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ABSTRACT
EEG-based Brain-Computer-Interfaces are becoming available as
consumer-grade devices, used in applications from gaming to learn-
ing programs with neuro-feedback loops. While enabling attractive
applications, their proliferation introduces novel privacy concerns
and security threats. One such example are attacks in which adver-
saries compromise EEG-based BCI devices and analyze the user’s
brain activity in order to infer private information such as their
bank or area-of-living.

In this paper, we propose and analyze a more serious threat -
a subliminal attack in which, given that the visual probing lasts
for less than 13.3 milliseconds, the existence of any stimulus is
below ones cognitive perception. We show that even under such
limitation, the attacker can still analyze subliminal brain activity in
response to the rapid visual stimuli and consequently infer private
information about the user.

By running a proof-of-concept study with 27 participants, we
experimentally evaluate the feasibility of subliminal attacks using
EEG-based BCI devices. While not perfect, our results show that it
is indeed feasible for attackers to subliminally learn probabilistic
information about their victims.

1 INTRODUCTION
Brain-Computer Interface (BCI) devices are becoming increasingly
popular for use in applications such as entertainment, accessibility,
and cognitive enhancement [1]. A popular technology used in BCI
for recording brain activity is Electroencephalography (EEG), which
uses external scalp electrodes to capture fluctuations of the electrical
potentials in the brain. The Emotiv device [2] is an example of low-
cost commodity BCIs, intended for home usage with applications
written by third-party developers and are available for download
from application markets (see, e.g., [3]).
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Martinovic et al. [4] recently emphasized that BCI devices may
make the raw EEG signal available to potentially untrusted third-
party applications. If such an application is malicious, it can in turn
abuse the BCI device to infer private information about a victim,
such as her/his preferred bank or area-of-living. The general idea
of this attack is similar to a polygraph, where the interrogated
person’s physiological reactions are used to reason about his/her
knowledge.

However, a fundamental limitation of the attacks proposed by
Martinovic et al. is that they rely on supraliminal (consciously per-
ceived) stimuli and are thus detectable. Based on these observations,
we propose a subliminal attack that infers private information by
probing the victim at a level below his/her cognitive perception.
Similar to subliminal advertising (see, e.g., [5]), our key idea is to
show the visual stimuli within the screen content that the user
expects to see, but for a duration that is too short for conscious
perception (several milliseconds), yet still sufficient to result in
activation of certain parts of user’s brain detectable by an attacker.

This is a challenging task. If the stimuli are shown too promi-
nently, this increases the chance of the attack being detected. If, in
contrast, the attacker hides the stimuli too well, the user’s sublimi-
nal detection may not be sufficiently strong, reducing the proba-
bility of inferring relevant private information. Thus, the attacker
must operate within this narrow regime of the user’s input channel.

As the results of our experimental study with 27 participants
show, such subliminal attack on users of EEG-based BCI devices
are indeed feasible – attackers can make probabilistic inferences on
the users’ recognition of the person depicted in the visual stimuli
in a manner that is concealed from the user.

2 BACKGROUND AND RELATEDWORK
EEG-based BCI. Electroencephalography (EEG) monitors electri-
cal activity at the scalp that corresponds to changes in ion concen-
trations of neurons in a functioning brain. EEG is widely used in a
medical setting to monitor neurological diseases, such as epilepsy,
to diagnosing possible brain deaths of comatose patients, communi-
cate with patients who suffer from locked-in syndrome, or control
of wheelchairs for handicapped [6]. In neuroscience research, EEG
serves as a non-invasive, cost-effective method of measuring brain
activity.

As an example of potential applications, EEG devices have suc-
cessfully enabled users to spell letters using only EEG signals [7],
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as well as to successfully perform guilty-knowledge tests, despite
user’s active efforts to conceal knowledge of some form [8].
Subliminal stimulation.While the majority of sensory stimula-
tion that we are exposed to in everyday lives is sufficiently intensive
to be consciously perceived (supraliminal), in certain situations
a stimulus can also be made subliminal if its intensity is care-
fully controlled. For instance, if a visual stimuli is shown suffi-
ciently briefly, individuals might not be consciously aware of it,
but research has shown that subliminal stimuli measurably impact
one’s behavior, for instance by influencing the choice of consumer
brands [9].

Researchers agree on the existence of perceptual threshold, an
intensity that defines whether one will cognitively perceived a
stimulation or not, but determining specific values for any given
stimulus type is not straightforward. For instance, neuroscience
literature speaks of 10 ms to 55 ms as a suggested presentation time
range for a stimulus to be subliminal (a good overview of designing
experiments with subliminal stimuli can be found in [10]), but it is
also known that this duration not only varies significantly among
individuals, but also changes from day to day for the same individ-
ual. As a result, most definitions of perceptual threshold focus on
levels of stimulation that result in stimulus being undetected in a
certain percentage of times it was presented to a user.
Recognizing faces for authentication. The human ability to rec-
ognize and remember faces over extended periods of time has been
utilized as a method of authentication in which the user identifies
familiar faces within a grid of images [11]. The idea of Passfaces
was further extended by the use of commodity BCI devices [12].
Instead of manually choosing the correct faces out of a grid of
images, the authors used eye trackers and considered a 0.5 second
fixation on a face as a selection of it. Among other applications of
facial recognition, being deployed in various real-world scenarios,
Facebook requires one to identify their friends in tagged photos
for security verification [13]. Consequently, any information about
faces familiar to a user should be considered vulnerable private
information.
Subliminal face recognition. Existing neuroscientific work on
the subliminal perception of human faces shows that ERPs in re-
sponse to unpleasant facial expressions have a higher positive am-
plitude than pleasant expressions. Furthermore, this effect shows
even through very fast unmasked subliminal presentations of stim-
uli, at 1ms [14]. Although in our experiment several subjects had
noticed the stimuli, research shows that presentation times as short
as 1 ms could still reveal enough information in their EEG signal to
extract desired information about faces [15].

3 SYSTEM AND ADVERSARY MODEL
The system model consists of the user, the computer, and the BCI-
device. The user uses the BCI device with various applications from
the third-party developer platform, actively supporting setting up
the device and calibrating it.

The adversary is an application developer who’s goal is to obtain
private user information by exploiting a BCI-device’s API to access
the raw EEG signal recorded during use of a malicious application.
This could be any of the scenarios proposed in [4] such as guessing
the banking provider, PINs, or month of birth. As an example, a

Counting I Video I Counting II

2 min 15 min 2 min

S2 S1 S2 S1 S2 S2 S1 S2…

Figure 1: The experimental protocol is divided into 3 sub-experiments: Count-
ing I, Video I and Counting II. The embedded visual stimuli Sj are depicted
above the timeline.

repressive regime can try to identify which users are familiar with
some of the key persons of the underground opposition.

The adversary can, for instance, modify a benign game or video
viewer by inserting malicious code and inconspicuously upload the
application to an online marketplace. This allows him to collect
the EEG signal recorded while the user is exposed to the different
images displayed on the screen, and to deduce private information
under the assumption that e.g. the stimuli known to the user trigger
the strongest EEG response.

4 EXPERIMENTS
Due to many factors that can negatively affect the outcome, exper-
imentally investigating the feasibility of the proposed subliminal
side-channel is a challenging task. For instance, the equipment used
could be sub-optimal, the video used to hide the attack could have
many still images where it is hard to hide a stimulus, the secret that
is being attacked could be too complex, and so on. Therefore, our
experiment is designed to investigate whether the attack is indeed
feasible in a basic scenario, instead of starting off with sophisticated
variants. We thus make design decisions that minimize the chance
that the attack fails due to factors that we can control. For instance,
we use a good EEG device and a video with flickering artifacts that
helps hide the attack.

4.1 Test Population and Setup
After obtaining approval from the Institutional Review Board, 29
undergraduate and graduate students (21males and 8 females) in the
Computer Science department were recruited to participate in our
experiment, 2 of which had unusable data due to recording problems.
All subjects were self-screened for neurological disorders and metal
implants which could potentially interfere with recording. Prior to
the experiment, subjects were informed of the basic EEG procedures,
but not yet informed of the subliminal nature of the stimuli. The
participants signed informed consent and received compensation
in the form of a $40 gift card. The experiment took 90 minutes
total for each user, including setup time. This was the main limiting
factor for population size. ActiveTwo BioSemi equipment [16] was
used for the collection of EEG data. Participants were measured and
fitted with a tight cap, and 64 Ag/AgCl electrodes were attached to
the cap with conducting gel. All electrodes were then attached to a
low-noise DC coupled post-amplifier, with a sampling rate of 1024
Hz. All stimuli were presented in a dim room on a CRT monitor
(75Hz refresh rate) using presentation software [17].
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4.2 Experimental Protocol
After the setup described above, the participants were instructed to
remain relaxed for the entire duration of the experiments and . other
interaction with the participants was kept as short and concise as
possible. The experiment consisted of three parts: two repetitions
of the counting task, and watching the video, as shown in Figure 1.
Counting I and II. In a version of the standard task used to cali-
brate BCI devices, the participant was presented with a randomly
permuted sequence of numbers from 0 to 10. Each number except
1 appeared exactly 16 times. The digit 1 could appear anywhere
between 14-18 times, chosen uniformly at random. The participant
was asked to count the number of occurrences of the number 1.
Each stimulus lasted for 250 ms, and pauses between stimuli were
randomly chosen to be between 250 ms and 375 ms long. At the
end of this step of the experiment, the participants were asked for
their count to check for correctness. This part of the experiment
lasted for about 2 minutes. It was carried out in the beginning of
the experiment (Counting I) and at the end (Counting II).
Video I. In this phase, the participant was instructed to watch a 15
minute long black and white video extracted from Charlie Chaplin’s
"The Gold Rush" (1925). They were asked to pay attention to the
plot of the video to make sure they concentrated on watching the
video through its entire duration. Two kinds of stimuli (S1 and S2)
were used, one with a black and white portrait of Barack Obama
(S1) and the other being a blurred image of a human face (S2). We
choose these stimuli in order to make sure that every subject was
familiar with S1 and would not recognize S2. Given that the our
experiments were conducted at a US university at the time when
Barack Obama was the acting president, we can safely assume that
we know the correct answer for all participants.

A stimulus was shown every 5 seconds, making a total of 180
stimuli over 15 minutes. Every 4th stimulus was S1 and was dis-
played at the top right corner of the image frame. The position of
S2 rotated along the remaining three corners. Each stimulus was
shown for 13.3 ms. The limiting factor of this time was the screen
refresh rate (75Hz).
Recognition survey. As we are ultimately interested in under-
standing the feasibility of carrying out the attack subconsciously,
all participants were asked at the end of the experiment if they
noticed anything odd in the video. If they negated, no further ques-
tions were asked, otherwise they were asked for details of what
they saw. We categorize their answers as follows: participant rec-
ognized nothing, participant saw something, participant saw a face,
participant saw “Barack Obama".

5 DATA ANALYSIS
The raw data consists of wave signals from a number of differ-
ent electrodes. For preprocessing, we first divide the signal into
epochs, each epoch ranging from 200 ms prior to 1000 ms after
every stimulus onset. Each such epoch is associated with the re-
spective stimulus that triggers it. For each epoch, we then calculate
the mean of the first 200 ms to get a baseline and subtract this
baseline from the entire epoch. We reduce the high frequency noise
by passing the signals through a low pass filter with a pass band
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Figure 2: Aggregated levels of participants’ detection of the visual stimuli hid-
den in the video. While the stimulus did not remain hidden from all partic-
ipants, the stimulation was indeed subliminal, with only 7 participants able
to correctly detect the stimuli that was repeatedly shown throughout the du-
ration of the 20 minute long video.

of [0.35, 0.4] in normalized frequency units and applying a median
filter of size 4.
Classification. The goal of the attacker is to train a classifier which
identifies if the stimulus is relevant for the user. From a technical
perspective, we want to evaluate whether the classifier can extract
sufficient information from the recorded EEG signal in order to
determine one of the three different types of brain activity: 1) un-
known face, 2) a face that the user subliminally recognizes, or 3) a
plain video sequence without any subliminal stimulation.
Classification Setting. In our setting, each epoch is one obser-
vation. Each epoch corresponds to a single stimulus and contains
the signals from all the EEG channels for a time period of [sig-
nal - 200ms, signal + 1000 ms]. If C denotes the number of chan-
nels being used and f denotes the sampling frequency, we have
(1000 + 200)f = S measurements per channel per epoch. We group
the signals from all the channels for each epoch into a feature vector
of dimensionality K = C × S .

In the testing phase, the classifier is provided with a set of fresh
observations xi for which it must output label predictions yi. In
other words, the classifier must predict for each epoch, if the corre-
sponding stimulus shown to the participant is relevant or not.

We use the boosted logistic regression classifier (BLR) which con-
sists of a set ofM ∈ N individual classifiers fm withm ∈ {1, . . . ,M}

that all output individual classifier scores. In our analysis, we only
use those channels that are located along the z-axis, parietal, and oc-
cipital areas of the scalp, where P300 ERPs are usually the strongest.
In particular those channels are: ‘Fz’, ‘Cz’, ‘Pz’, ‘P3’, ‘P4’, ‘PO7’,
‘PO8’, ‘Oz’.

6 EVALUATION
In this section, we evaluate the feasibility of subliminally probing
for private user information by running several experiments, each
representing a different scenario that an attacker might attempt.

6.1 Stimulus Subliminality
As described in Section 2, the level of cognitive perception of a visual
stimulus depends on a number of factors which vary significantly
between scenarios, environments, and individuals. Given the fact
that the same stimulus is repeatedly shown to participants in our
experiment, we expect some of them to be able to detect it, even if
we shorten the stimulus duration in comparison to what is often
reported in relevant literature (10 ms to 55 ms).

The results of asking participants if anything seemed “strange”
while watching the video are given in Figure 2. The subjects are
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Figure 3: Detecting subliminal responses based on supraliminal training
(Numbers on Faces). For each user, the classifier outputs which type of stim-
ulus results in recognition, the three possible candidates being: Obama, Un-
known face, and randomperiods with no subliminal stimuli (Blank). Outputs
are correct for the majority (18 out of 27) of participants (Figure a), irrespec-
tive of their level of stimuli detection (Figure b), showing that such an attack
is indeed feasible.

divided into five different groups, representing the different recog-
nition levels of the users. As expected, the subliminality of the
stimulus varied for different users. While a total of 7 participants
were indeed able to recognize an image of Barack Obama, 5 users
did not notice anything unusual, while further 3 of them only “saw
something”. Despite being detected by a subset of users, our stimuli
remained completely hidden from some users. This supports the
hypothesis that private information could be subliminally probed
using EEG based BCI devices, especially if the attacker can adapt
to a specific victim by gradually increasing the stimulus duration
in order to ensure that it remains undetected.

6.2 Subliminal Probing
We now evaluate the attack that subliminally probes for user’s
private information.
Setup. During training, the classifier was provided with data from
Counting I. For testing, we extract all epochs triggered by hidden
images of Barack Obama, all epochs triggered by the unknown
face, and equally many epochs taken from random frames where
the video was not manipulated. We let the classifier output a score
for each epoch of this dataset. Recall that, based on the training
data used, this score outputs the classifier’s belief that the user has
‘counted’ the respective stimulus. Even though the user did not
actively count the target stimulus (she should not even realize that
it is on the screen), the classifier is searching for the same artifacts
in the EEG signal.

As in the counting experiment, the final output of the classifier
is the candidate stimulus that gets the highest average classifier
score. This time, there are three possible outcomes. Since we assume
that all participants recognize an image of Barack Obama, we can
compare the classifier output against this ground truth.
Results.We show the classifier output split by different levels of
user awareness in Figure 3. For 18 users the classifier outputs the
correct answer. For 5 users, BLR predicted ‘Unknown face’ and for
4 users BLR predicted ‘Blank’. From a machine learning perspec-
tive, it appears that the attack works, as the classifier is able to
distinguish a relevant stimulus from irrelevant stimuli. The reduc-
tion in guessing entropy is expectedly smaller than in previously
reported supraliminal attacks (and our baseline); however, it still
equals a high 20.84%. This is an important result, which shows that
attackers could indeed carefully design their visual stimuli such
that they remain subliminal, and still probabilistically reduce the
entropy of guessing relevant private information using EEG-based
BCI devices.

The attack works almost independently of the extent to which
the victims realize that the video has been manipulated and in each
recognition group, the classifier found the correct answer for the
majority of users.

7 CONCLUSION
This work examined the feasibility of subliminal attacks on users
of EEG-based brain-computer interfaces (BCIs). By running a series
of experiments with 27 subjects, we find that our attack is able to
detect brain responses to subliminal stimulation with accuracy that
is comparable to the results previously reported for supraliminal at-
tacks, even when the classifier is trained on a different type of brain
responses than the ones that are being probed for. Consequently,
by carefully designing the visual stimuli, an attacker can reduce the
entropy of guessing user’s private information by more than 20%,
while at the same time achieving that the victim remains unaware
of being probed.

As a first attempt to perform subliminal probing, our experi-
ments have been carried out in a controlled setting to demonstrate
their feasibility and exclude other factors that might impede success.
However, with the recent improvements of measurement perfor-
mance and the reduction of prices, the pervasiveness of EEG-based
BCI devices in our daily lives is likely to increase. Consequently,
this paper makes an important step towards raising the awareness
about the possibility of some of the attacks to even happen below
the level of victim’s conscious perception.
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