software prototype systems,
allow for the reuse of software components, and
accommodate the complexity of software systems.
Many software development methods and practices
used today are primitive when compared to sophisti-
cated software engineering techniques. It is not
uncommon to find programmers using practices 10
years behind today’s most advanced technology, due
to inertia and the incompatibility of existing systems
with these techniques. The result is that many
software tools and concepts commonly used lag far
behind those of the hardware which that software
controls. Software utilities and Computer Aided

102 . Holding the Edge: Maintaining the Defense Technology Base, Volume 2

Software Engineering (CASE) techniques that are
available are employed erratically in the industry.
These factors contribute to the impression that
software state-of-the-art is still art, not science.30

Appropriate and leading-edge technology is criti-
cal to the development of correct and maintainable
software. Current practices and conditions—the
failure to recognize software engineering as a
scientific discipline and the lack of trained software
engineers—am largely responsible for the growing
cost of maintaining operational software systems.
Maintenance, which encompasses the modification
of software both to correct errors and to incorporate
changes or enhancements, has become the major
cost in any software system. Maintenance costs
consume between 50 and 80 percent of all software
budgets. Present estimates indicate that in fiscal year
1990, DoD will spend 80 percent of its software
budget ($16 billion) on maintenance. Industry-wide
maintenance costs are estimated to exceed those for
development by a factor of 50.31 While no software
can be expected to be error free, the use of
engineering techniques, system prototypes, modular
system development, standard languages, and
CASE tools can minimize computer “bugs” and
improve productivity. Additionally, these practices
support the development of portable and upward
compatible systems that accommodate future en-
hancements and modifications.32

DoD has responded to the software crisis in two
ways. First, the Department mandated the use of a

standard language, Ada, which supports the use of
modem software engineering practices and which is
designed to replace the multiplicity of computer
languages used in the DoD for mission-critical
systems. Second, DoD has stated a preference for the
use of commercial-off-the-shelf software wherever
possible. 33

Foreign Competition

Today, approximately 40 percent of the packaged
software revenues earned by U.S. firms come from
outside the United States.34 This share is threatened
by the software industries of Japan, France, the
United Kingdom, Korea, India, Taiwan, and Sin-
gapore.35 Japan is the strongest competitor primarily
because of its strong hardware industry and propen-
sity to take advantage of standardized technologies
and develop marketable products from them.36 The
strength of the Japanese, and to some degree
Singapore, India, and Taiwan, is in their ability to
close large portions of the world market to the
United States and simultaneously penetrate the U.S.
market with systems software created with U. S.-
developed technology. The quality of these products
is equal to those of the U.S. firms, and can partly be
attributed to the facts that many foreign engineers
are trained in the United States and that a number of
U.S. firms have established development facilities
overseas. However, the quality of other types of
software developed in these nations, especially

Appendix F-Case Study: The Software Industry . 103

applications software, suffers in comparison to that
developed in the United States37

A comparison of the U.S. and Japanese industries
shows that, while the level of software technology in
both countries is similar, Japanese firms establish
more disciplined software engineering environ-
ments conducive to the development and use of
software tools. Japanese firms make greater invest-
ments in the area of basic technology and distribute
this capitalization within the entire firm, rather than
localizing it to a particular software project as is
typically done in the United States. Additionally, the
Japanese incorporate experiences and lessons
learned into their future projects.38 The Japanese are,
in fact, turning programming into an applied science
as demonstrated by “software factories” that reuse
approximately 30 percent of previously developed
software, have an error rate one-tenth that of their
U.S. counterparts, and have the potential to produce
lower cost and higher quality software.39 The result
of these efforts is programmer productivity figures
that greatly exceed those in the United States.
However, many experts note that at least part of the
discrepancy between Japanese and U.S. productivity
and error rates can be attributed to the fact that much
Japanese software production focuses on program-
ming from extant design. Further, these figures tend
to be balanced by more efficient project manage-
ment practices in the United States.40

The third major competitor in the worldwide
software market, France, receives a considerable
portion of its revenues outside its own borders. This
contrasts with Japan’s larger, but almost exclusively
domestic, market. As a result, France was second
only to the United States in worldwide software
sales in 1982. The strength of the French industry is
partly a result of national policy and partly the result
of its growing internal software needs.41

Competition from other foreign nations is partly
the result of industry standards. The development of

standards is seen as a mixed blessing in the software
industry. Although a lack of standards spawns
innovation and creativity, it can also create exces-
sive numbers of incompatible systems that inhibit
rapid development of the technology. It is generally
agreed that standards are needed and appropriate for
systems interfaces, computer languages and proto-
cols, and they are useful in codifying existing
practices. But this also makes it easier for foreign
vendors to compete effectively in the software
market by taking advantage of technology devel-
oped by others.

International Software Protection
and Trade Policies

As U.S. software firms exploit the world market,
they become increasingly subject to intellectual
property violations and infringements by foreign
vendors. U.S. intellectual property protections (cop-
yrights, trademarks, trade secrets, and proprietary
data) are currently insufficient to protect U.S.
interests in foreign nations where penalties for
intellectual property infringement are less than the
potential profits to be made from such infringement.
Foremost among the violators are lesser developed
and newly industrialized countries-Taiwan, Korea,
and Brazil-which have little to lose and much to
gain by not honoring U.S. regulations. Japan is also
cited frequently for violations. The International
Trade Commission surveyed over 400 U.S. firms in
1986, and estimated that U.S. computer hardware
and software firms lost $4.1 billion due to inadequa-
cies in intellectual property protection. This figure
includes loss of exports and domestic sales to
foreign infringing goods and counterfeit products,
unrecovered research costs, increased product liabil-
ity costs, reduced profit margins, damage to corpora-

104 ● Holding the Edge: Maintaining the Defense Technology Base, Volume 2

tion trademark or reputation, and lost employment
opportunities. 42

These losses translate into decreased incentive for
affected firms to invest in new technologies and
innovative research and development activities.43

Three conditions appear to encourage this situation.
First, the technology and resources required to
produce counterfeits or imitations of legitimate
software products are readily available and rela-
tively inexpensive. Second, consumers remain indif-
ferent to or unable to detect differences between
legitimate and infringing products. And third, the
cost of genuine innovation remains higher than that
of imitation. As long as these conditions prevail, the
problem of inadequate intellectual property protec-
tion for software will remain.44

Additional economic loss is attributed to restric-
tive trade policies that serve to foster native software
industries at the expense of U.S. firms. Import
quotas, discriminatoryt a x e s , l o c a l o w n e r s h i p r e -
quirements, embargoes, trade tariffs, and preferen-
tial treatment for locally produced goods are among
the common policies which discourage or preclude
U.S. firms from seeking business in many foreign
nations. These practices are most pronounced in
Brazil, India, Mexico, and Korea.45

Hardware’s Impact

A major portion of the software industry is
intimately related to the hardware industry. This is
particularly true for systems software and, more
recently, packaged software geared to the PC
market. Since the preponderance of computer manu-
facturers are U.S. based, this symbiotic relation has
traditionally benefited the U.S. software industry.

While efforts are underway to diminish this strong
tie to the hardware industry-for example, 0S/2,
UNIX, and MS-DOS-this relationship will remain
as long as the demand for integrated systems
software and software development environments
designed for particular hardware architectures con-
tinues. 46

The increasing complexity of software systems,
and the inability of software technologies to keep
pace with innovations in the hardware industry, is of
great concern.47 The gap between the hardware and
software industries can be seen in the exponential
rise in software costs relative to hardware costs, the
low productivity growth rates of programmers,48 the
increasing incompatibility of software systems, and
the high costs associated with integrating or retrofit-
ting existing software for new distributed architec-
tures.

The United States seems unable to take full
advantage of many of the advanced hardware and
software technologies it has developed, principally
because of its large embedded and heterogeneous
software base. The problem of technology insertion
is exacerbated by inadequate provisions in the
software for its maintenance or inevitable post-
delivery modification. Many existing military and
civilian software systems are old by software
state-of-the-art standards, but young with respect to
their life expectancy of 5 to 20 or more years. Their
longevity implies that the potential to use many
advanced or new technologies is limited to software
“maintenance” or modifications. Too often, such
changes are not considered in the design process—
functionality and data structures are not isolated and
there is no system modularity to accommodate

Appendix F-Case Study: The Software Industry . 105

change. As a result, maintenance becomes a costly
and time-consuming proposition. Finally, many new
technologies and methodologies are incompatible
with the computer language or dialect used in the
original software.” As a result of these factors and
the United States’ commitment to its software base,
the United States is it at a relative disadvantage to
those nations just entering the computer industry
that have little or no historical computer base.50

R&D Investment

The present software crisis indicates the need for
reinvestment and capitalization in the U.S. software
industry that fosters R&D and technological growth
and provides the capacity to exploit advances made
in the industry. It is estimated that Japan spends
approximately two-thirds of its R&D budget on
process innovation, while the United States spends
only one-third of its R&D monies on the same
activities .51

Currently, the U.S. Government funds several
software-related research efforts. The Software En-
gineering Institute (SEI) is a Federal Research
Center located at Carnegie-Mellon University. It is
responsible for numerous R&D projects relating to
software productivity, reuse, and education. The
objectives of DoD’s Software Technology for
Adaptable, Reliable Systems (STARS) include iden-
tifying possible technical solutions, methodologies,
and tools that can be used to build reliable and
cost-effective defense-based software. Without
continued commitment to these programs, and
further funding to support research and development
in the areas of software engineering, development
environments, distributed systems, and software
metrics that record these efforts, it is likely that

improvements in software productivity, cost, and
reliability will be realized and put into common
practice more slowly than necessary.52

CONVERGENCE/DIVERGENCE
OF CIVILIAN AND MILITARY

SOFTWARE TECHNOLOGY
The software industry is increasingly divided into

two groups, one dedicated to military interests and
another that supplies the commercial world.53 These
two sectors have always been present, and exchange
between the two was assumed to be the norm, not the
exception. But these groups seem increasingly to be
diverging, a trend that is contributing to a weakening
of the U.S. software technology base. As a major
consumer of software and software services, the
DoD has exerted, and will continue to exert, much
influence over developments in the industry. There-
fore, a strong software industry, one where the
technology and research base is not divided between
military and civilian environments, is in the interest
of both communities.54

Convergence of
Civilian and Military Software Technology

As in many other industries, the underlying
software technologies are highly similar in both the
military and civilian sectors, and divergence only
becomes noticeable in the detailed requirements for
specialized applications. Convergence between ci-
vilian and military software industries is most
noticeable in the small-scale applications and sys-
tems software areas. Both sectors use packaged/
COTS software for the majority of their small-scale
software applications. These include PC-based pro-

106 ● Holding the Edge: Maintaining the Defense Technology Base, Volume 2
— .

grams and office automation products. Packaged
systems software, such as operating systems, com-
pilers, and systems utilities, are used to the same
degree in both environments as well. The basic
requirements for these particular types of software
are similar in both sectors, and there is little need for
customization of these products. More importantly,
the availability and cost of these types of packaged
software products make them readily accessible and
attractive to both military and civilian users.55

Convergence in the industry’s two sectors is also
evident in their acceptance of CASE tools and
modem software engineering methodologies. Un-
fortunately, this convergence is not always at the
state of the art. Experts from both sectors of the
industry cite examples of the use of modern engi-
neering technologies that increase productivity and
performance; but they are quick to acknowledge that
at least as many software projects use little or no
advanced technology.56 The unpredictable and var-
ied use of modem software engineering techniques
and tools throughout the software lifecycle57 is not
localized by organization. Discrepancies are found
within the DoD Services and agencies, within
civilian firms, and within software projects of both
sectors. A probable explanation for the industry-
wide discrepancy is in the relative age of the system
being analyzed. New starts and recently developed
systems are more likely to exploit new technologies;
they will be implemented in high-order languages,
and modem engineering techniques will be brought
to bear in their design and development.58

Divergence of Civilian and Military
Software Technology

In general, the military and civilian software
industries have access to, and use, the same technol-
ogy. But they diverge in the ways they acquire
software and, in particular, at the point where they
sponsor large-scale applications that require cus-
tom-built software.

Similar applications for software are not limited
to the PC-based or systems software previously
mentioned. Analogous applications of large-scale
software systems can be found in both sectors as
well and include software developed for avionics,
telecommunications, and embedded systems. But
while the applications are similar, military and
civilian environments place different, sometimes
opposing, requirements on the software that controls
these systems.59 This is particularly true for large-
scale, mission-critical military applications.60

Different requirements, as well as differences in
scale, create two distinct software industries in the
large-scale applications area. The industry diver-
gence is illustrated in avionics systems software,
where military requirements for high performance
avionics are exchanged for high survivability and
safety in civilian avionics.61 The significance each
sector attaches to software requirements, and
whether they become rigid specifications or eco-
nomic trade-offs, partially explains why there is

Appendix F--Case Study: The Software Industry ● 107

little transfer of software between them at the
embedded and large-scale application levels.62

In contrast to civilian industry, military require-
ments for custom-built and embedded software tend
to be very rigid. Once documented and approved in
the design stage, the specified requirements govern
the subsequent development of the software, regard-
less of their criticality to the system. Any such
change typically requires a System Development
Notification and contract modification that delay
development. In addition to user-specified require-
ments, military software systems must address the
maintainability, survivability, security, availability,
reliability and interoperability63 aspects of soft-
ware.64 These requirements are usually specified in
absolute terms, not all of which maybe necessary for
a particular military system. But they are more easily
copied from previous software contracts than tai-
lored for the new system.65 The need for specific
performance and operational characteristics is evi-
dent in many DoD mission critical-systems. It is
necessary to require near-loo” percent reliability for
a missile guidance system and desirable to require
multi-level security in a networked defense commu-
nications system. But when these requirements are
unnecessarily transferred to other military systems,
the cost of development increases and the ability to
use analogous civilian applications or commercially
developed software decreases.66

Many of the requirements identified as unique to
military application—e. g., security, data encryp-
tion, interoperability, survivability, and reliability—
are appropriate in banking, insurance, commercial
flight control, and other civilian applications. Indeed
many of the characteristics implemented for military
purposes could be transferred to civilian applica-
tions.67 But while these requirements are desirable

and appropriate in civilian applications, their im-
plementation would be based on economic and risk
analysis. The bottom line in the civilian sector is
economic. If the cost of implementing a requirement
exceeds the expected return for that implementation,
then the requirement is, in most cases, deleted or
deferred. This analysis and design-to-cost approach
rarely occurs in military software acquisitions,
although similar accommodations will be more
likely in the future if the cost of military software
continues to escalate. In contrast to the civilian
methods, military software is designed to a set of
approved requirements that seeks to minimize cost
and risk; often these requirements fail to distinguish
between the user’s needs and wants.

The requirement for custom-built software exists
equally in both sectors, but custom-built software
appears to be used more often in DoD applications.
The General Accounting Office (GAO) reported in
1983 that 95 to 98 percent of applications software
used by the government was custom-built.68 There
are indications that the military is increasingly using
commercially developed software in its systems;
nevertheless, the majority of mission-critical and
embedded systems software is still custom-built.
One report estimates that “custom development will
exceed packaged software sales in the Federal
segment, in contrast to the mass market, where
COTS software products will exhibit more rapid
growth." 69 The trend to use more COTS products
acknowledges that the disadvantages of using com-
mercially available software- n o t r e c e i v i n g t h e
customized software to meet unique requirements—
are clearly outweighed by the direct and indirect
benefits of using such software. These include cost
savings, improved documentation and operational
support, and increased availability. As the relative

108 ● Holding the Edge: Maintaining the Defense Technology Base, Volume 2

cost of acquiring and developing custom software
continues to increase, so does the trend to use COTS
products. 70

An approach intermediate between COTS and
custom-built software is the customization of com-
mercially developed software or reuse of existing
software. As the technologies to support reuse
mature, one would expect both sectors to adopt this
practice and incorporate previously developed soft-
ware as components of larger, integrated systems .71
The degree to which reuse is accomplished by either
sector is not known, but it is an area of potential
convergence. Whether economic reality in the civil-
ian sector is likely to encourage this practice more
than Directives and mandates issued by DoD may
depend on the current DoD requirements and proce-
dures that discourage contractors from adopting this
practice. According to many experts, there are
currently few economic incentives, particularly in
“cost plus” contracts used by the DoD, for contrac-
tors to reuse existing software; building software is
perceived to be more profitable than reusing soft-
ware. 72

Divergent Acquisition Procedures and
Lifecycle Model

Much divergence between civilian and military
software is related to the acquisition process. It is
evident in the way in which software requirements
are specified, in the design and development of
software, and throughout the entire software life-
cycle. This divergence is magnified in the areas of
special applications and large-scale systems soft-
ware.

The analysis and writing of system requirements
based on a user’s needs is the most critical and

difficult aspect of developing software.73 Once
established and approved, requirements directly
influence the entire design and development of
software. It is therefore essential that software
requirements accurately reflect the needs of the user;
that they do not place impossible performance,
interoperability, or similar demands on the software;
and are not so rigid that they preclude inevitable
modifications to the software. The optimal way to
accomplish this crucial task is to develop software
requirements iteratively .74 Success ultimately de-
pends on having a flexible vehicle that allows for
iterative development, not only of requirements, but
of the entire software lifecycle.

The mechanism used by the military is DoD
Standard 2167A, which establishes the “require-
ments to be applied during the acquisition, develop-
ment, or support of software systems.” DoD-STD
2167A is designed to provide flexibility in the
software development process, and at the same time
provide the DoD with a mechanism to monitor that
process. 75 Its objectives have not been fully realized
because many government procurement officers still
follow the older “waterfall” lifecycle model of
software development exemplified in DoD-STD
2167. 76

The waterfall lifecycle identifies distinct stages
during the life of software that are associated with
requirements analysis and definition, system design,
system implementation or coding, systems testing,
and deployment (including maintenance). Based
largely on weapons acquisition, the military inter-
prets this model to describe a sequential software
development process, where each stage of develop-
ment naturally leads to the next. Each phase is
documented and is normally accompanied by a
government review. Once the system requirements

.

Appendix F—Case Study: The Software Industry ● 109

are specified and system design is complete, it is
assumed that the implementation can and will
automatically fall out from that design. In reality, the
software development process is evolutionary and
requires an iterative approach.77

While DoD-STD 2167A was designed in part to
correct the waterfall lifecycle bias currently used, it
continues to emphasize a document-driven, specify-
then-build approach to software development.78 The
procedures set forth by DoD-STD 2167A and
corresponding documents are designed to ensure
that DoD gets the highest-quality software at the best
price. But the system has not improved the quality or
timeliness, or decreased the cost, of military soft-
ware. Instead it remains a major part of the problem.
The military’s approach is based largely on compet-
itive procurements that necessitate establishing re-
quirements as early as possible in the lifecycle. The
process backfires, however, once bids are awarded;
many requirements turn out to be impractical,
beyond the scope of current technology, or simply
unneeded. The inevitable result is software that is
delivered late, at higher cost, and with less function-
ality than planned.

DoD-STD 2167A attempts to avoid the cascade
effect of this approach by allowing for all lifecycle
stages to occur iteratively. But the standard directly
or indirectly requires that developers comply with
numerous other DoD and Military Standards, Direc-
tives, and Data Item Descriptions at each major
development stage, milestone, or prior to a major
revision in order to provide government oversight of
the entire process.

79 These procedures perpetuate the
inflexibility and bureaucracy that DoD-STD 2167

originated. The acquisition process used by DoD
illustrates the government’s propensity to use proc-
ess specifications and standards that dictate how-to-
design and how-to-manage, rather than performance
specifications and standards that focus on desired
results.80 This approach contrasts with the civilian
sector’s tendency to negotiate for a final product and
design-to-cost, and precludes the use of innovative
or unproven techniques and methodologies by DoD
contractors .81

Ada

A more recent divergence in the two industries
relates to the military’s mandated use of a single
high-order language, Ada, in its mission-critical
software systems. DoD’s sponsorship for Ada began
in 1974 when the “software crisis” was acknowl-
edged to have potentially serious consequences for
the military’s ability to maintain and operate its
many computer systems.82 In 1983, Ada was ap-
proved as an American National Standards Institute
(ANSI) and Military (MIL-STD 1815A) standard.
By 1987, Ada was approved as an International
Standards Organization (1SO) standard.

The DoD Directive that Ada shall be the single
high-order language used in command and control,
intelligence, and weapons systems has no counter-
part in the commercial environment. With the
exception of civilian avionics systems, Ada is not
widely used in U.S. commercial applications. In-
stead, civilian-based software continues to be imple-
mented in the language thought best for that
application—whether it be COBOL, Assembly, a

n~e -fits of ~ ;~~n -ach and prototyping of systems developmen~ are descnhcd in: Frekick Brooks, Jr.. OP. cit.. footnote 3; offi~
of the under~ of Defense for Acquisition, op. cit., footnote 24, pp. 11, 33-35; U.S. Department of Commerce, National Bureau of Standards,
‘*Application Software Prototyping and Fourth Generation Languages,” NBS Speeial PuMication 500-148, May 1987; John Morrocco, op. cit., footnote
4; Mark Gerhardt, ‘The Language of Abstraction,” Aerospuce America, July 1988, pp. 32-34; and U.S. Congress, Offiu of Technology Assessment,
op. cit., foomote 28, The ill-effects of the waterfall Iifccycle and DoD-STD 2167 are addressed fhrther in the following section on barriers hetween the
military and civilian sectcm.

7~ff1u of ~ Unk ~~ of Defense for Acquisition, op. cit., foomote 24$ P. 33.
T~D-STD 2167A, op. cit-, foomote 75, see pp. 1+ 35-36.

-aldF_rh, ‘“Should the DoD Mandate a Standard SoftwaTC Devclopmcm Process,” Procadings of Joint Ada Confercnwon Ada Technology
and Washington Ada Symposium, March 1987, pp. 159-167.

sl&)~: OTA &)fiW(ifC Workshq.
mA 1983 memdm from the Under Secretary of Def- fof R~ h and Enginccringrecommm ended that Adabe the single high-order language

used in all DoD mission-critical computer wstems; but this rec ommendatkm was not implemented until 1987 in IhD Directive 3405.1, which states
that Ada shall be the *’single, commom computer programtm“ng language” used in command and control, intelligence, and weapons systems. Policy
regarding Ada is also provided in DoD Directive 3405.2, which mmdates the use of Ada in all weapons-related computef systems.

110 . Holding the Edge: Maintaining the Defense Technology Base, Volume 2

Fourth Generation Language,83 or any other com-
puter language.

84 As new DoD computer systems are
developed, the convergence of new software tech-
nologies and the ability to transfer software between
the two sectors will depend a great deal on several
factors: first the civilian sector’s acceptance of, and
demonstrated use of, Ada; second, DoD’s willing-
ness to grant waivers to its Ada mandate; and finally,
the military’s acceptance or ability to incorporate
commercially developed, non-Ada software in its
computer systems. The barriers potentially intro-
duced by Ada will be examined further in the
following section.

BARRIERS TO MILITARY ACCESS
TO CIVILIAN SOFTWARE

SECTOR AND VICE VERSA
Despite similarities in technologies available to

the civilian and military software sectors, it is
apparent that there is a growing divergence between
them. Such differences, primarily in their respective
acquisition strategies, obstruct the exchange of
software technologies and applications. This contin-
uing divergence not only damages the U.S. software
industry, but also erodes the defense technology
base. Previous studies, reports, and directives have
identified the importance of technological exchange
between the commercial-based and military-based
software industries, and the need for DoD to adopt
a more commercial-like acquisition process. But
these reports, prepared by the Defense Science
Board and others, have had little impact on the
systemic problems identified to date. The persistent
barriers to the transfer of technology, methodolo-
gies, and products between military and civilian
interests are identified below.

Acquisition Regulations

In 1987, a Defense Science Board Task Force
reported that the “major problems with military
software development are not technical problems,
but management problems.”85 This finding was
revised during a follow-up workshop to state that
while both technical and management problems are
evident in military software development, the latter
are more significant. These management problems
relate to the manner in which the DoD procures
software, and they represent the major barriers to the
exchange of software technology between civilian
and military sectors.

According to industry representatives, the princi-
pal barrier to exchange of software technology
between the civilian and military sectors is the
bureaucracy and administration o v e r h e a d a s s o c i a t e d
with DoD acquisition procedures. Requirements
regarding the procurement, design, and development
of DoD software are enumerated in DoD-STD
2167A, which provides “the basis for government
insight to a contractor’s software development,
testing, and evaluation efforts.”86 DoD-STD 2167A
does not profess to follow a particular software
lifecycle model and does not require a particular
software development methodology. Yet, as a re-
view mechanism, it unnecessarily burdens contrac-
tors with the many Standards, Directives, Data Item
Descriptions, and Federal Acquisition Regulations
that it directly or indirectly requires.87

DoD has defined eight major activities for soft-
ware development, each of which requires a formal
review or audit to be conducted or supported by the
contractor. Additionally, the contractor must docu-
ment his plan for completing all activities and DoD
must approve this plan before any development

gsFotuth-g eneration languages arc application-specific languages or program generator% not geaeral-purpose or high-order languages. l%cy include
database langwges, spreadsheets, natural query languages, and any language designed to be used in a limited problem domain. Office of the Under
Secretary of Defense fori+cquisition,op. cit., footnote 24, p. 18; see also: U.S. Depart.mentof Commerce, National Bumauof Smndards , op. cit., footnote
77.

MSom: OTA SofNVUC WOrkShOp, ‘I%crc arc exampks of civilian applications being designed andb developed in Ad& but most commemid f~s
have adopted a “wait and see” attitude regarding the language. By comparison, Europeanfms have elected to usc Ada in a variety of applications more
frequently than their Us. munurparts have.

WO- of * under !jec~ of Defense for Acquisiticm, op. cit., fOOtUOtc 24, p. 24.
~Dof).sTD 2167A, Feb. 29, 1988, pp. iii/k.

8T~id., pp. iii, iv, 3,4, 35, @ 36.

Appendix F—Case Study: The Software Industry . 111

efforts can begin.88 The entire process is designed to
guarantee that the government acquires the software
that best meets its needs, ensuring that government
funds are not misused or used for commercial
benefit. The results of DoD’s procurement strategy
are contractual obligations that force commercial
vendors to employ specialists fluent in the military
regulations, government reviews, documentation,
and accounting procedures required by the DoD.
These regulations, audit requirements, and associ-
ated legal issues have forced many DoD contractors
to establish autonomous divisions for conducting
business with the government. Finally, vendors need
a sufficient economic base to survive fluctuations in
the DoD contracting and budget cycle.89

As a consequence, few civilian firms regularly
contract with the DoD.90 It has been argued that the
limited base of contractors established to do busi-
ness with the government inhibits DoD’s ability to
acquire quality software. While seeking the same
quality software and the same assurance of a fair
deal, the civilian software sector has no such
regulatory mechanism. Performance, quality, and
operational requirements of civilian software appli-
cations are weighed against cost. The commercial
procurement process is designed to acquire the best
software at the best price. Commercial-based con-
tracts make no attempt to regulate or control the
management practices of the developer, focusing
instead on specification of the software functionality
required. The numerous reviews and procedures
required during the development of military soft-

ware conflict with such a commercial-based prac-
tice.

The acquisition procedures and contracting prac-
tices used by the DoD not only limit the number of
potential vendors, but discourage those contractors
already qualified by the military. Civilian firms who
contract with the DoD receive no guarantee of a
continued relation with the DoD, accept poor profit
margins, and often lose the rights in data to their
software. 91 Gov ernment contractors therefore have
little incentive to provide software that is innovative
or of superior quality. The mechanisms used by the
defense sector to select a software contractor in a
sellers’ market not only increase the chance that the
DoD will get mediocre software, but frustrate many
contractors from doing business with the military .92

Data Rights

The actual acquisition of software illustrates a
further barrier to the transfer of software between the
two sectors. Often, regardless of the software type,
government contractors lose most, if not all, of their
intellectual property rights to the software they
develop. 93 The government’s claim to unlimited
data rights is based on the notion that these rights
protect the government and will ensure public
dissemination of publicly sponsored research ef-
forts. In negotiating for unlimited rights in data for
its software, the government gains the ability to
maintain and modify its software systems in the
future. Perhaps more importantly, this practice is
intended to ensure the competitiveness of future

sa~id., p. 9. The eight major activities SE SYsteII’I J@ uirernents Analysis, Sohvare Req uirements Analysis, Preliminary Design, Detailed Design.
Coding and Couqmter Softvvare Unit Testing, Computer Software Component Integratirm and Testing, Computer Software Configuration Item Testing,
and System Integration and Testing. These activities may overlap and may be applied iteratively. It should be noted that 2167A was developed to
supercede DoD-STD 2167 and the waterfall lifecycle model it represented for software development. Yet the categorization of the development process
in 2167A does not differ significantly from that in DoD-STD 2167; what it does allow is for the iterative application of the design and review processes
in an attempt to accommodate a pmtotyping approach to systems developrmm

SYWICC of tie IJnd~ Secretary of Defcnx for Acquisitiuh op. cit.., foomote 24, p. 30. As an example, the time that elqses from q~~mmts
specification to letting a contracting to full deployment typically runs from 8- 14 years. By the time large defense systems software 1s deployed and
operational, the computer hardware is 5 to 12 years behind that avaiiabk on the market.

% Defense Science Board Task Force on Military Software reported in 1987 that tke were approximately 24 contractors regularly involved with
mission-criticaJ software development for the DoD. Mae recently, Intcrnati mud Resoume Development, Inc., identified over 50 fms able to contract
for large DoD software projects. In either case, these firms represent a minority of sofiware fms in the United States. See: Office of h Under secretary
of Defense for Acquisition, op. cit., foomote 24, pp. 29-32; and Adu Duru, International Resource Development, Inc., Fall 1988.

9! Off1U of tie uw SeCre~ of ~fcnse for Acquisition, op. ci~, footnote M PP. 29.

WTA Sofiware Workshop; also Office of the Under Secretary of Defense for Acquisition, op. cit., footnote 24, pp. 29-32.
93 The gov ernmem’s claim to sotiware rights in data are usually unlimited or restricted. The former allows the government to “use, duplicate,

disclose . . . software in whole or parL in any manner and for any purpose w hatsocver, and to have or permit others to do so.” For sofhvare developed
wholly with private funx the contractor can negotiate restricted data rights that give the government the right to modifi software and make backup
copies, but allow the developer to incorporate a typical licensing agreement with the government to protect his efforrs. See: Michael Gmnbergcx,
“Rights-In-DataPolicies Affecting Department of Dcfemse Acquisition of fbmput.ex Software and Related Products,” presentation for the Computer Law
Associatkm, Washington, DC, April 1988, pp. 4-6.

112 ● Holding the Edge: Maintaining the Defense Technology Base, Volume 2

software maintenance and follow-on contracts. But
according to many experts, in its efforts to foster fair
competition, the government appears unable to
compete effectively for its software. Further, many
government employees and government contractors
view the practice as onerous, burdensome, unneces-
sary, expensive and unfair.

Despite these acknowledgments and the flexibil-
ity allowed government contracting officers to
negotiate less than exclusive rights to data in
software acquisitions, the government usually in-
sists on full transfer of data rights. In the commercial
world, no company would demand exclusive rights
to proprietary information, and many are dismayed
by the government’s expectation of these rights.94

This practice clearly inhibits DoD’s access to
software developed by many civilian firms. The
Institute for Defense Analyses Rights In Data
Technical Working Group reported that because of
the government’s unlimited data rights demands,

. . . the government is failing to obtain the most
innovative and creative computer software technol-
ogy from its software suppliers. Thus the govern-
ment has been unable to take full advantage of the
significant American lead in software technology for
the upgrading of its mission critical computer
resources.95

The commercial sector typically protects proprie-
tary information through laws relating to trade
secrets. Contractual or licensing agreements govern
the disclosure or dissemination of the intellectual
content, or trade secrets, of software. Such licenses
provide developers with continued revenue as they
control the marketing of their product. In contrast,
DoD’s exercise of exclusive data rights does not
guarantee the developer continued income or a
further relationship with the government.. While the
most recent DoD directives and regulations cite the

ability and desire of the government to “negotiate”
the rights to intellectual property, several factors
have limited the practice or success of such negotia-
tions. First, many DoD contracting officers and
program managers intimate with the software con-
tract do not have the guidance, knowledge, or
experience necessary to request anything short of
exclusive data rights. Second, the government gen-
erally receives exclusive rights to software that has
been developed, either in part or wholly, with funds
from the government. Third, developers who negoti-
ate for restricted rights must meet government
regulations and contractual obligations in order to
Fully realize their rights.96

Ada

Some civilian software firms cite Ada as a barrier
to working for DoD. The directive stating that Ada
shall be the “single, common, computer program-
ming language"97 used in command and control,
intelligence, and weapons systems may dramatically
alleviate the military’s software crisis. But because
of Ada’s relative immaturity, the number of com-
mercial-oriented fires proficient in its use is limited.
The mandate to use Ada appears to further decrease
the already limited number of firms willing and able
to contract with DoD.

Some experts cite Ada as an example of the
government’s tendency to standardize too many
things too early. While the mandate to use Ada for
mission-critical applications was arguably prema-
ture in 1983, developments associated with Ada
weaken that argument.98 But many commercial
vendors, with the exception of those in the avionics
industry, still have a wait-and-see attitude about
Ada. While this is the prevalent strategy regarding
Ada, there are successful examples of commercial
Ada ventures, for example, in the development of

~fiid.; MM. G~~, T. Shu@ J. Edxtm@ ~d R. S~sfeld, “-g the B* BCtWCCJI GOvmmt d kktIY ~~fs ~ SofiW~
Acquisitions” (SEI-87-MR-9), Sofhmrc Engineering Institute, May 1987.

gs~t~e fm Wf= AIMIYSCS Rights III Data Technical Working Group, Draft FhMI RcporL NOV. 22.1983. s. 1-1.

%)TA Software Worksimp; also Mic&l Grccnbcrgcr, op. cit., foomotc 93; and M. Grunberger et al., op. cit-, footnote 94.
m~D Di~tivc ~. 1.
98~ fi~~ Ada mm- w= ~~ ~ a m~o~um ~m men Unk s~~ of mf~~, Mc* MLmcr. But at the the of DCLaUCr’S

muxtorandum, them was a scarcity of vaiida@ and more recently, pcrformancequality Ada compiks and development cnviromnents available in the
industry, This situation has recently chan@4 A& lnfonnution Clearinghome reports that the numba of Ada development projects increased from
35 in Auguat 1986 to 315 in September 1988. During the same period the number of validated Adacompiiers roae from 74 to 153, with an additional
65 compilers derived from fhcsc base cumpilem for similar hardware architectures. ‘W market for Ada compilers, tools, environments, and training is
-g ~ a ~PO~ ~u~ IPOti me of 35 m @ -t ~ ~o~d exe $750 million by 1990: see Jeremy Tcnncnbaum, op. cit., foomote 2.

 .

Appendix F—Case Study: The Software Industry ● 113

compilers, tools, and in banking and communica-
tions applications.w

The merits of a single, standardized language will
always be debated. In the case of Ada, the benefits
include its embodiment of engineering techniques
essential to the development of maintainable soft-
ware; its support for modular (and reusable) compo-
nents necessary in the development of large-scale,
integrated systems; and increased portability among
computer architectures. Additionally, because Ada
was standardized early and trademarked, there are
none of the incompatible dialects that have long
been a problem in the software industry.l00 These
characteristics may bridge some of the technological
differences between the civilian and military sectors.

Whether Ada becomes an area of convergence,
rather than a barrier, remains to be seen. Because the
DoD remains the single largest consumer of soft-
ware, and remains committed to the use of Ada, the
language is potentially a major factor in future
software technologies. Its potential, though, con-
trasts with the current situation where many military
mission-critical applications are required to be

implemented in Ada, while similar civilian applica-
tions will continue to be developed in the language
thought best for that application.

Military Hardware Requirements

Requirements for hardened computers often result
in the DoD buying specialized computers for some
embedded and mission-critical systems. Given the
close relation between hardware and software in
these systems, this situation limits the potential
number of vendors who can develop software for
these applications. It is particularly evident in the
Navy, which typically contracts for special-purpose,
non-commercial, hardware.101 These specialized
hardware requirements exacerbate the incompatibil-
ity that exists among many software systems with
similar applications. Barriers of incompatible inter-
faces, languages, operating systems, and protocols
created between militarized hardware and commer-
cial hardware architectures make it less likely that
any transfer can or will occur between the defense
and civilian software sectors.

~so~e: OTA sofiw~ workshop: also: John Burgess, “ ‘Universal’ Computer Language Finally Takes Hold at Pentagon,” Washington Posr, July
17, 1988, pp. HI, H5.

l~Ada w= O@MIly u~mkd to prevent the creation of “supcrsets” (extensions) and “subsets” of the language-al] in’IpkInentaUOnS of f-k
language must meet MIL-STD 1815A fully to be considered Ada. l%is, combined witb the req uirernent that all Ada compilers pass a validation
(conformance) procxss, helps ensure thal Ada is portable across computer architectures.

10I B- on &e Nay’s Next Generation Computer Resources Mgrm briefing to OTA.

