PHYS 551 Homework 2 Solutions

Problem 1:

Since both operators in the Hamiltonian are scalar, they cannot change the total J of the atomic state or the projection m_J . All m_J states will be degenerate because of the spherical symmetry of H and we can consider just one m_J state for each J, say with $m_J = J$. From the available particles one can construct the wavefunctions which are eigenstates of $j_1 = l_1 + s_1$ as well as total angular momentum J. The wavefunctions can be obtained using Clebsch-Gordon coefficients

$$|l_1 s_1 j_1 s_2 J, m_J = J\rangle = \sum_{m_l, m_{s1}, m_{s2}} C(l_1 m_l, s_1 m_{s1} | l_1 s_1 j_1 m_{j1}) C(j_1 m_{j1}, s_2 m_{s2} | j_1 s_2 J, J) | l_1 m_l, s_1 m_{s1}, s_2 m_{s2}\rangle$$
(1)

j_1 coupled wavefunctions	Uncoupled wavefunctions
$ l_1,s_1,j_1,s_2,J,J angle$	$ m_l, m_{s1}, m_{s2} angle$
$\psi_1 = \left 1, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, 2, 2 \right\rangle$	$\left 1,\frac{1}{2},\frac{1}{2}\right\rangle$
$\psi_2 = \left 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle$	$\sqrt{\frac{2}{3}} \left 1, -\frac{1}{2}, \frac{1}{2} \right\rangle - \sqrt{\frac{1}{3}} \left 0, \frac{1}{2}, \frac{1}{2} \right\rangle$
$\psi_3 = \left 1, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, 1, 1 \right\rangle$	$\frac{\sqrt{3}}{2} \left 1, \frac{1}{2}, -\frac{1}{2} \right\rangle - \frac{1}{2\sqrt{3}} \left 1, -\frac{1}{2}, \frac{1}{2} \right\rangle - \frac{1}{\sqrt{6}} \left 0, \frac{1}{2}, \frac{1}{2} \right\rangle$
$\psi_4 = \left 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0 \right\rangle$	$\left \sqrt{\frac{1}{3}}\left 1, -\frac{1}{2}, -\frac{1}{2}\right\rangle - \sqrt{\frac{1}{6}}\left 0, \frac{1}{2}, -\frac{1}{2}\right\rangle - \sqrt{\frac{1}{6}}\left 0, -\frac{1}{2}, \frac{1}{2}\right\rangle + \sqrt{\frac{1}{3}}\left -1, \frac{1}{2}, \frac{1}{2}\right\rangle\right $

With these wavefunctions one can evaluate the terms of the Hamilitonian by writing $\mathbf{l}_1 \cdot \mathbf{s}_1 = [j_1(j_1+1) - l_1(l_1+1) - s_1(s_1+1)]/2$ and $\mathbf{s}_1 \cdot \mathbf{s}_2 = s_{1z}s_{2z} + (s_{1+}s_{2-}+s_{1-}s_{2+})/2$

Note that we have constructed the wavefunctions to be eigenstates of $j_1 = l_1 + s_1$ and evaluation of $\mathbf{l}_1 \cdot \mathbf{s}_1$ is trivial. One could also construct the wavefunctions to be eigenstates of $S = s_1 + s_2$, in which case the evaluation of $\mathbf{s}_1 \cdot \mathbf{s}_2$ would be trivial. These two schemes of coupling the angular momenta are related by Racah W coefficients or equivalent 6-*j* symbols:

$$\langle l_1, (s_1, s_2, S), J | (l_1, s_1, j_1), s_2, J \rangle = \sqrt{(2S+1)(2j_1+1)}W(l_1, s_1, J, s_2; S, j_1)$$
 (2)

$$= \sqrt{(2S+1)(2j_1+1)}(-1)^{l_1+s_1+s_2+J} \left\{ \begin{array}{ccc} l_1 & s_1 & j_1 \\ s_2 & J & S \end{array} \right\}$$
(3)

Using this technique we can express the wavefunctions ψ_i as a sum of the wavefunctions in the $|l_1, (s_1, s_2, S), J, J\rangle$ coupling scheme, where the operator $\mathbf{s}_1 \cdot \mathbf{s}_2$ can be trivially evaluated

$$|(l_{1,}s_{1,}j_{1}), s_{2,}J\rangle = \sum_{S=0,1} \langle l_{1}, (s_{1}, s_{2}, S), J | (l_{1}, s_{1}, j_{1}), s, J\rangle | l_{1}, (s_{1}, s_{2}, S), J\rangle$$
(4)

$$\begin{array}{c|c} S \text{ coupling} & s_1 \cdot s_2 \left| l_1, (s_1, s_2, S), J \right\rangle \\ \hline \psi_1 = \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 2 \right\rangle & \frac{1}{4} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 2 \right\rangle = \frac{1}{4} \psi_1 \\ \psi_2 = \sqrt{\frac{2}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle - \sqrt{\frac{1}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 0, 1 \right\rangle & \frac{1}{4} \sqrt{\frac{2}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle + \frac{3}{4} \sqrt{\frac{1}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 0, 1 \right\rangle = \frac{\sqrt{2}}{3} \psi_3 - \frac{1}{12} \psi_2 \\ \psi_3 = \sqrt{\frac{1}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle + \sqrt{\frac{2}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 0, 1 \right\rangle & \frac{1}{4} \sqrt{\frac{1}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 1 \right\rangle - \frac{3}{4} \sqrt{\frac{2}{3}} \left| 1, \frac{1}{2}, \frac{1}{2}, 0, 1 \right\rangle = \frac{\sqrt{2}}{3} \psi_2 - \frac{5}{12} \psi_3 \\ \psi_4 = \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 0 \right\rangle & \frac{1}{4} \left| 1, \frac{1}{2}, \frac{1}{2}, 1, 0 \right\rangle = \frac{1}{4} \psi_4 \end{array}$$

This gives the same result but in much fewer steps. Now one can find the eigenstates of the Hamiltonian using its representation in the ψ_i basis:

$$H \begin{vmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{vmatrix} = \begin{pmatrix} -\frac{a}{2} - \frac{b}{4} & & \\ & a + \frac{b}{12} & -\frac{\sqrt{2}b}{3} & \\ & & -\frac{\sqrt{2}b}{3} & -\frac{a}{2} + \frac{5b}{12} & \\ & & & a - \frac{b}{4} \end{pmatrix} \begin{vmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$
(5)

Only the two states with J = 1 mix together. The eigenvalues of the two mixed states are given by the roots of the quadratic $(a + b/12 - E)(-a/2 + 5b/12 - E) - 3b^2/9 = 0$, $E_{\pm} = (a + b \pm \sqrt{9a^2 - 4ab + 4b^2})/4$. For $b \to 0$ E_{\pm} corresponds to ψ_2 and E_{\pm} corresponds to ψ_3 .

The energy levels for the states in the j_1 scheme are given in the NIST atomic energy levels database (http://physics.nist.gov/PhysRefData/ASD/index.html). For Ne I (unionized Ne) the atomic energies corresponding to the four states ($\psi_1, \psi_2, \psi_3, \psi_4$) = (134041.8400, 135888.7173, 134459.2871, 134818.6405) cm⁻¹. One can solve for a, b and an energy e_0 common to all states using the first three energy levels, for example. There are two possible solutions but only one of them predicts an accurate value for E_4 =134819.98 cm⁻¹ with (e_0 = 134673, a = 518.761, b = 1486.18) cm⁻¹. The error is only 1.3 cm⁻¹, approximately 0.1% of the spin-orbit and spin-exchange interactions. Since a and b are comparable, the states ψ_2 and ψ_3 states are significantly mixed. For Xe I ($\psi_1, \psi_2, \psi_3, \psi_4$) = (67067.547, 77185.041, 68045.156, 76196.767) cm⁻¹. With similar procedure one finds the solution that gives closer result for E_4 =76607.45 cm⁻¹ with (e_0 = 70636.3, a = 6359.94, b = 1555.2) cm⁻¹. Now the error is 410 cm⁻¹, a good fraction of the spin interactions. In a heavy atom like Xe interactions with other electrons are significant, so this is just a rough approximation. Note that a is now much larger, while b is about the same as in Ne atom, indicating that the spin-orbit interaction is increasing with Z while the spin-exchange interaction does not.

Problem 2:

The derivation follows the notes on Tensor Operators, only we start by considering the matrix element $\langle l, s, j, I, F, m_F | \mathbf{E} \cdot \mathbf{r} | l', s, j', I, F', m'_F \rangle$, where j = l + s and F = j + I. The reduced matrix element (l||r||l') is replaced by (l, s, j, I, F||r||l', s, j', I, F'), but the m_F dependendence is exactly the same as in the notes with l replaced by F. Hence

$$|\langle l, s, j, I, F, m_F | \mathbf{E} \cdot \mathbf{r} | l', s, j', I, F', m'_F \rangle|^2 = E_0^2 |(l, s, j, I, F)| r ||l', s, j', I, F')|^2 \times (6)$$

$$\begin{pmatrix} F & 1 & F' \\ -m_F & m_F - m'_F & m'_F \end{pmatrix}^2 \varepsilon_{m'_F - m_F} \varepsilon^*_{m_F - m'_F} \quad (7)$$

The reduced matrix element can be simplified using 6-j symbols as described at the end of the notes since operator r commutes with all quantum numbers except l.

$$(l, s, j, I, F||r||l', s, j', I, F') = (-1)^{j+I+F'+1}(l, s, j||r||l', s, j')\sqrt{(2F+1)(2F'+1)} \left\{ \begin{array}{cc} j & F & I \\ F' & j' & 1 \end{array} \right\}_{(8)}$$

$$(l,s,j||r||l',s,j') = (-1)^{l+s+j'+1}(l||r||l')\sqrt{(2j+1)(2j'+1)} \left\{ \begin{array}{cc} l & j & s \\ j' & l' & 1 \end{array} \right\}$$
(9)

Putting everything together we get for $\left|\left\langle 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, F, m_F | \mathbf{E} \cdot \mathbf{r} | 1, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}, F', m'_F \right\rangle\right|^2$ with j' = 3/2 and with linear polarization $(m_F = m'_F)$:

		F' = 0	F' = 1			F'=2					F'=3						
1	$F \setminus {}^{m_{F'}}$	0	-1	0	1	-2	-1	0	1	2	-3	-2	-1	0	1	2	3
-	1	$\frac{1}{9}$	$\frac{5}{36}$	0	$\frac{\frac{5}{36}}{\frac{1}{60}}$	0	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{1}{12}$	0	0	0	0	0	0	0	0
4	2	0	$\frac{1}{60}$	$\frac{1}{45}$	$\frac{1}{60}$	$\frac{1}{9}$	$\frac{1}{36}$	0	$\frac{1}{36}$	$\frac{1}{9}$	0	$\frac{1}{9}$	$\frac{8}{45}$	$\frac{1}{5}$	$\frac{8}{45}$	$\frac{1}{9}$	0

Based on this one gets the following selection rules for allowed transitions: F' = (F-1, F, F+1). For F' = F the transition $m_F = 0 \rightarrow m_F = 0$ is forbidden and transitions get stronger for larger m_F . The strongest transition is F' = F + 1, $m_F = 0$; the weakest is F' = F - 1, $m_F = \pm 1$. There is more than a factor of 10 between the strongest and weakest transitions. Also note that from each $|F, m_F\rangle$ state the sum of transitions to all F' states is the same, equal to 2/9. For completeness, for the $P_{1/2}$ transition with j' = 1/2

Here the sum of transitions from each state to all F' is equal to 1/9. Hence the sum of all possible transitions to levels (j', F') from any given state is 1/3, which is the same as was obtained for a simple $l \to l'$ transition without any additional structure.