
PHYS 203 Princeton University    Fall 2004
Final Exam Solution

1. (20 points) Underwater pendulum
A ball of radius a and density ρb is suspended under water (density
ρw) on a massless string of length l. You can assume that a<<l. The
ball experiences a drag force in the water )( wbd v-vkF ��

�

−= . Initially
the water is at rest (vw=0).

a) (10 pt) Calculate the frequency of small oscillations and the
damping coefficient for the motion of pendulum. Write down
the general solution for the motion of the pendulum assuming
that it is underdamped.

The torque on the pendulum for small angles is equal to
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b)  (10 pt) The water suddenly starts moving to the right with velocity vw= v0 at t = 0. Determine
the subsequent motion of the pendulum θ(t). (Hint: What happens to the equilibrium position
of the pendulum?)
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It can be reduced to the previous equation with a substitution 
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Starting from rest, the motion of the pendulum is given by
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2.  (35 points) Suspended rod
A rod of mass m and length l is suspended from two massless springs with a spring constant k as
shown in the figure.

a) (10 pt) Write down the Lagrangian for the system in terms of
displacements from equilibrium position of the two ends of the rod x1
and x2.
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measured from the equilibrium position, the gravity force does not need to
be included.
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b) (10 pt) Find the frequencies of the two normal modes and associated eigenvectors.
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c) (5 pt) Using the results from part b) or your intuition, describe the motion for each of the
normal modes.

Normal modes correspond to pure translation of the rod and pure rotation about the center of
mass.
d) (10 pt) Find the frequencies of the two normal modes using Freshman physics (i.e. no

Lagrangians) and verify your results in part b)
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3. (30 pts) Cylindrical hockey player
Approximate a (not very good) hockey player by a stationary solid cylinder of radius R.  A
stream of hockey pucks of radius a approach it from the right and scatter elastically. The hockey
pucks are uniformly distributed over a length L. The total number of pucks N is very large. A
goal net is located a distance d away and has a width w. You can assume that d>>R, d>>w,
w>>a.

a) (10 pts) What is a relationship between the impact parameter b and the scattering angle θ of
the puck?

For elastic collisions the angle of incidence α is equal to the angle of reflection

From geometry απθ 2−= ;
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b) (10 pts) Define a two dimensional
scattering cross-section so (N/L)σ(θ)dθ
gives the number of pucks scattered into
an angle dθ. What is the differential
cross-section σ(θ) in this case?

The number of particles in a range of impact
paramenters db that will scatter into angle
dθ  is given by:

2
sin

2
)()(

)(

θ
θ

θσ

θθσ

aR
d
db

d
L
Ndb

L
N

+==

=

Note that this result is different from the 3-D
equation for the cross-section.

c) (5 pts) Out of the N hockey pucks, how many will end up in the goal net?
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d) (5 pts) Out of the N hockey pucks, now many will strike the player?
(Note: If you are stuck on parts a or b, you can still answer other parts using simple
geometry)
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The same result can be obtained from the fraction of particles with the impact parameters in the
range )()( aRbaR +<<+−
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4.  (30 points) String and Mass
A string of mass m and length l with tension τ is attached to a mass
M. The shape of the string is described by a function y(x,t). The
string is fixed at the origin, y(0,t)=0. There is no gravity in this
problem.

a) (10 pts) First assume that mass M is held fixed at y = 0. Write down the general solution
y(x,t) for the standing waves on the string. Express your answer in terms of the given
parameters and arbitrary constants.

A standing wave has a general form )sin()cossin(),( δω ++= tkxBkxAtxy
The boundary conditions y(0,t) = 0 and y(l,t) = 0 impose conditions B = 0 and kl=nπ, n=1,2,3…
In general for a wave kv=ω  and for a string mlv // τρτ ==
b) (10 pts) Now assume that mass M can slide up and down on a frictionless rod at x=l. What is

the boundary condition on y(x,t) at x=l ? You can assume that oscillations are small.

The force needed to accelerate the mass is given by the tension in the string
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c) (10 pts) Write down an equation for the frequencies of the standing waves on the string when
the mass is free to slide. You do not need to solve this equation.
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This is an example of a transcendental equation that has to be solved numerically or graphically
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5.  (35 points) Rotating Disk
A disk of mass m and radius a is mounted in the middle
of a massless rod of length l. The plane of the disk is
tilted by an angle θ away from the normal to the rod.
Initially the disk is at rest tilted up, as shown in the
figure. At t = 0 it begins to rotate around the axis of the
rod with an angular velocity ω in the direction shown.
The rod is supported at the two ends and forces F1(t) and
F2(t) are such that it rotates without wobble with a
constant angular velocity ω.

a) (5 pts) What are the directions of the principal axes of inertia of the disk?
One axis is perpendicular to the plane of the disk, call it 3ê , the other 2 are orthogonal to each
other and lie in the plane of the disk. Take 1̂e to be horizontal out of the page and 2ê up in the
plane of the page before the rotation starts.

b) (10 pts) Calculate the principal moments of inertia of the disk.
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c)   (5 pts) What are the components of the angular velocity ω in the body frame of reference?
0,sin,cos 123 =−== ωθωωθωω

d)  (10 pts) Determine the torques needed to keep the disk spinning without wobble.

0)(
0)(

4
cossin)(

2121333
1313222

2
2

3232111

=−−=
=−−=

−=−−=

IIIN
IIIN

maIIIN

ωωω
ωωω

θθωωωω

D

D

D

e) (5 pts) Determine the components F1x(t), F1y(t), F2x(t), F2y(t) in the fixed frame of reference
that are needed to keep the disk spinning without wobble.

The torques are in the rotating frame and need to be projected back to the lab frame
With the disk oriented as shown: ;)(;)( 221112 NlFFNlFF yyxx =−=−

After rotating by 90 degrees ;)(;)( 221121 NlFFNlFF xxyy =−=−
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