
Towards a Timely Causality Analysis
for Enterprise Security

Yushan Liu∗§, Mu Zhang†§¶, Ding Li‡¶, Kangkook Jee‡, Zhichun Li‡¶, Zhenyu Wu‡, Junghwan Rhee‡, Prateek Mittal∗¶
∗Princeton University, †Cornell University, ‡NEC Labs America

∗{yushan,pmittal}@princeton.edu, †mz496@cornell.edu, ‡ {dingli,kjee,zhichun,adamwu,rhee}@nec-labs.com

Abstract—The increasingly sophisticated Advanced Persistent
Threat (APT) attacks have become a serious challenge for enter-
prise IT security. Attack causality analysis, which tracks multi-hop
causal relationships between files and processes to diagnose attack
provenances and consequences, is the first step towards under-
standing APT attacks and taking appropriate responses. Since
attack causality analysis is a time-critical mission, it is essential
to design causality tracking systems that extract useful attack
information in a timely manner. However, prior work is limited
in serving this need. Existing approaches have largely focused on
pruning causal dependencies totally irrelevant to the attack, but
fail to differentiate and prioritize abnormal events from numerous
relevant, yet benign and complicated system operations, resulting
in long investigation time and slow responses.

To address this problem, we propose PRIOTRACKER, a back-
ward and forward causality tracker that automatically prioritizes
the investigation of abnormal causal dependencies in the tracking
process. Specifically, to assess the priority of a system event, we
consider its rareness and topological features in the causality
graph. To distinguish unusual operations from normal system
events, we quantify the rareness of each event by developing
a reference model which records common routine activities in
corporate computer systems. We implement PRIOTRACKER, in
20K lines of Java code, and a reference model builder in 10K lines
of Java code. We evaluate our tool by deploying both systems in
a real enterprise IT environment, where we collect 1TB of 2.5
billion OS events from 150 machines in one week. Experimental
results show that PRIOTRACKER can capture attack traces that
are missed by existing trackers and reduce the analysis time by
up to two orders of magnitude.

I. INTRODUCTION

The increasingly sophisticated Advanced Persistent Threat
(APT) attacks have become a serious challenge for enterprise
IT security. In the past decade, over 6000 severe incidents [1]
have been reported. Particularly, large enterprises, such as
Target [2] and HomeDepot [3], have been intentionally targeted

§This work was conducted when Yushan Liu was an intern at NEC Labs,
mentored by Mu Zhang, who was a Researcher at NEC.
¶ Mu Zhang, Ding Li, Zhichun Li and Prateek Mittal are corresponding

authors.

and suffered significant financial loss and reputational damage.
APT attacks are conducted in multiple stages, including initial
compromise, internal reconnaissance, lateral movement and
eventually mission completion.

An intrusion may be detected at any of the stages. However,
detection by itself only reveals unconnected attack traces.
Besides, a large portion of individual attack footprints are
seemingly insignificant and thus not suspicious enough to
raise alarms. Hence, to see the forest from the trees, sys-
tem administrators must carefully perform attack causality
analysis [4]–[11], in order to achieve a complete and sound
understanding of a detected attack. This is the very first step
towards a safe system recovery from cyber attacks. To do
so, administrators need to first discover how the adversary
gained access to the system, and then determine both exposed
and hidden damage inflicted on the system, such as infor-
mation leakage, compromised files and installed backdoors.
More concretely, to identify the sequence of steps in an APT
attack, prior work reconstructs multi-hop causal dependencies
between OS-level system objects including processes, files and
sockets. Starting from a detected event, system dependencies
are traced backward and forward in temporal order, so as to
eventually reveal the attack provenances and uncover all the
consequences, respectively.

Despite the fact that attack causality analysis is performed
in a post-mortem fashion, it is a considerably time-sensitive
mission due to two reasons. First, a compromised system re-
quires complete cleanup before returning to normal operation.
Before recovery, financial loss caused by decreased system
uptime can easily grow to millions of dollars [12]. A timely
causality analysis can accelerate the discovery of all attack
traces and reduce such recovery cost. Second, APT attacks are
performed in multiple stages. A detected point may not be the
very end of attack sequence and the intrusion could further
develop to cause more damage. A timely attack causality
analysis can help understand attack intentions and prevent
future damage.

As a result, we believe a practical security causality
analysis must take time limit into account and extract useful
attack information in a timely manner. Unfortunately, this has
been largely overlooked by the prior work. Previous efforts
have mainly focused on addressing the dependency explosion
problem [5], [6], [10], [11] via data reduction. Particularly, they
have attempted to eliminate irrelevant system dependencies
via either 1) heuristics-based pruning [4], [5] or 2) binary
instrumentation [6], [7] and taint analysis [8], [9]. However,
reducing the data volume of irrelevant dependencies does not

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23254
www.ndss-symposium.org

wget

x.x.x.x:80

tar

intellectual-
property.tar

scp

ssh

sshd

intellectual-
property.tar

sshd
sshd bash ftp y.y.y.y:21

sshd

dash

dash

env

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

dash

dash dash dash
uname uname uname

dash

dash dash
uname grep

dash

dash dash dash
grep date

dash
python2.7

bc cut
ldconfig

who

scp

dash

dash dash dash
find

dash

dpkg dpkg

dash
cat

dpkg

dash

dash dash

python3.4 cut date stat expr

dash

dash

dash dash dash
cat date

dash
stat

gawk
date

scp cp

dash

dash

known_hosts

info_strealer.sh

motd

Relevant yet
Normal Activities

Attack Traces

Fig. 1: Reduced Version of Forward Tracking Graph for the Attack Scenario. Rectangles represent processes; ovals denote files;
diamonds indicate sockets. Grey background represents one host, while white background denotes the other.

necessarily lead to a decrease in attack investigation time. Prior
studies still have to invest excessive time in analyzing relevant,
yet benign and complex OS events, which dominate the system
(see Figure 1 and Section II for an example). Essentially, this
is because they lack the capability of differentiating unusual
activities from common system operations. Therefore, they
have to treat all relevant dependencies, abnormal and normal,
equally and simply keep track of every causal relation.

To address this problem, we propose PRIOTRACKER, a
backward and forward causality tracker that automatically
prioritizes the search for abnormal causal dependencies in
the tracking process. We further formalize a time-constrained
causality analysis to be an optimization problem, which aims
to reveal the maximum number of anomalies within a certain
time limit.

To distinguish abnormal operations from normal system
events, we quantify the rareness of each event by developing
a reference model which records common routine activities in
corporate computer systems. To build such a model, we take
full advantage of the homogeneous IT environment in enter-
prises, and collect normal OS events from copious amounts
of peer systems. Consequently, we enable a “crowd-sourcing”
based method to distill outliers from regular behaviors.

We associate every event with a priority score and select
the event with the highest priority score in the process of track-
ing. The priority score of an event is computed based on its
rareness and other topological features in the causality graph.
We assign weights to these features, which are optimized using
the Hill Climbing algorithm to find the maximum number
of rare events before a given deadline. Note that although
rareness and other topological features are heuristically chosen,
their weights are formally assigned using machine learning
algorithm to reflect their effectiveness.

Priority-based methods have been widely used in secu-
rity analyses. Previous efforts have been made to expedite
static data-flow analysis [13], symbolic execution [14]–[16],

fuzzing [17] and digital forensics [18], [19] through measuring
the priority of either program-level constructs or user-level
physical entities. In contrast, we enable a priority-based anal-
ysis in a completely different domain, and therefore have to
address the unique challenge of quantifying priority in OS-
level dependency tracking. To the best of our knowledge,
we are the first to accelerate attack causality analysis via
identifying and prioritizing abnormal causal relations.

We implement PRIOTRACKER in 20K lines of Java code,
and a reference model builder in 10K lines of Java code.
Our experiments are performed on 54 Linux and 96 Windows
machines used daily by researchers, developers and adminis-
trators in an anonymous IT enterprise. Over ten months, we
use an audit log system to capture OS-level events from host
machines and store them in a database. We also record the
common system operations to build the reference model. We
evaluate our tool on 8 attack cases, which involve 2.5 billion
OS events spanning one week, and 75 points of interest, which
generate 429,900 sophisticated causal relations. Experimental
results show that PRIOTRACKER can capture attack traces that
are missed by existing trackers and can reduce the analysis
time by up to two orders of magnitude.

In summary, this paper makes the following contributions:

• We are the first to formalize timely attack causality
analysis and to introduce priority to attack graph
construction. We present PRIOTRACKER, an anomaly-
prioritized backward and forward causality tracker
which computes the priority score of a causal depen-
dency based on its rareness and topological charac-
teristics in the causality graph. We leverage the Hill
Climbing algorithm to optimize the feature weights in
the priority score.

• We create a reference model via observing the OS-
level activities from peer systems in homogeneous
enterprise hosts. Based upon this model, we propose

2

a “crowd-sourcing” based method to differentiate un-
usual behaviors from normal ones, and thus to assist
the computation of the priority score. Our reference
model is able to be customized based upon the sys-
tem events collected from any specific enterprise IT
environment.

• We have implemented PRIOTRACKER and a reference
model builder, and deployed them into a real-world
enterprise computer environment. We collect a dataset
that is orders of magnitude larger than the ones used
in previous work [9], [20]. Our experimental results
are promising, showing that PRIOTRACKER can find
attack related activities significantly faster than the
state-of-the-art technique.

II. OVERVIEW

In this section, we explain the notion of causality analysis
and forward tracking graph via a motivating attack scenario
example. Next, we introduce the problem statement, system
architecture and threat model.

A. Motivating Example: Forward Tracking the Impact of In-
sider Related Data Leaks

1) Attack Scenario: An employee worked at a com-
puter networking company which services a customer in the
semiconductor industry. In order to do business with the
semiconductor firm, the networking company had access to
the customer’s critical server which stored its most sensitive
intellectual property. When the networking company employee
got his new job in another semiconductor firm, he used his
remaining time at his old job to steal the sensitive data. To
do so, he downloaded a malicious BASH script to the data
server via HTTP, and executed the script in order to discover
and collect all the confidential documents on the server. Then,
he compressed the files into a single tarball, transferred the
tarball to a low-profile desktop computer via SSH, and finally
uploaded it to the file server via FTP under his control.
Note that similar attack scenarios have happened in the real-
life insider incidents of DuPont [21], Barclays [22], Ellery
Systems [23], etc.

2) Causality Analysis: The incident was eventually caught
manually by his colleagues in the new company, and thus
reported to the victim semiconductor firm. The corporate IT
administrators then started an investigation and discovered
the malicious script on the data server. Furthermore, to fully
recover from this attack, they also expected to locate and
destroy all the copies of leaked sensitive files, so that these
copies would not be accessed by any other unauthorized
personnel in the future. To this end, they leveraged attack
causality analysis [4], [5] to conduct causal dependency for-
ward tracking, which connects the OS-level objects (files,
processes and sockets) via system events in temporal order.

3) Forward Tracking Graph: Figure 1 demonstrates the
resulting dependency graph of forward tracking in this attack
case. In the dependency graph, each node represents a process,
file or network socket. An edge between two nodes indicates a
system event involving two objects (such as process creation,
file read or write, network access, etc.). Multiple edges are
chained together based on their temporal order.

Particularly, Figure 1 exposes all the subsequent system
events that are caused by the data exfiltration incident. The
graph begins with the network event where malicious script
info stealer.sh is downloaded by wget from x.x.x.x:80 to the
server machine. The script is then executed in dash, which
consequently locates sensitive files and triggers tar to compress
the discovered documents into one single file, intellectual-
property.tar. The tarball is further delivered to another Linux
desktop using the scp ssh sshd scp channel. Once
the file has reached the desktop system, a new copy is made
and eventually sent to remote cite y.y.y.y:21 through ftp.

In the meantime, the result graph also reveals that sshd
executes massive Linux commands through triggering a series
of run-parts programs. In fact, many of these Linux commands
are intended to update the environmental variables, such as
motd (i.e., message of the day), so as to create a custom
login interface. These are relevant activities that are caused
by scp operation but are relatively more common behaviors
compared to transferring a previously unseen file. However,
existing causality trackers cannot differentiate them from the
real attack activities. Thus, they may spend a huge amount of
time analyzing all the events introduced due to run-parts, even
before studying data breach through ftp. To our experience, this
could delay the critical attack investigation for a significant
long period of time, ranging from minutes to hours depend-
ing on different cases. Unfortunately, Verizon Data Breach
Report [24] discovered that nearly 90 percent of intrusions
saw data exfiltration just minutes after compromise. Thus, any
delay in incident response literally means more lost records,
revenue and company reputation.

In this case, the large causal graph is caused mostly by
intensive process creations. Process forking leads to a greater
amount of dependencies particularly in forward tracking than
in backtracking because one process only has one parent but
may have multiple children. However, it is noteworthy that,
the delay of attack inspection is a common problem for both
forward and backward dependency tracking. Excessive file or
network accesses can also take up a significant portion of
analysis time in both practices.

Also note that, the lack of analysis priority is orthogonal to
the data quantity problem which has been intensively studied
by prior data reduction efforts [6], [7], [25]. Even if the overall
data volume has been reduced, a security dependency analy-
sis, without distinguishing between common and uncommon
actions, can still be much delayed due to tracking the huge
amount of normal activities.

B. Problem Statement

To address this problem, we propose PRIOTRACKER,
which prioritizes the investigation of abnormal operations
based upon the differentiation between routine and unusual
events. Concretely speaking, we expect PRIOTRACKER to
meet the following requirements.

• Accuracy. Given sufficient analysis time, our causality
tracker must capture all the critical activities. It must
not miss system events caused by attacks.

• Time Effectiveness. Incident response is time crit-
ical and thus a practical attack investigation must

3

be subject to time constraints. Given limited analysis
time, our dependency tracking system must find the
maximum number of highly abnormal behaviors.

• Runtime Efficiency. The proposed prioritization tech-
nique must not introduce a significant amount of addi-
tional runtime overhead to the underlying dependency
tracking system.

Particularly, when analyzing the aforementioned attack
scenario, we hope PRIOTRACKER to directly reach the ftp
branch without touching the majority of run-parts branch in
advance, so that provided a temporal limit is applied to the
analysis, the real attack can still be revealed in time.

1) System Architecture.: To achieve these goals, we
design the architecture of our system, depicted in Figure 2.
PRIOTRACKER consists of three major components, i.e., a
priority-based causality tracker, a reference model builder and
a reference database. Our system is designed to be deployed
in a large-scale and homogeneous enterprise IT environment.
In this environment, OS-level events are collected from every
individual host and are pushed to a stream processing platform,
and are eventually stored into the event database.

We retrieve low-level system events from Linux and Win-
dows machines using kernel audit [26] and ETW kernel event
tracing [27], respectively. Specifically, we collect three types
of events: 1) file events, including file read, write and execute,
2) process events, such as process create and destroy, and
3) network events, including socket create, destroy, read and
write.

Our reference model builder subscribes to the stream in
order to count the occurrences of the same events over all
the hosts. The computed occurrences are then saved into our
key-value store -based reference database so that they can
be efficiently queried by causality tracker. Once an incident
happens, the triggering event is presented to our causality
tracker to start a dependency analysis. The causality tracker
will consequently search for related events from database. At
the same time, it also queries reference database in order to
compute the priority score for the events to be investigated. An
event bearing higher priority score will be analyzed first. In the
end, the causal dependencies are generated based upon event
relationships, and are presented as result graphs for further
human inspection.

2) Threat Model.: We follow the threat model of pre-
vious work [4]–[9], [28]. Particularly, we define the trusted
computing base (TCB) for causality analysis to be the kernel
mechanisms, the backend database that stores and manages
audit logs, and the causality tracker. With respect to our TCB,
we assume that audit logs collected from kernel space [26],
[27] are not tampered, since kernel is trusted. Kernel-level
attacks that deliberately compromise security auditing systems
are beyond the scope of this study.

We do consider that external attackers or insiders have full
knowledge of “normal” activities, so that they can intentionally
craft attacks with seemingly normal operations and may poison
our reference database using a burst of repeated malicious
activities.

Stream Processing Platform

Causality
Tracker

Event Database

Collecting OS-Level Events

Reference
Model Builder

PrioTracker

Incident Dependency Graph

Reference
Database

KV

Fig. 2: Architecture Overview of PRIOTRACKER.

III. TIME-CONSTRAINED ANOMALY
PRIORITIZED CAUSALITY TRACKING

In this section, we present the design details of time-
constrained anomaly prioritized causality tracking. First, we
give the basic algorithm of PRIOTRACKER. Next, we discuss
the features considered when computing the priority score of a
system event. Then, we introduce the Hill Climber algorithm
used for weight assignment in the priority score.

A. Basic Algorithm

In practice, attack investigation time is not unlimited. Our
PRIOTRACKER considers time as a key factor and aims to
track more abnormal behaviors with higher potential impact
with a certain time limit.

Tracking tasks start from a detection point, which usually
is an intrusion alert detected by the monitoring system. Al-
gorithm 1 illustrates our basic algorithm to perform a time-
constrained causality tracking. In general, we follow the prior
technique [4] to build the dependencies between OS-level
events. However, to enable timely security causality analysis,
we prioritize the dependency tracking of abnormal events, in
contrast to the previous work which blindly selects the next
event for processing.

More concretely, our dependency tracker internally main-
tains a priority queue PQ to hold all the events that wait for
processing. This queue is sorted in descending order based
on the priority scores of enclosed events, so that the event
with highest priority is always placed at the head and will
be processed first. Upon receiving a starting event se, our
tracker computes its priority score using function Priority()
and adds it into this queue. Then, PRIOTRACKER iteratively
processes each item until the queue becomes empty or the
given analysis time limit Tlimit is reached. In each iteration,
it fetches an event from the head of queue, adds this event to
the result graph G, and invokes COMPUTEDEPS() to compute
its causal dependencies based on temporal relationships [4].
COMPUTEDEPS() returns a set of events E for further analysis.
Then, we compute the priority score for each element in this
set before inserting them into the priority queue. In the end,
Algorithm 1 outputs the dependency graph G for forensic
analysis. Events that are not tracked within the time limit

4

Algorithm 1 Dependency Tracking Algorithm
1: procedure PRIOTRACK(se, Tlimit)
2: PQ← ∅
3: PQ.INSERT(se, Priority(se))
4: while !PQ.ISEMPTY() and Tanalysis < Tlimit do
5: e← PQ.DEQUEUE()
6: G← G ∪ e
7: E ← COMPUTEDEPS(e)
8: for ∀e′ ∈ E do
9: PQ.INSERT(e′, P riority(e′))

10: end for
11: end while
12: return G
13: end procedure

are not included in the resulting graph but are stored in the
database for further analysis.

PRIOTRACKER supports across-host tracking by perform-
ing IP channel event matching. For an IP channel event on host
A talking to host B, we search for its match on host B with
the reverse of the IP and port information, which are, within
some tolerance, occurring at the same time.

B. Priority Score

1) Important Factors: We consider three factors to be
important when determining the priority of system events to
be processed.

• Rareness of Events. In general, attack behaviors and
malware activities are deviated from massive normal
operations. Particularly, APT incidents often enable
zero-day attacks, which by nature have never been
observed in regular systems. As a result, special at-
tention needs to be paid to rarer events compared to
routine activities.

• Fanout. As illustrated in our motivating example,
routine system operations can be performed in a batch,
which consists of multiple sub-operations. Besides,
regular system activities (e.g., creating or accessing
numerous temporary files) may happen periodically
over time. This in turn generates events with very high
fanout in a dependency graph (up to tens of thou-
sands), which does not contribute to attack forensics.
In addition, analysis of causalities with high fanout
can be very time-consuming and therefore may delay
or even disable timely investigation of other attack
traces. Essentially, there exists a trade-off between
time effectiveness and analysis coverage, where a
balance needs to be struck.

• Dataflow Termination. To invade an enterprise sys-
tem, attackers have to first exert an external influence
on internal system objects (e.g., malware dropping,
malicious input to vulnerable network services, etc.)
to persist; then, they can further use the compromised
persistent objects (e.g., malicious executables, victim
long-running services) to cause impact on other parts
of the system. Consequently, a file without being
written in the past is less critical for backtracking
intrusions; a file the has never been read or executed so

far is less interesting for tracking attack consequences
forward. The former one is introduced by prior work
as the “read-only” pruning heuristic [4] in backtracker.
The latter case, however, cannot be completely ignored
because a currently “write-only” file may still be
accessed at a future point.

Hence, to generate the priority score for each event, we
need to first compute the scores for edge rareness, fanout and
dataflow termination, respectively.

2) Rareness Score: First, we define the rareness score of
an event rs(e) base upon our reference model:

rs(e) =

{
1, if e has not been observed by reference model

1
ref(e) , otherwise

ref(e) is the reference score of event e, which is computed
by reference model according to the historical occurrence of e.
We elaborate the computation of reference score in Section IV.

3) Fanout Score: Second, we formalize the fanout score
of an event fs(e) to be the reciprocal of its fanout: fs(e) =

1
fanout(e) . An event with higher fanout score will be examined
first. Note that when we compute fanout, we do not consider
outgoing socket edges whose destinations are external net-
works or specific internal servers (e.g., DNS), which are not
under our monitoring and thus will not be further tracked in
the first place.

We prefer edges with low fanout due to the consideration of
both security and efficiency. Analyzing causal relations with
huge fanout is often very slow because dependencies grow
exponentially. Thus, putting them first may lose the chance to
explore other system dependencies which could also be caused
by attacks. In contrast, analysis of causalities with lower fanout
is comparatively simpler and costs much less time to complete.
Even if, in the worst-case scenario, fast-tracking an event with
low fanout does not reveal any attack traces, it only introduce
a small amount of delay to the examination of other complex
causalities.

We admit, as a potential evasion technique, an attacker may
attempt to leverage system causality with high fanout to hide
their attack footprints, in order to delay our analysis. However,
it is worth noting that, though we deprioritize paths with high
fanout, we do not prune off them as prior work [4] does. If
an attack is indeed buried in branches bearing high fanout,
given enough time and computation resources, our tracker
can eventually reach that point. Besides, an attack cannot be
launched solely using complex dependencies with high fanout,
while the other portion of attack-related causalities can still be
discovered by our approach from numerous normal edges in a
faster fashion. Since the entire attack footprints are logically
connected, any uncovered portion can help human experts find
the remaining ones. On the contrary, without prioritization,
processing benign dependencies with huge fanout can exces-
sively consume computing resources. Consequently, none of
attack traces can be reached before analysis deadline, and
therefore the entire attack is missed.

4) Dataflow Termination: Terminated dataflow is a spe-
cial case, where fanout equals zero. Therefore, we complete

5

our definition of fanout score by also checking whether an
event has further impacts:

fs(e) =


0, if e reaches a read-only file in backtracking
σ, if e reaches a write-only file in forward tracking

1
fanout(e) , otherwise

Hence, if backward dataflow is terminated due to read-only
files, we deprioritize the analyses of associated events via
assigning 0 to the score. However, when forward dataflow
ends with “write-only” files, we do not completely rule out the
possibility that these files will later be accessed. Therefore, we
instead give them a lower but non-zero score σ. Empirically,
we set σ to be 0.3.

5) Priority Score: The priority score of each event can be
derived from the composition of these factors.

Definition 1. The Priority Score of a system event,
Priority(e), is the weighted sum of rareness score rs(e) and
fanout score fs(e):

Priority(e) = α× rs(e) + β × fs(e) (1)

, where α and β are the weights that need to be determined.
An event with higher priority score will be investigated first.

C. Weight Assignment

The next step is to give a proper weight to each pa-
rameter of the priority function. Ideally, when weights are
correctly assigned, we expect our dependency tracker to find
the maximum amount of attack traces within a finite time
bound. Nevertheless, it is very hard, if not impossible, to
measure the relatedness between a single event between two
OS-level objects and an attack, especially before the attack is
completely known. This is by nature due to the diversity and
randomness of cyber crimes committed by human attackers,
and by itself can be a challenging research problem. Therefore,
to date, expert knowledge has to be kept in the loop to evaluate
automatically generated security causality graphs and to draw
a decisive conclusion.

To address this problem, we instead use rareness as a
metric to approximate the connection between a causal re-
lation and unknown attacks. As a result, our goal of weight
assignment is to enable our tracker to uncover as many unusual
events as possible within a certain time limit. Admittedly, an
adversarial could utilize many normal system operations when
launching an attack, and therefore the overall amount of rare
events does not necessarily indicate the presence of attacks.
However, at certain points of a stealthy crime, an attacker has
to perform some harmful and thus abnormal operations, such
as data exfiltration or system tampering, in order to serve the
purpose. Then, a discovery of more unusual activities may
increase the chance of capturing real attack footprints.

To achieve the discovery of the maximum number of
unusual events, we need to strike a balance among the afore-
mentioned factors. On one hand, at every step of dependency
tracking, we always expect to choose a rare and impactful event
over a common or uninteresting one. On the other hand, we
also hope to quickly explore the entire search space, and find
the direction that leads to more rare activities. Essentially, this
is a global optimization problem, which we define as follows:

Definition 2. The Weight Assignment is an optimization
problem to maximize the result of an objective function for a
given set of starting events E:

max f(E, (α, β)) =∑
e∈E

EdgeCountθ(PrioTrack(α,β)(e, Tlimit))

s.t. 0 ≤ α ≤ 1, α+ β = 1

(2)

, where α and β are the weight parameters for rareness, fanout
and dataflow scores respectively. These scores are further used
to derive the priority score in dependency tracking PrioTrack.
EdgeCount function counts the number graph edges whose
rareness score is greater than a given threshold θ. Empirically,
we set θ to be 0.1 and set time limit Tlimit to be 60
minutes. Note that these values can be customized for specific
environments and security requirements.

We then utilize the Hill Climbing [29] algorithm to achieve
the optimization of Equation 3. This algorithm can gradually
improve the quality of weight selection via feedback based
method. We have implemented such a feedback loop, which
takes a set of starting events E and an initial weight vector (α,
β) as inputs. To create the starting event set E, we randomly
select 1,113 system events, within a timespan of 10 months
from August 2016 to May 2017, which lead to excessively
large dependency graphs (up to 73,221 edges with 2,391
edges on average). At each iteration, the algorithm adjusts
an individual element in the weight vector and determines
whether the change improves the value of objective function
f(E, (α, β)). If so, such a positive change is accepted, and
the process continues until no positive change can be found
any more. Eventually, the algorithm produces the optimized
weight parameters, where α = 0.27 and β = 0.73.

Note that the rareness and fanout features demonstrate a
trade-off between analysis coverage and time effectiveness.
The fact that the weight of fanout is three times as much as
that of rareness indicates the trained tracking system prefers to
quickly expand the search area to reach a global optimal. As a
result, on one hand, it tends to prioritize low-fanout events
and avoid high-fanout events that cause the search to sink
into a very busy local neighborhood. On the other hand, it
depends less on the rareness score of the current event under
examination because it cannot adequately reflect the overall
rareness of following events. This in fact reveals a limitation
of our reference model, which quantifies rareness in a context-
insensitive fashion. We discuss the potential improvement in
Section VI.

D. Implementation

We have developed the priority-based dependency tracker
in 20K lines of Java code. When acquiring the enabling
information (i.e., rareness, fanout and write-only/read-only),
we pay special attention to runtime efficiency in order to cope
with the massive amounts of system events collected from large
enterprises. Particularly, we introduce several optimization
techniques to accelerate data query.

1) In-Memory Key-Value Store: Our tracking algorithm
requires frequent access to reference database in order to
query reference score of individual events. Traditional database
persisted on hard disks cannot satisfy such performance

6

requirements. As a result, we store the reference data in
RocksDB [30], which on one hand enables an in-memory key-
value store for fast access, and on the other hand can still
persist data in the traditional way.

2) Event Cache: To compute the fanout of an event or to
determine if an event reaches a read-only or write-only file,
we enable a look-ahead method to examine a further one hop
of dependencies. In fact, these additional query results are not
only used for the current computation of priority scores, but
also later become part of result dependency graph. Thus, to
avoid redundant query overhead, we cache these results for
future usages.

3) Look-Ahead with a Limit: Sometimes, the fanout of
an event is extremely high. For instance, a Firefox process may
touch hundreds of temporary files. In this case, counting the
exact fanout via database query is very time-consuming, and
could lead to degradation of runtime efficiency. Besides, in
such a case, the exact value of fanout becomes less interesting
in terms of computing and comparing the priority score.
Therefore, we approximate the fanout by putting a limit n on
the query, so that it only looks for the first n events that are
dependent on the current one. In effect, if the fanout is greater
than n, the fanout score fs(e) is in practice defined to be 1/n
instead of 1/fanout(e).

IV. REFERENCE MODEL

In this section, we elaborate on the reference model, which
quantifies the rareness of system events and helps distinguish
the anomalies from noisy normal system operations. First, we
give the details of data collection in an enterprise IT system.
Next, we formally define the reference score of a system event,
which is a crucial factor in the rareness score.

A. Data Collection

To build the reference model of system events, we collect
and compute the statistical data for event occurrences on
54 Linux and 96 Windows machines used daily for product
development, research and administration in an enterprise IT
system. Particularly, we make special efforts to ensure the
representativeness, generality and robustness of the reference
model.

1) Discovery of Homogeneous Hosts: The basic idea
of reference model is to identify common behaviors across
a group of homogeneous hosts. Therefore, to enable this
technique, the homogeneity of hosting environment is required;
otherwise, the generated model cannot be representative.

In general, enterprise IT systems could satisfy such a
requirement due to the overall consistency of daily tasks.
However, it is still possible that computers from individual
departments in the same corporate carry on different types of
workloads, and therefore their system behaviors may vary. To
be able to discover the homogeneous groups, we performed
a community detection within an enterprise. Particularly, we
utilized the Mixed Membership Community and Role model
(MMCR) proposed in a prior study [31] and eventually dis-
covered 3 communities within 150 machines. In fact, these
3 communities can be roughly mapped to three different
departments in this company. Hence, we collect system events

〈abstract-event〉 ::= 〈process-event〉
| 〈file-event〉
| 〈network-event〉

〈process-event〉 ::= 〈process〉 〈process-op〉 〈process〉
〈file-event〉 ::= 〈process〉 〈file-op〉 〈file〉
〈network-event〉 ::= 〈process〉 〈network-op〉 〈socket〉
〈process〉 ::= 〈executable-path〉
〈file〉 ::= 〈path-name〉
〈socket〉 ::= 〈remote-address〉 ‘:’ 〈remote-port〉
〈process-op〉 ::= ‘create’

| ‘destroy’
〈file-op〉 ::= ‘read’

| ‘write’
| ‘execute’

〈network-op〉 ::= ‘create’
| ‘destroy’
| ‘read’
| ‘write’

Fig. 3: An Abbreviated Syntax of Event Abstraction

from 3 communities separately and build a reference model for
each of the detected communities. In this way, the generated
models can be adapted for individual environments.

2) Abstraction of Events: To quantify the rareness of
system events, our reference model builder expects to count
the occurrences of same events. Nonetheless, OS events are
highly diverse over time or across hosts, even if they bear
the same semantics. For instance, the same program can bear
several process IDs when it has been executed for multiple
times; two identical system files are assigned with different
inode numbers on two Linux hosts.

To capture high-level common behaviors, while tolerating
low-level system diversity, we summarize events using their
invariant properties. To this end, we first extract semantic-
level information from system objects. Particularly, a process
is modeled using its executable path, a file is represented by its
path name, and a socket is denoted with remote IP address plus
remote port number. Then, on top of these representations, we
construct the abstraction of events, which follows a grammar
illustrated in Figure 3 using Backus-Naur (BNF) form. As a
result, events sharing the same abstraction are considered to
be same ones.

Note that, due to customization, the path name of same
system files may still be different on individual hosts. For
example, the user account name can be part of the path
name, which in turn becomes unique for each user. To allow
such differences, normalization of path name is needed. We
address this problem by retrieving a mapping between user
account name and the corresponding home directory name
from both local machines and global directory services (e.g.,
active directory, NIS), and replacing the home directory name
in the path with the same wildcard.

3) Time Window: The naı̈ve way to count the occurrence
of an event is simply increasing the counter, whenever a
same one is observed. Nevertheless, this may be subject
to poisoning attacks. An adversary can intentionally create
repeated malicious activities, and such a burst of vicious events

7

Week h1 h2 h3 h4 h5 Total Count

1 x x 2

2 x x 4

3 x x x 7

4 x x x 10

1 1 0 1 0 Bit-vector for
current week

Fig. 4: Computation of Reference Score

may trick the naı̈ve model to believe that these are common
behaviors due to their high counts.

To address this problem, we introduce a time window when
increasing counters. Within a single time window, repeated oc-
currence of an event on the same host will only be considered
once. As a result, a sudden spike of recurring events only
cause limited impacts. We configure the time window to be
one week. This is because enterprises are generally operated on
weekly basis. Besides, host behaviors within and without work
hours, or system activities on weekdays and weekends can be
fairly different by nature. Thus, a time window greater than
a week can avoid such a vibration of event occurrence while
preserving high-level consistency of corporate workloads. Note
that the time window is configurable and can be adjusted to
different enterprise systems.

B. Reference Score

With the aforementioned factors being considered, we
formally define the reference score of a system event.

Definition 3. The Reference Score ref of an OS-level event
e is its accumulative occurrence on all homogeneous hosts for
all weeks.

ref(e) =
∑

h∈hosts

∑
w∈weeks

count(e, w, h) (3)

, where hosts is the set of homogeneous machines, weeks
represents the set of weeks when data is collected, and

count(e, w, h) =

{
1, if e occurred in week w on host h

0, otherwise

1) Implementation: When computing the score, we in fact
update it incrementally using an online algorithm. As depicted
in Figure 4, we maintain a total count and a bit-vector of
current week for each abstracted event. The bit-vector indicates
the occurrence of event on all hosts in the current week, where
each bit represents a host. The present data can only affect the
existence of event in the current week, and thus will be checked
against the bit-vector. By the end of each week, the total count
is updated using the bit-vector and the vector will be cleared.
In this way, we only store the minimum necessary data so as
to ensure efficient storage and query.

V. EVALUATION

In this section, we conduct experiments to evaluate the cor-
rectness, effectiveness and efficiency of PRIOTRACKER. First,

we present the details of experiment setup. Next, we introduce
the metrics and the attack cases used for the evaluations. Then,
we provide some insights into the common system operations
recorded in the reference model.

A. Experiment Setup

We perform all experiments on 54 Linux and 96 Windows
machines used daily by researchers, developers and administra-
tors in an enterprise IT environment, with an audit log system
capturing OS-level events on host machines. We evaluate
PRIOTRACKER on a dataset including 1TB of 2.5 billion
events collected from 150 hosts in one week. Our dataset is
orders of magnitude larger than the ones used in previous
work [9], [20]. ProTracer [9], which is an instrumentation-
based tracker, was tested on only 2GB event data; Sleuth [20],
a real-time heuristics-based attack graph builder, used merely
20GB data from 6 isolated hosts and did not support cross-host
tracking.

To evaluate the correctness and time effectiveness of our
approach, we test PRIOTRACKER in eight representative at-
tacks as described in Table I, including data theft, the infa-
mous Shellshock attack, email phishing, Backdoor, as well
as attacks and test cases proposed in prior work [9], [25].
The difference is that prior work simply crafted “clean” attack
traces isolated from normal system operations. However, in
practice, noise (i.e., complex and normal system operations)
is always interleaved with attack traces due to program logic,
shared files and long-running processes. From the daily logs
of the enterprise, we observe several typical normal events
which connect the malicious activities to benign ones and thus
introduce a tremendous amount of noise to the causality graph,
and list some examples in Table II. To incorporate the impacts
of such noise, we reproduced eight representative attacks in
a “noisy” environment where numerous normal activities are
considered.

To further verify the time efficiency in real-world causality
tracking, we randomly select 75 points of interest (POI), which
take excessive time to analyze.

To perform comparative experiments, we also implement
a baseline forward-tracker following the prior approach [4],
[5], which does not consider priority at all. Instead, this
system enables breadth-first search when processing incoming
dependencies. We do not use depth-first search because it does
not have the capability to escape from a deep branch and thus
is usually less effective than breadth-first search.

We run causality trackers on a server equipped with In-
tel(R) Xeon(R) CPU E5-1650 CPU (12M Cache, 3.20GHz)
and 64GB of physical memory. The operating system is
Ubuntu 12.04.5 LTS (64bit). Without loss of generality, we
only perform forward tracking instead of bi-directional analy-
ses for all the attacks and selected POIs in the experiments. Our
reference model is constructed and stored on the same server.
Only local I/O overhead is caused when causality tracker
queries reference database.

B. Accuracy

We use our attack cases to evaluate the accuracy of
PRIOTRACKER. To this end, we forward-track all the attacks

8

TABLE I: Overview of Attack Cases.

Attack Case Description of Scenario References
Data Theft An insider stole sensitive intellectual property, secure-copied the data to a low-profile Motivating Example

machine and then leaked it via Internet.
Phishing Email A malicious Trojan was downloaded as an Outlook attachment and the enclosed macro CVE-2008-0081

was triggered by Excel to create a fake “java.exe”, and the malicious “java.exe” further
SQL exploited a vulnerable server to start cmd.exe in order to create an info-stealer.

Shellshock An attacker utilized an Apache server to trigger the Shellshock vulnerability in Bash CVE-2014-6271
multiple times. In each round, she started several Linux commands and cleared Bash
history in the end.

Netcat Backdoor An attack downloaded the netcat utility and used it to open a Backdoor, from which a Persistent Netcat
port scanner was then downloaded and executed. Backdoor [32]

Cheating Student A student downloaded midterm scores from Apache, and uploaded a modified version. ProTracer [9]
Illegal Storage A server administrator created a directory under another user’s home directory, ProTracer [9]

and downloaded the illegal files to the directory.
wget-gcc Malicious source files were downloaded and then compiled. Xu et al. [25]

passwd-gzip-scp An attack stole user account information from passwd file, compressed it using gzip Xu et al. [25]
and transferred the data to a remote machine.

TABLE II: Examples of Normal Activities That Connect the Malicious Activities to Benign Ones and Cause Graph Explosion.

Noise Source Activity Reason to Interleave Description of Scenario
sshd-run-parts Cascade Forking Program Behavior Upon receiving file transferring request, SSH daemon starts a large number of

routine processes to update messages (e.g., motd) used for user interaction.
sshd-ypserv Cascade Forking Conditional When a global account requests a SSH connection, SSHD checks user credential

Program Behavior from directory service (i.e., NIS) via ypserv, which forks tons of child processes.
.bash history Multiple Reads Shared Log File Once an attacker has cleared the .bash history to erase her attack footprints, the

same history file will further get read by all future benign Bash terminals.
Explorer Multiple Writes Shared GUI Once an attacker has dropped some malware to a local directory, the file Properties

Program are viewed in Explorer by a normal user, who later uncompresses a ZIP file and
therefore creates many files using 7ZIP from the same Explorer.

TABLE III: Forward Tracking Results.

Attack Case Critical Rare Baseline Prio
Events CE CE All FNR CE All FNR

Data Theft 13 12 13 297 0% 13 297 0%
Phishing Email 148 148 148 3282 0% 148 3282 0%

Shellshock 25 23 25 11252 0% 25 11262 0%
Netcat Backdoor 14 14 14 1355 0% 14 1361 0%
Cheating Student 37 33 14 7526 62% 37 7201 0%

Illegal Storage 12 10 12 8048 0% 12 8201 0%
wget-gcc 25 23 25 6415 0% 25 6742 0%

passwd-gzip-scp 15 11 9 2718 40% 15 2364 0%

via PRIOTRACKER. As a comparison, we also run baseline
forward-tracker on the same cases. We run both trackers for
one day 1 on each case.

We summarize the results in Table III. Based upon our
full knowledge of the attack workflow, we manually collect
the ground truth of these attack. Particularly, critical events
(“CE”) indicate the number of essential causal dependencies
in an attack. Transitional events such as bash bash, which
are caused by the underlying system rather than the attack, are
not interesting and thus excluded. Among these CEs, we count
the ones that occur infrequently (“Rare CE”), i.e., the rareness
score is greater than our configured threshold (i.e. θ = 0.1).
For the baseline forward-tracker and PRIOTRACKER, We count
the CEs and all dependencies discovered within the time limit
(“All”) and compute the false negative rate (“FNR”), which is
the proportion of missed CEs, respectively.

From Table III, we can see that only two incidents (“Data

1Note that the time limit for tracking is configurable and can be extended
to capture stealthier attackers. We empirically configure their values at this
point, and we leave the systematic investigation and optimization of these
parameters to future work.

Theft” and “Phishing Email”) have the same total number
of tracked dependencies for baseline and PRIOTRACKER,
indicating that the other incidents cannot complete tracking all
causalities within one day, despite the moderate size of attack
traces. Nevertheless, we find that PRIOTRACKER captures all
the crucial attack causalities within the time limit, whereas
the baseline tracker misses 62% and 40% critical events in
“Cheating Student” and “passwd-gzip-scp” cases, respectively,
due to its intensive computation of noisy dependencies. We
also observe that most of CEs are rare, which justifies our
choice to prioritize rare events in the causality tracking.

Since all attack cases are conducted in normal noisy
enterprise environment, the resulting graphs are up to 600
times larger than essential attack traces. We exemplify the
noisy activities that link malicious traces to normal ones in
Table II. These noises are interleaved with attack activities
fundamentally due to inherent program logic, globally shared
logs and central user interfaces that access both malware and
benign files.

9

TABLE IV: Elapsed Analysis Time When 100%, 90% and 50% Attack Traces Have Been Revealed, and Average Elapsed Time.

Attack Case Runtime (100%CEs) Runtime (90%CEs) Runtime (50%CEs) Avg. Runtime for All CEs
Baseline Prio Baseline Prio Baseline Prio Baseline Prio

Data Theft 16.76s 2.62s 14.01s 2.48s 4.03s 2.03s 6.29s 1.55s
Phishing Email 1m2s 1m4s 1m1s 28.48s 1m 28.47s 45.90s 27.51s

Shellshock 2m3s 12.08s 2m2s 11.83s 15.16s 6.48s 37.45s 9.13s
Netcat Backdoor 8.83s 1.28s 8.81s 1.23s 7.01s 0.90s 6.85s 0.88s
Cheating Student > 1d 40m21s > 1d 40m19s > 1d 35m14s NA 24m47s

Illegal Storage 27m51s 14m10s 26m27s 14m10s 14m3s 13m51s 15m31s 12m39s
wget-gcc 42m9s 6m23s 29m45s 5m54s 12m5s 5m48s 18m31s 5m37s

passwd-gzip-scp > 1d 1m24s > 1d 1m23s 3m32s 42s NA 57s

TABLE V: Ordinal of the Events, Upon Analyzing Which, 100%, 90% and 50% of Attack Traces Have Been Revealed, and
Average Ordinal of All Critical Events.

Attack Case Ordinal (100%CEs) Ordinal (90%CEs) Ordinal (50%CEs) Avg. Ordinal of All CEs
Baseline Prio Baseline Prio Baseline Prio Baseline Prio

Data Theft 174 31 120 27 48 24 60.54 16.38
Phishing Email 3281 3281 1694 244 202 105 1000.83 581.83

Shellshock 11255 35 117 33 65 19 1241.26 23.21
Netcat Backdoor 1347 35 1342 34 529 16 740.69 15.21
Cheating Student >7526 5481 >7526 5478 >7526 4424 NA 3248.11

Illegal Storage 3971 70 3322 69 1487 58 1742.08 51.42
wget-gcc 4820 610 2473 509 1181 493 1434.64 481.04

passwd-gzip-scp >2718 210 >2718 208 278 58 NA 98.27

34/34

wget

x.x.x.x:80

tar

intellectual-
property.tar

scp

ssh

sshd

intellectual-
property.tar

sshd

sshd bash
ftp y.y.y.y:21

sshd

dash

dash

env

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

run-parts

dash

dash dash dash

uname uname uname

dash

dash dash

uname grep

dash

dash dash dash

grep date

dash

python2.7

bc cut

ldconfig

who

scp

dash

dash dash dash

find

dash

dpkg dpkg

dash

cat

dpkg

dash

dash dash

python3.4 cut date stat expr

dash

dash

dash dash dash

cat date

dash

stat
gawk

date

scp cp

dash

dash

known_hosts

info_strealer.sh

0/0

1/1

3/2

6/4

10/6

2/3

15/9

23/24

24/22

27/23
36/25 49/26 62/27

121/28 147/29 175/30 206/31

26/32

45/35 motd

35/33

59/85

240/302 243/301

237/300

230/271

163/181

191/81

124/293

Attack Traces

Fig. 5: Reduced Version of Forward Tracking Graph for Motivating Example.

C. Time Effectiveness

We evaluate the time effectiveness of our proposed method.
To this end, we examine both baseline tracker and PRIO-
TRACKER on 1) attack scenarios and 2) randomly selected
POIs.

a) Attack Cases: First, we would like to see if PRIO-
TRACKER can reach attack-related events in a faster manner.
Also, we expect to understand in which order these two
trackers explore the causality space and whether anomalies can
be prioritized by PRIOTRACKER. To this end, we first acquire
the total elapsed time to reveal 100%, 90% and 50% critical
events for both trackers, and calculate the average elapsed time
for reaching every attack-related event. Then, we retrieve the
ordinals of all discovered events, compute the average ordinal

of all critical events and obtain the ordinal of events, and
analyze which 50%, 90% and 100% of attack traces have been
uncovered.

As illustrated in Table IV and Table V, our results show
that PRIOTRACKER can almost always find all critical events
in shorter time within fewer edges. The lower average runtime
and ordinals indicate that our tracker can prioritize and stay
focused on the exploration and analysis of attack traces. In
contrast, baseline tracker may concentrate on attack inves-
tigation in the beginning but then quickly lose focus and
easily get distracted by environmental noise (i.e., normal
system operations). For instance, in the “passwd-gzip-scp”
case, the baseline system manages to find 50% of critical
events within 3.5 minutes and 278 edges, which are still

10

……

… …

Outlook.exe

Excel.exe

java.exe

java.exe

Explorer.exe

7ZG.exe

0.jpg 666.jpg 667.jpg

Sqlservr.exe

Mal.xls

cmd.exe cmd.exe cmd.exe cmd.exe cmd.exe cmd.exe

cqwqk.vbs

csript.exe gucio.exe gucio.exe cmd.exe

osql.exe

osql.exe

0/0
3/1

Excel.exe

7/2

2/5

8/7

6/18

13/13

89/209
166/268

7ZG.exe 7ZG.exe
90/1844 91/445

1.jpg 333.jpg 334.jpg

1000.jpg

11/11

634/2316

1318/723

1.dump

88/19

164/20

26/23 55/122

1688/44

1693/34 3278/39

1692/37

1694/38

3280/3280

3281/3281

100/24

SearchProtocolHost.exe
2225/3000

Attack Traces

Fig. 6: Reduced Version of Forward Tracking Graph for Email Phishing Attack.

x.x.x.x

apache2

bash

apache2

bash

bash

0/0
0/0

1/1

5/41

nc.traditional

9/42

bash

12/43

bash bash bash bash bash bash bash

ls

35/66

ls

39/75

dir

32/55

ls

33/68

cat

34/73

ls

36/70

cat

38/69 39/65

.bash_history

cat bash

cat cat bash bash
bash

52/59
54/93

55/58 56/60 57/81

51/101
53/61

bash

74/94

bash

bash wc

bash

find wc ls ls rm mkdir

tar

rm

ls ls who

102/122

251/9832

3/3

bash

7/8

nc.traditional

11/9

bash

13/10
bash bash bash bash bash bash bash bash bash bash

ls

40/78

tar

41/26

data.tar

58/27

bzip2
87/29

44/15

60/16

86/28

cp 91/17

cp
92/18

43/40

/var/www/...bz2
59/19

apache2
88/33

112/34

61/21 data.tar.bz2

ls

42/80

ls

48/71

ls

49/76

ls

50/67

46/79

274/9836

wget

data.tar.bz2

11251/35

Attack Traces

Fig. 7: Reduced Version of Forward Tracking Graph for Shellshock Attack.

comparable to 42s and 58 edges for PRIOTRACKER. However,
while PRIOTRACKER eventually finds all attack traces at the
210th edge in 1 minute 24 seconds, baseline tracker cannot
reach even 90% of traces within one day or 2718 edges. In
the “Phishing Email” attack, however, it takes both trackers
the same number of edges to reach full coverage of attack
traces, and PRIOTRACKER even spends two more seconds to
complete the analysis. This is because this attack ends with
a few seemingly common activities, which are not prioritized
by our tracker. Nevertheless, PRIOTRACKER can discover the
major portion (90%) of this phishing attack twice as fast as
the baseline system. Besides, it merely needs 122 edges to
cover attack traces in the causality graph, whereas the baseline
tracker takes 1400 edges to achieve the same goal.

To gain further insights, we study the visiting order of
causalities in PRIOTRACKER and the baseline tracker in three
cases, i.e., “Data Theft”, “Phishing Email” and “Shellshock”.
Their attack graphs are presented in Figure 5, Figure 6

and Figure 7, respectively. In these graphs, attack traces are
enclosed by dotted lines. Areas with different backgrounds
(e.g., grey or white) correspond to different hosts. Interesting
edges are labeled with two numbers indicating how many
edges are needed to visit them in the baseline tracker and
PRIOTRACKER, respectively. We color-code these labels in the
presentation: red if the corresponding edge is visited earlier
in PRIOTRACKER; blue if it is visited earlier in baseline
system; green if it bears the same ordinal using both searching
methods.

Data Theft. In the case of motivating example (Figure 5),
PRIOTRACKER immediately pursues the direction that leads to
the sink of data leakage and can cover all the attack causalities
in 31 edges. Our system can focus on attack traces because it
prioritizes the transfer of a single new file over the spawn of
Linux utilities that are commonly observed. On the contrary,
baseline tracker spends analysis time equally on all causalities
and therefore jumps back and forth between the attack branch

11

and normal activities. As a result, for all the attack-related
events, PRIOTRACKER outperforms baseline tracker.

Phishing Email. This attack also involved two hosts. As
illustrated in Figure 6, once the victim Windows host was com-
promised by an email attachment containing malicious Macro,
a malware program (fake java.exe) started and connected to a
SQL Server. It then used the SQL Server to create 71 cmd.exe
processes in order to incrementally craft the malicious script
cqwqk.vbs. Then, this script file was launched by cscript.exe,
which thus created another malware instance gucio.exe. This
malware process issued two SQL commands on SQL Server
via osql.exe and then received the database dump generated by
these commands.

The noise was introduced by accident. Once the fake
java.exe was written into a directory, a legitimate user opened
the same directory using Explorer and unzipped about 1000
files into this folder. The shared GUI programs thus became
a bridge for connecting the attack activities to benign events,
which hence became relevant. Unfortunately, again, baseline
tracker lacks the capability of distinguishing anomalies from
common behaviors, and thus cannot purely target attack causal-
ities. Due to the frequent switches between attack and noise,
the baseline tracker cannot reach specific critical dependencies
until 1600 edges later (e.g., cqwqk.vbs cscript.exe or
cscript.exe gucio.exe).

PRIOTRACKER prefers the dependency java.exe
SqlServr.exe to Explorer.exe 7ZG.exe in terms of
rareness. Fake java.exe is considered special and to be different
from authentic Java program because of its unique path.
Similarly, our system can quickly scan the majority of attack
traces because they are relatively abnormal compared to the
7ZIP program. However, cmd.exe osql.exe is a seemingly
common causality, though it is started by the attacker. As
a result, PRIOTRACKER decides to traverse the benign file
decompression first before it eventually comes back to assess
these two events as the 3280th and 3281th edges.

It is worth noting that although the exact events that issue
SQL query are not discovered at an early stage, their impacts
of dumping and transferring database records have already
been captured as the 19th and 20th edges. This indicates that
attack footprints are pervasively connected, and partial analysis
results are still useful in that they are context clues to infer the
existence of other hidden malice, as long as the majority of
attack traces are covered. This well motivates PRIOTRACKER
which seeks the maximum amount of abnormal activities
before analysis deadline.

Shellshock. In this incident, the attacker launched the Bash
exploits twice. In the first round, she simply checked envi-
ronment using Linux utilities without doing serious damage
but at the end of this round, she still erased her footprints by
clearing Bash history. In the second round, she stole sensitive
data. To do this, she archived (tar) and compressed (bzip2)
the files, transferred (cp) it to Apache directory so that she
can download (wget) it from another host. Again, she cleared
the history of commands. Later, noises were introduced when a
normal user, whose home directory is also /var/www/, opened
new Bash terminals. These terminals would read the modified
.bash history and forwardly propagated such a causality.

Prior work [4] prunes off all the .bash historys based upon

0 20 40 60 80
Index

10
0

10
1

10
2

10
3

10
4

10
5

#
 R

a
re

 E
d
g
e
s

baseline
PrioTracker

Fig. 8: Number of Rare Edges Discovered Within 1 Hour for
75 Large Graph Testing Samples.

heuristics and does not track any dependencies beyond this
shared log file. As a comparison, we address this problem
by quantifying the priority of causalities to be analyzed,
and therefore can automatically deprioritize the normal Bash
activities due to the high fanout of .bash history. In addition,
since .bash history is preserved, further dependencies can still
be examined at a later stage. In this way, we strike a balance
between security and efficiency.

As depicted in Figure 7, PRIOTRACKER prioritizes the
investigation of data exfiltration that happened in one of
attacker-controlled terminals. It prefers the data leakage path
to other launched commands due to two reasons: 1) creation
and transfer of new files are more unusual than running Linux
utilities; 2) the data exfiltration path can bring significant
further consequences while ls or dir has little future impact.
As a result, PRIOTRACKER can find the last hop of attack (i.e.,
wget) after 34 edges. Also, when time permits, PRIOTRACKER
eventually studies all the normal causalities, such as data
decompression (tar) after around 9800 edges.

In general, since the baseline tracker spends time evenly on
all branches, as the tracking progresses and an exponentially
growing number of dependencies get involved, the baseline
tracker cannot reach the deepest stage of attack before going
through all normal activities. PRIOTRACKER prioritizes the
investigation of anomalies and automatically find the major
attack traces in a much more effective and timely manner.

1) Random POI: Next, we hope to understand if PRIO-
TRACKER can identify the maximum amount of uncommon
events within a certain time limit (configured to be one hour
in our training phase). To this end, we run PRIOTRACKER
and baseline tracker on 75 randomly selected POI which on
average can generate a forward tracking graph of 5,732 edges.

Figure 8 illustrates the number of rare edges for 75 cases,
captured by both trackers within one hour. Here, a“rare” edge
bears a rareness score that is greater than the threshold θ we
set. As depicted in the chart, the red curve representing our
result is always above the blue one for baseline tracker, while
in certain cases, PRIOTRACKER can show up to three orders
of magnitude improvement. This also justifies the effectiveness
of our priority computation and weight selection.

D. Insight into Reference Model

1) Runtime Overhead: PRIOTRACKER performs two addi-
tional queries to compute the priority scores: 1) look-ahead

12

query and 2) reference model query. Look-ahead query does
not introduce additional runtime overhead in the long run
because query results are cached for future dependency con-
struction. Reference database query, in contrast, may cause
additional I/O overhead, and therefore needs evaluation. To
this end, we record the elapsed time of each query to reference
database. Our result shows that every access merely causes
negligible slowdown, on average 0.95 microseconds.

2) Case Study: We then look into the content of our
reference model and attempt to understand its validity based
upon case studies.

Process Creation. Many models are generated because
of common “forking” relation between parent and child
processes. Particularly, the top ones are caused by mutual
invocation of system processes. For instance, in Windows,
services.exe is the parent of multiple service programs, such
as taskhost.exe and conhost.exe; in Linux, it is common to
see bash forking other terminals, bash and dash, or utili-
ties such as cat, grep, date, etc. Common user programs,
such as python2.7, acrobat.exe, iexplorer.exe, outlook.exe and
chrome.exe, may also bear regular invocation behaviors. Pro-
gram updaters, including dpkg, apt-get, googleupdate.exe and
especially antivirus updater, sesclu.exe (Symantec Endpoint
Security Client LiveUpdate), frequently start subroutines to
acquire new packages manually or automatically.

File Access. A even greater amount of models have been
generated from file accesses. However, they become part
of our model not because the files are popular ones that
commonly read/written by different processes. On the contrary,
they become prevalent mainly due to the popularity of the
processes. For example, on Windows, system processes, such
as svchost.exe, services.exe, taskhost.exe, system.exe frequently
access their libraries, logs, metadata, configurations, font etc;
antivirus scanners coh64.exe also accesses a list of specific
files for detection and management purposes. On the Linux
side, man-db utility may repeatedly access its own database,
indexes and caches, while updatedb.mlocate keeps updating
these cache files; apt-get reads its configuration very often;
find frequently accesses its cached records; python2.7 loads
functions from a list its internal libraries.

File Execution. File execution is a special class of read
operation and bears completely different semantics. Especially,
due to the fundamental difference in design and implementa-
tion, file execution on Windows is very different from that
on Linux: most of the executed Windows files are .DLL files,
which are dynamically loaded by various of system processes,
while Linux usually directly forks a process from an individual
executable file.

VI. DISCUSSION

1) Context Sensitivity of Reference Model: In this paper, we
only consider the rareness of one event edge. However, given
an event edge, the nature of tracking provides the knowledge
of subsequent events in backtracking and preceding events
in forwardtracking, which can form the context of this event
and be leveraged to differentiate attack-related activities from
normal ones more accurately. Given an event, priority scores
can take its context, i.e., rareness of event edges within its

k-hop neighborhood, into consideration. We will leave it to
future work.

2) Adversarial Setting: Reference scores are naturally re-
silient to poisoning attacks, since repeated occurrences of
an event on the same host in a week are only considered
once. APT adversaries has limited power in compromising a
sufficient number of hosts and performing the same malicious
behaviors across weeks, which can lead to higher risk of being
detected.

2a) Evasion Using High-fanout Events: We admit that,
as a potential evasion technique, an attacker may attempt to
leverage system causality with high fanout to hide their attack
footprints. However, an attack cannot be launched solely using
dependencies with big fanout. For instance, apache bash
is an essential low-fanout step when a web server gets com-
promised. Other attack-related edges can be discovered by our
approach from thousands of benign edges in a faster fashion.
Since the entire attack footprints are logically connected, any
uncovered part can help analysts to identify the other parts.
Even if, in the worst case scenario, fast-tracking an event with
low fanout does not expose any attack traces, only a small
delay will be incurred to the investigation of other complex
causalities. On the contrary, processing benign dependencies
with huge fanout (up to tens of thousands) can be time
consuming such that none of attack traces can be reached
before analysis deadline.

2b) Evasion Using Low-fanout Events: An attacker may
intentionally fill the priority queue with numerous benign
low-fanout events to conceal the later steps in an attack.
However, due to the low-fanout constraint, she has to craft
a sufficiently long chain of low-fanout events, which by itself
is a extremely suspicious topological pattern. As a result, our
technique significantly raises the bar for potential attacks.

2c) Slow Attack: A slow attacker is a general challenge for
all causality tracking systems but may also risk being detected
even before she can cause serious damage, as defenders could
also take advantage of the longer time window.

Note that our work is a general framework that priori-
tizes abnormal activities for timely security causality analysis,
which is able to further incorporate multi-hop dependency
based attack patterns or user defined priority scores customized
for specific environments and security requirements.

3) Distributed Causality Tracker: The construction of
causality graphs can be potentially parallelized with distributed
computing. Any individual branch to be explored can be
processed separately; branches may bear different priorities
and therefore are assigned with corresponding computing
resources; dependencies on each host can also be pre-computed
in parallel and cross-host tracking thus becomes the concate-
nation of multiple generated graphs. Nonetheless, the massive
and pervasive dependencies among system events bring signifi-
cant challenges to parallel processing, and therefore distributed
causality tracking by itself is an interesting research direction
that requires non-trivial efforts.

In this work, however, we do not enable distributed com-
putation in our causality tracking. Instead, we retrieve audit
logs from multiple hosts, store them in a centralized database,
and then perform causality analysis in a centralized manner.

13

Hence, our analysis only generates one single holistic graph
to demonstrate an attack sequence even if the attack is across
multiple hosts. Cross-host tracking is conducted in an on-
demand manner: only if the causality tracker discovers a
communication channel from a sender machine to a receiver,
it will start to build dependencies on the latter one.

Again, we would like to point out that the major focus of
our work is how to enable priority-based search in causality
tracking, which is orthogonal to the computing paradigms of
underlying tracking systems.

VII. RELATED WORK

1) Causality Analysis: Plenty of research efforts have
been made to reconstruct OS-level system dependencies for
security purposes. King and Chen [4] first proposed to build
dependency graph based on OS-level system events in order
to capture the attack sequences and provenances. King et
al. [5] further improved the dependency analysis by enabling
cross-host tracking as well as forwardly tracking attack conse-
quences. Chow et al. [33] leveraged taint analysis to understand
the lifetime of sensitive data. Taser [10] also performed taint
tracking to find files affected by a past attack. Retro [11]
recorded an action history graph, which describes system’s ex-
ecution, in order to repair a desktop or server after an adversary
compromises it. Jiang et al. [34] enabled a provenance-aware
tracing of worm break-in and contamination. Muniswamy-
Reddy et al. [35] designed a provenance collection structure
facilitating the integration of provenance across multiple levels
of abstraction. Krishnan et al. [36] provided a forensic platform
that transparently monitors and records data access events us-
ing only the abstractions exposed by the hypervisor. Hi-Fi [37]
presented a kernel-level provenance system that collects high-
fidelity whole-system provenance. Ma et al. [8] proposed a
Windows based audit logging technique that features accuracy
and low cost.

Further studies have attempted to mitigate the dependency
explosion problem by reducing data volume and performing
fine-grained causality tracking. BEEP [6] identified the event
handling loops in long running programs so as to enable
selective logging for unit boundaries and unit dependencies.
LogGC [7] proposed an audit logging system with garbage
collection capability. ProTracer [9] presented a lightweight
provenance tracing system that alternates between logging
and taint tracking. Xu et al. [38] attempted to reduce the
number of log entries while still preserving high-fidelity causal
dependencies.

A recent line of research [28], [39] has enabled enterprise-
level causality analysis, such as data loss prevention, via
modifying underlying operating system. To this end, it intro-
duces Linux Provenance Modules, which produce fine-grained
provenance information. It further mitigates the dependency
explosion using SELinux information flow analysis which
removes unrelated provenances.

Compared to the prior work, PRIOTRACKER takes the first
step to prioritizing the investigation of abnormal dependencies
during the construction of causality graph. As a result, the
subsequent causality tracking can reveal more unusual activ-
ities before a critical security analysis deadline. In contrast,
the previous work did not innovate new algorithms for attack

graph construction but rather followed original work [4], [5] to
generate causality graphs via simply traversing all nodes (both
normal and abnormal). PRIOTRACKER focuses on improving
the underlying graph generation algorithm, and therefore is
orthogonal to the prior research.

2) Priority-Based Security Analysis: Priority-based meth-
ods have been widely used in security analyses. Previous
efforts have been made to expedite static data-flow analy-
sis [13], symbolic execution [14]–[16], fuzzing [17] and digital
forensics [18], [19]. To be able to prioritize certain tasks, these
studies have attempted to measure the priority of low-level
constructs, including functions, code paths, program inputs
or user-level entities, such as textual documents and physical
devices.

In contrast to the prior work, we enable a priority-based
analysis in the specific domain of causality tracking. As a
result, we have to invent a unique technique to quantify the
priority in OS-level dependency tracking.

VIII. CONCLUSION

In this paper, we propose PRIOTRACKER, a backward and
forward causality tracker that automatically prioritizes the in-
vestigation of abnormal causal dependencies for enterprise se-
curity. Specifically, to assess the priority of a system event, we
consider its rareness and topological features in the causality
graph. To distinguish unusual operations from normal system
events, we quantify the rareness of each event by building a
reference model which records common routine activities in
corporate computer systems. We implement PRIOTRACKER,
in 20K lines of Java code, and a reference model builder in
10K lines of Java code. We evaluate our tool by deploying both
systems in a real enterprise IT environment which consists of
150 machines. Experimental results show that PRIOTRACKER
can capture attack traces that are missed by existing trackers
and reduce the analysis time by up to two orders of magnitude.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers and our
shepherd, Prof. Adam Bates, for their feedback in finalizing
this paper. Prateek Mittal and Yushan Liu were partially
supported by the National Science Foundation Grant CNS-
1553437, CIF-1617286, and CNS-1409415, and Yan Huo *94
Graduate Fellowship. Any opinions, findings, and conclusions
made in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] “Data breaches,” http://www.idtheftcenter.org/Data-Breaches/data-
breaches.html, 2016.

[2] C. Staff, “Target: 40 million credit cards compromised,” http://money.
cnn.com/2013/12/18/news/companies/target-credit-card/, 2013.

[3] R. Sidel, “Home depot’s 56 million card breach bigger than
target’s,” http://www.wsj.com/articles/home-depot-breach-bigger-than-
targets-1411073571, 2014.

[4] S. T. King and P. M. Chen, “Backtracking Intrusions,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles,
ser. SOSP’03, 2003.

[5] S. King, Z. M. Mao, D. C. Lucchetti, and P. M. Chen, “Enriching
Intrusion Alerts Through Multi-Host Causality,” in Proceedings of
the 2005 Network and Distributed Systems Security Symposium, ser.
NDSS’05, 2005.

14

http://www.idtheftcenter.org/Data-Breaches/data-breaches.html
http://www.idtheftcenter.org/Data-Breaches/data-breaches.html
http://money.cnn.com/2013/12/18/news/companies/target-credit-card/
http://money.cnn.com/2013/12/18/news/companies/target-credit-card/
http://www.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571
http://www.wsj.com/articles/home-depot-breach-bigger-than-targets-1411073571

[6] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance via
Binary-based Execution Partition,” in Proceedings of the 2013 Network
and Distributed Systems Security Symposium, ser. NDSS’13, 2013.

[7] ——, “Loggc: garbage collecting audit log,” in Proceedings of the 2013
ACM SIGSAC conference on Computer and Communications Security,
ser. CCS’13, 2013.

[8] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu,
“Accurate, Low Cost and Instrumentation-Free Security Audit Logging
for Windows,” in Proceedings of the 31st Annual Computer Security
Applications Conference, ser. ACSAC’15, 2015.

[9] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in Proceedings
of the 2016 Network and Distributed Systems Security Symposium, ser.
NDSS’16, 2016.

[10] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The Taser Intrusion
Recovery System,” in Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, ser. SOSP’05, 2005.

[11] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion recov-
ery using selective re-execution,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’10, 2010.

[12] “2015 cost of cyber crime study: United states,” http://www.ponemon.
org/blog/2015-cost-of-cyber-crime-united-states, 2015.

[13] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
Effective taint analysis of web applications,” in Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’09, 2009.

[14] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI,
2011.

[15] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08, 2008.

[16] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12, 2012.

[17] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in 23nd Annual Network
and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016, 2016.

[18] R. Bert, F. Marturana, G. Me, and S. Tacconi, “Data mining based
crime-dependent triage in digital forensics analysis,” in Proceedings of
2012 International Conference on Affective Computing and Intelligent
Interaction, 2012.

[19] N. L. Beebe and L. Liu, “Ranking algorithms for digital forensic string
search hits,” Digit. Investig., 2014.

[20] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time attack
scenario reconstruction from cots audit data,” 2017.

[21] “The seven largest insider-caused data breaches of 2014,”
http://www.eweek.com/security/the-seven-largest-insider-caused-
data-breaches-of-2014, 2014.

[22] “Indian call centers selling u.k.’s secrets,” http://www.siliconindia.com/
shownews/Indian call centers selling UKs secrets-nid-28560-cid-
2.html, 2005.

[23] “Understanding the insider threat,” https://supportforums.cisco.com/
blog/150466/understanding-insider-threat, 2016.

[24] “Incident response - time is of the essence,” https://www.scmagazineuk.
com/incident-response--time-is-of-the-essence/article/534765/, 2015.

[25] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, 2016.

[26] “The linux audit framework,” https://www.suse.com/documentation/
sled10/audit sp1/data/book sle audit.html, 2016.

[27] “Etw events in the common language runtime,” https://msdn.microsoft.
com/en-us/library/ff357719(v=vs.110).aspx, 2016.

[28] A. M. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy
whole-system provenance for the linux kernel.” in USENIX Security
Symposium, pp. 319–334.

[29] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2003.

[30] “A persistent key-value store for fast storage environments,” http:
//rocksdb.org/, 2016.

[31] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, H. Chen, and G. Jiang,
“Integrating Community and Role Detection in Information Networks,”
in Proceedings of 2016 SIAM International Conference on Data Mining
(SDM’16), 2016.

[32] “Persistent netcat backdoor,” https://www.offensive-security.com/
metasploit-unleashed/persistent-netcat-backdoor/, 2017.

[33] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum, “Un-
derstanding data lifetime via whole system simulation,” in Proceedings
of the 13th Conference on USENIX Security Symposium - Volume 13,
2004.

[34] X. Jiang, A. Walters, F. Buchholz, D. Xu, Y.-M. Wang, and E. H.
Spafford, “Provenance-Aware Tracing of Worm Break-in and Con-
taminations: A Process Coloring Approach,” in Proceedings of IEEE
ICDCS06, 2006.

[35] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in prove-
nance systems,” in Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, ser. USENIX’09, 2009.

[36] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes: Efficient sup-
port for forensic analysis,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, ser. CCS ’10, 2010.

[37] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi: Col-
lecting high-fidelity whole-system provenance,” in Proceedings of the
28th Annual Computer Security Applications Conference, ser. ACSAC
’12, 2012.

[38] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS’16, 2016.

[39] A. Bates, D. J. Tian, G. Hernandez, T. Moyer, K. R. Butler, and
T. Jaeger, “Taming the costs of trustworthy provenance through policy
reduction,” ACM Transactions on Internet Technology (TOIT), vol. 17,
no. 4, p. 34, 2017.

15

http://www.ponemon.org/blog/2015-cost-of-cyber-crime-united-states
http://www.ponemon.org/blog/2015-cost-of-cyber-crime-united-states
http://www.eweek.com/security/the-seven-largest-insider-caused-data-breaches-of-2014
http://www.eweek.com/security/the-seven-largest-insider-caused-data-breaches-of-2014
http://www.siliconindia.com/shownews/Indian_call_centers_selling_UKs_secrets-nid-28560-cid-2.html
http://www.siliconindia.com/shownews/Indian_call_centers_selling_UKs_secrets-nid-28560-cid-2.html
http://www.siliconindia.com/shownews/Indian_call_centers_selling_UKs_secrets-nid-28560-cid-2.html
https://supportforums.cisco.com/blog/150466/understanding-insider-threat
https://supportforums.cisco.com/blog/150466/understanding-insider-threat
https://www.scmagazineuk.com/incident-response--time-is-of-the-essence/article/534765/
https://www.scmagazineuk.com/incident-response--time-is-of-the-essence/article/534765/
https://www.suse.com/documentation/sled10/audit_sp1/data/book_sle_audit.html
https://www.suse.com/documentation/sled10/audit_sp1/data/book_sle_audit.html
https://msdn.microsoft.com/en-us/library/ff357719(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ff357719(v=vs.110).aspx
http://rocksdb.org/
http://rocksdb.org/
https://www.offensive-security.com/metasploit-unleashed/persistent-netcat-backdoor/
https://www.offensive-security.com/metasploit-unleashed/persistent-netcat-backdoor/

	Introduction
	Overview
	Motivating Example: Forward Tracking the Impact of Insider Related Data Leaks
	Attack Scenario
	Causality Analysis
	Forward Tracking Graph

	Problem Statement
	System Architecture.
	Threat Model.

	Time-Constrained Anomaly Prioritized Causality Tracking
	Basic Algorithm
	Priority Score
	Important Factors
	Rareness Score
	Fanout Score
	Dataflow Termination
	Priority Score

	Weight Assignment
	Implementation
	In-Memory Key-Value Store
	Event Cache
	Look-Ahead with a Limit

	Reference Model
	Data Collection
	Discovery of Homogeneous Hosts
	Abstraction of Events
	Time Window

	Reference Score
	Implementation

	Evaluation
	Experiment Setup
	Accuracy
	Time Effectiveness
	Random POI

	Insight into Reference Model
	Runtime Overhead
	Case Study

	Discussion
	Context Sensitivity of Reference Model
	Adversarial Setting
	Distributed Causality Tracker

	Related Work
	Causality Analysis
	Priority-Based Security Analysis

	Conclusion
	References

