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Semiconductors and Optics 

 
Semi-conductors probably had a larger impact on our society than any other materials discovery 
in the 20th century. The wide utility of semiconductors lies in the ability to tailor their electrical 
properties. 
 
1. Undoped Semiconductors 
 
The energy levels of an un-doped semiconductor or an insulator are 
shown on the right. As in any solid, electron energy levels are merged 
into continuous bands. The valence band contains as many electrons as 
allowed by the Fermi exclusion principle while the conduction band is empty. Electrical 
conductivity results from electrons moving from occupied to unoccupied energy states, so in this 
state the material in insulating. The difference between semi-conductors and insulators is that in 
semi-conductors the energy gap Eg between the two bands is relatively small, about 1 eV. A 
small fraction of the electrons (about exp(-kT/ Eg)) are thermally excited to the conduction band 
where they can participate in current flow. As a result, semi-conductors have an intermediate 
resistively that depends exponentially on temperature.  

Conduction Band 

Valence Band 

Eg

 
2. Doped semiconductors 
 
Semiconductor materials, such as Si, are often doped with elements that have either one more or 
one less electron in the outer shell. For example, Ga has 3 valence electrons, one less than Si. 
When added to a Si crystal it produces “holes” – unoccupied electron states in the valence band. 
Similarly, As has 5 valence electrons and the extra electrons have to go into the conduction band. 
As a result, doped materials have much higher electrical conductivity than pure Si. The electric 
current can be carried either by electrons (n-type semiconductor) or holes (p-type semi-
conductor). 
 
3. p-n-Junction 
 
A p-n junction is formed by bringing two doped semi-conductors 
together. Initially, electrons and holes diffuse into the other material 
due to the gradient in their concentration. However that sets up a 
charge imbalance that creates an electric field and eventually stops 
diffusion of the charge carriers.  An applied voltage can either 
increase or decrease this electric field. When the external voltage 
reduces the electric field, the p-n junction can conduct electric 
current. Thus, the p-n junction works as a diode, i.e. conducts 
current only in one direction. p-n junctions can also convert light to 
electricity and vise versa. If the electrons and holes recombine they 
release energy equal to the band gap. This energy can be emitted as a photon. Conversely, an 
electron-hole pair can be created by a photon, as used in photodiodes to detect light. 
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4. Diode lasers 
 
As mentioned above, electron-hole recombination can result in emission of photons. Light-
emitting diodes let the photons simply escape the semi-conductor. It is also possible to construct 
a diode laser by recycling the photons in a cavity. The basic 
layout of a laser is shown in the figure on the right. The 
photons bounce between the mirrors and stimulate additional 
photon emissions in the same direction. This is a consequence 
of Bose-Einstein condensation, photons prefer to occupy the 
same state. The light forms a standing wave in the cavity and 
some fraction of it escapes through the mirror, forming the 
output laser beam. For laser diodes the entire cavity is about 0.1-1mm long. 
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5. Geometric optics 
 
Simple equations for the effects 
of thin lenses can be obtained 
following the rules of geometrical 
optics:  
1) Rays going parallel to the axis 

on one side of the lens pass 
through the focal point on the other side 
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2) Rays going through  the center of the lens are not deflected.  
From these rules it follows from simple geometry that  
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where o is the distance from the object to a convergent lens, i is the distance from the lens to the 
image and f is the focal length of the lens. Similarly, one can show that the magnification is S1/S0 
= i/o. For example, to obtain large magnification one needs i>>o and therefore o~ f. 
 
6. ABCD law 
 
Propagation of light through multiple lenses can be described by “ABCD” law. A light ray at a 
certain position z along the optic axis is described by two numbers: the distance from the optic 
axis r and its slope r’=dr/dz. The transformation of the ray by optical elements is given by 
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One can easily derive the “ABCD” matrix for simple cases: 

Empty space of length d:    Thin lens with focal distance f:   ⎟⎟
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For multiple elements the ABCD matrices are simply multiplied together. For example, consider 
a ray at a distance x from the optic axis initially propagating parallel to the axis, going through a 
lens of focal distance f and then empty space of length f. At that point it will have coordinates: 



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
fx

x
f

fx
f

f
/

0
01/1

0
01/1

01
10

1
 

Hence, the ray will pass through the axis with a slope r’=−x/f, as expected. Arbitrary complicated 
optical systems, including mirrors, etc, can be modeled this way. However, ABCD law works 
only in the “paraxial” approximation when r’ = tan(r’) = sin(r’) and does not include the effects 
of spherical aberration. 
 
6. Wave optics 
 
On length scales comparable to the wavelength of light its propagation is no longer governed by 
geometric optics. Light diffraction begins to play a large role, for example, allowing the light to 
pass around small obstruction. Diffraction also limits the minimum size of an object that can be 
seen with light to approximately the wavelength of light. 
More precise calculations show that the spatial resolution of a microscope is given by 

NAd /22.1min λ= , 
where the numerical aperture NA defines the light collection ability of the lens, NA= sin(α), 
where α is the opening angle, see picture to the right. Numerical 
aperture is larger for shorter focal length lenses, but is generally 
smaller than 1. Thus the maximum spatial resolution that can be 
obtained with visible light is on the order of 0.5 μm.  
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7. Gaussian Beams 
 
More quantitative analysis of light propagation including diffraction can be obtained by 
considering Gaussian beams. Without going through detailed derivation, we can 

write ⎥
⎦

⎤
⎢
⎣

⎡
−−

)(
exp~

2

zq
kriikzE , where z is the distance in the direction of propagation and r is the 

distance from the beam center.  Hence the radial intensity profile of the light beam, given by EE*, 
depends on the imaginary part of 1/q(z). For a beam propagating in empty space, one can show 
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tightly focused beam (w0 ~ λ) will diverge very quickly, while a large beam (w0 >> λ) will 
remain approximately the same size over a large distance z.  Another advantage of describing the 
beam with the q parameter is that propagation through optical elements is still given by the 

“ABCD” matrix:
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an optical system including diffraction, but still within the paraxial approximation valid only for 
small numerical apertures. 
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