PHYS 551 Homework 2 Solutions

Problem 1:

Since both operators in the Hamiltonian are scalar, they cannot change the total J of the atomic
state or the projection m;. All m; states will be degenerate because of the spherical symmetry of
H and we can consider just one m state for each J, say with m; = J. From the available particles
one can construct the wavefunctions which are eigenstates of j; = l; + s; as well as total angular
momentum J. The wavefunctions can be obtained using Clebsch-Gordon coefficients
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With these wavefunctions one can evaluate the terms of the Hamilitonian by writing 1; - s; =
[jl(jl —+ ]_) — ll(ll + 1) — 81(81 + 1)]/2 and S1 ' S9 = 851,522 —+ ( 81+82_+ 81_82+)/2
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Note that we have constructed the wavefunctions to be eigenstates of j; = [; + s; and evaluation
of 1; - s is trivial. One could also constuct the wavefunctions to be eigenstates of S = s; + s9, in
which case the evaluation of s; - sy would be trivial. These two schemes of coupling the angular
momenta are related by Racah W coefficients or equivalent 6-j symbols:
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Using this technique we can express the wavefunctions v; as a sum of the wavefunctions in the
|l1, (s1,52,5), J,J) coupling scheme, where the operator s; - sy can be trivially evaluated

’(ll,sl,jl)752,J> = Z (I, (51, 82,9), J |(l1, 51, 41), 8, J) |l1, (51,52, 5), J) (4)

5=0,1



S coupling s1- 82 |l1, (51,82,9), J)
|l1,(81,82,S),J>
R R It =1
b= 3135 10 = VB[00 | B[ AL L0 4 3R E1,0.1) = s - o
b= 313 b 1) B 100 | B L) BRI o) = R - s
v =L 1 5 1.0) 111 10) < b,

This gives the same result but in much fewer steps. Now one can find the eigenstates of the
Hamiltonian using its representation in the ); basis:
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Only the two states with J = 1 mix together. The eigenvalues of the two mixed states are given
by the roots of the quadratic (a +b/12 — F) (—a/2 + 5b/12 — E) — 3b*/9 = 0, Ey = (a +b £
V9a2 — 4ab + 4b%) /4 . For b — 0 E, corresponds to 1, and E_ corresponds to 3.

The energy levels for the states in the j; scheme are given in the NIST atomic energy lev-
els database (http://physics.nist.gov/PhysRefData/ASD /index.html). For Ne I (unionized Ne)
the atomic energies corresponding to the four states (11 12 1514) = (134041.8400, 135888.7173,
134459.2871, 134818.6405) cm™t. One can solve for a, b and an energy e, common to all states us-
ing the first three energy levels, for example. There are two possible solutions but only one of them
predicts an accurate value for Ey =134819.98 cm™! with (eg = 134673,a = 518.761,b = 1486.18)
cm~t. The error is only 1.3 cm™!, approximately 0.1% of the spin-orbit and spin-exchange inter-
actions. Since a and b are comparable, the states 1y and 3 states are significantly mixed. For
Xe T (¢119103104) = (67067.547, 77185.041, 68045.156, 76196.767) cm~'. With similar procedure
one finds the solution that gives closer result for F; =76607.45 cm™! with (eg = 70636.3, a =
6359.94,b = 1555.2) cm~ . Now the error is 410 cm™!, a good fraction of the spin interactions.
In a heavy atom like Xe interactions with other electrons are significant, so this is just a rough
approximation. Note that a is now much larger, while b is about the same as in Ne atom, indicating
that the spin-orbit interaction is increasing with Z while the spin-exchange interaction does not.

Problem 2:

The derivation follows the notes on Tensor Operators, only we start by considering the matrix
element (I, s, 5, I, F,mp|E-x|l';s,j/, I, F',m}), where j =+ s and F' = j+ I. The reduced matrix
element (I||r||l") is replaced by (l,s,j, I, F||r||l';s,j', I, F’), but the mp dependendence is exactly
the same as in the notes with [ replaced by F. Hence
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The reduced matrix element can be simplified using 6-j symbols as described at the end of the notes
since operator r commutes with all quantum numbers except [.
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Putting everything together we get for ‘<O, s 5. 5 FmplE-r|1,3,3, 3, F’,m’F>’ with j/ = 3/2
and with linear polarization (mp = m/):
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Based on this one gets the following selection rules for allowed transitions: F’ = (F—1, F, F+1).
For F' = F the transition mrp = 0 — mp = 0 is forbidden and transitions get stronger for larger
mp. The strongest transition is F/ = F'+ 1, mp = 0; the weakest is F” = F — 1, mp = £1. There is
more than a factor of 10 between the strongest and weakest transitions. Also note that from each
|F,mp) state the sum of transitions to all F’ states is the same, equal to 2/9. For completeness,
for the Py, transition with 5/ = 1/2

F'=1 F'=2
A1 0 1 [2 -1 001 2
1 % 0 3|0 15 5 15 0
9 T 1 T |1 £ 5 L 1

12 9 12 9 36 36 9

Here the sum of transitions from each state to all F’ is equal to 1/9. Hence the sum of all
possible transitions to levels (j’, F’) from any given state is 1/3, which is the same as was obtained
for a simple [ — [’ transition without any additional structure.



