
PHYS 551 Homework 2 Solutions

Problem 1:
Since both operators in the Hamiltonian are scalar, they cannot change the total J of the atomic

state or the projection mJ . All mJ states will be degenerate because of the spherical symmetry of
H and we can consider just one mJ state for each J , say with mJ = J . From the available particles
one can construct the wavefunctions which are eigenstates of j1 = l1 + s1 as well as total angular
momentum J . The wavefunctions can be obtained using Clebsch-Gordon coefficients

|l1s1j1s2J,mJ = J〉 =
∑

ml,ms1,ms2

C(l1ml, s1ms1|l1s1j1mj1)C(j1mj1, s2ms2|j1s2J, J) |l1ml, s1ms1, s2ms2〉
(1)
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With these wavefunctions one can evaluate the terms of the Hamilitonian by writing l1 · s1 =
[j1(j1 + 1)− l1(l1 + 1)− s1(s1 + 1)]/2 and s1 · s2 = s1zs2z + ( s1+s2−+ s1−s2+)/2

l1 · s1ψi s1 · s2ψi
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Note that we have constructed the wavefunctions to be eigenstates of j1 = l1 +s1 and evaluation
of l1 · s1 is trivial. One could also constuct the wavefunctions to be eigenstates of S = s1 + s2, in
which case the evaluation of s1 · s2 would be trivial. These two schemes of coupling the angular
momenta are related by Racah W coefficients or equivalent 6-j symbols:

〈l1, (s1, s2, S), J |(l1, s1, j1), s2, J〉 =
√

(2S + 1)(2j1 + 1)W (l1, s1, J, s2; S, j1) (2)

=
√

(2S + 1)(2j1 + 1)(−1)l1+s1+s2+J

{
l1 s1 j1

s2 J S

}
(3)

Using this technique we can express the wavefunctions ψi as a sum of the wavefunctions in the
|l1, (s1,s2,S), J, J〉 coupling scheme, where the operator s1 · s2 can be trivially evaluated

|(l1,s1,j1), s2,J〉 =
∑

S=0,1

〈l1, (s1, s2, S), J |(l1, s1, j1), s, J〉 |l1, (s1, s2, S), J〉 (4)
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S coupling s1 · s2 |l1, (s1, s2, S), J〉
|l1, (s1, s2, S), J〉
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This gives the same result but in much fewer steps. Now one can find the eigenstates of the
Hamiltonian using its representation in the ψi basis:
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Only the two states with J = 1 mix together. The eigenvalues of the two mixed states are given
by the roots of the quadratic (a + b/12− E) (−a/2 + 5b/12 − E) − 3b2/9 = 0, E± = (a + b ±√

9a2 − 4ab + 4b2)/4 . For b → 0 E+ corresponds to ψ2 and E− corresponds to ψ3.
The energy levels for the states in the j1 scheme are given in the NIST atomic energy lev-

els database (http://physics.nist.gov/PhysRefData/ASD/index.html). For Ne I (unionized Ne)
the atomic energies corresponding to the four states (ψ1,ψ2,ψ3,ψ4) = (134041.8400, 135888.7173,
134459.2871, 134818.6405) cm−1. One can solve for a, b and an energy e0 common to all states us-
ing the first three energy levels, for example. There are two possible solutions but only one of them
predicts an accurate value for E4 =134819.98 cm−1 with (e0 = 134673, a = 518.761, b = 1486.18)
cm−1. The error is only 1.3 cm−1, approximately 0.1% of the spin-orbit and spin-exchange inter-
actions. Since a and b are comparable, the states ψ2 and ψ3 states are significantly mixed. For
Xe I (ψ1,ψ2,ψ3,ψ4) = (67067.547, 77185.041, 68045.156, 76196.767) cm−1. With similar procedure
one finds the solution that gives closer result for E4 =76607.45 cm−1 with (e0 = 70636.3, a =
6359.94, b = 1555.2) cm−1. Now the error is 410 cm−1, a good fraction of the spin interactions.
In a heavy atom like Xe interactions with other electrons are significant, so this is just a rough
approximation. Note that a is now much larger, while b is about the same as in Ne atom, indicating
that the spin-orbit interaction is increasing with Z while the spin-exchange interaction does not.

Problem 2:
The derivation follows the notes on Tensor Operators, only we start by considering the matrix

element 〈l, s, j, I, F, mF |E · r|l′, s, j′, I, F ′,m′
F 〉 , where j = l+ s and F = j + I. The reduced matrix

element (l||r||l′) is replaced by (l, s, j, I, F ||r||l′, s, j ′, I, F ′), but the mF dependendence is exactly
the same as in the notes with l replaced by F. Hence

|〈l, s, j, I, F, mF |E · r|l′, s, j ′, I, F ′,m′
F 〉|2 = E2

0 |(l, s, j, I, F ||r||l′, s, j′, I, F ′)|2 × (6)
(

F 1 F ′

−mF mF −m′
F m′

F

)2

εm′
F−mF

ε∗mF−m′
F

(7)

The reduced matrix element can be simplified using 6-j symbols as described at the end of the notes
since operator r commutes with all quantum numbers except l.
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(l, s, j, I, F ||r||l′, s, j′, I, F ′) = (−1)j+I+F ′+1(l, s, j||r||l′, s, j′)
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(l, s, j||r||l′, s, j′) = (−1)l+s+j′+1(l||r||l′)
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Based on this one gets the following selection rules for allowed transitions: F ′ = (F−1, F, F +1).
For F ′ = F the transition mF = 0 → mF = 0 is forbidden and transitions get stronger for larger
mF . The strongest transition is F ′ = F + 1, mF = 0; the weakest is F ′ = F − 1, mF = ±1. There is
more than a factor of 10 between the strongest and weakest transitions. Also note that from each
|F, mF 〉 state the sum of transitions to all F ′ states is the same, equal to 2/9. For completeness,
for the P1/2 transition with j′ = 1/2
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Here the sum of transitions from each state to all F ′ is equal to 1/9. Hence the sum of all
possible transitions to levels (j′, F ′) from any given state is 1/3, which is the same as was obtained
for a simple l → l′ transition without any additional structure.
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