PHYS 551 Homework 2 Solutions

Problem 1:

Since both operators in the Hamiltonian are scalar, they cannot change the total J of the atomic state or the projection m_{J}. All m_{J} states will be degenerate because of the spherical symmetry of H and we can consider just one m_{J} state for each J, say with $m_{J}=J$. From the available particles one can construct the wavefunctions which are eigenstates of $j_{1}=l_{1}+s_{1}$ as well as total angular momentum J. The wavefunctions can be obtained using Clebsch-Gordon coefficients

$$
\begin{equation*}
\left|l_{1} s_{1} j_{1} s_{2} J, m_{J}=J\right\rangle=\sum_{m_{l}, m_{s 1}, m_{s 2}} C\left(l_{1} m_{l}, s_{1} m_{s 1} \mid l_{1} s_{1} j_{1} m_{j 1}\right) C\left(j_{1} m_{j 1}, s_{2} m_{s 2} \mid j_{1} s_{2} J, J\right)\left|l_{1} m_{l}, s_{1} m_{s 1}, s_{2} m_{s 2}\right\rangle \tag{1}
\end{equation*}
$$

j_{1} coupled wavefunctions $\left\|l_{1}, s_{1}, j_{1}, s_{2}, J, J\right\rangle$	Uncoupled wavefunctions $\left\|m_{l}, m_{s 1}, m_{s 2}\right\rangle$
$\psi_{1}=\left\|1, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, 2,2\right\rangle$	$\left\|1, \frac{1}{2}, \frac{1}{2}\right\rangle$
$\psi_{2}=\left\|1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1,1\right\rangle$	$\sqrt{\frac{2}{3}}\left\|1,-\frac{1}{2}, \frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left\|0, \frac{1}{2}, \frac{1}{2}\right\rangle$
$\psi_{3}=\left\|1, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, 1,1\right\rangle$	$\frac{\sqrt{3}}{2}\left\|1, \frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{2 \sqrt{3}}\left\|1,-\frac{1}{2}, \frac{1}{2}\right\rangle-\frac{1}{\sqrt{6}}\left\|0, \frac{1}{2}, \frac{1}{2}\right\rangle$
$\psi_{4}=\left\|1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0,0\right\rangle$	$\sqrt{\frac{1}{3}}\left\|1,-\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{6}}\left\|0, \frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{6}}\left\|0,-\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left\|-1, \frac{1}{2}, \frac{1}{2}\right\rangle$

With these wavefunctions one can evaluate the terms of the Hamilitonian by writing $\mathbf{l}_{1} \cdot \mathbf{s}_{1}=$ $\left[j_{1}\left(j_{1}+1\right)-l_{1}\left(l_{1}+1\right)-s_{1}\left(s_{1}+1\right)\right] / 2$ and $\mathbf{s}_{1} \cdot \mathbf{s}_{2}=s_{1 z} s_{2 z}+\left(s_{1+} s_{2-}+s_{1-} s_{2+}\right) / 2$

$\mathbf{l}_{1} \cdot \mathbf{s}_{1} \psi_{i}$	$\mathbf{s}_{1} \cdot \mathbf{s}_{2} \psi_{i}$
$\frac{1}{2} \psi_{1}$	$\frac{1}{4} \psi_{1}$
$-\psi_{2}$	$\frac{1}{2} \sqrt{\frac{2}{3}}\left\|1, \frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{4} \sqrt{\frac{2}{3}}\left\|1,-\frac{1}{2}, \frac{1}{2}\right\rangle-\frac{1}{4} \sqrt{\frac{1}{3}}\left\|0, \frac{1}{2}, \frac{1}{2}\right\rangle=\frac{\sqrt{2}}{3} \psi_{3}-\frac{1}{12} \psi_{2}$
$\frac{1}{2} \psi_{3}$	$\left(\frac{\sqrt{3}}{4}+\frac{1}{8 \sqrt{3}}\right)\left\|1,-\frac{1}{2}, \frac{1}{2}\right\rangle-\left(\frac{\sqrt{3}}{8}+\frac{1}{4 \sqrt{3}}\right)\left\|1, \frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{4} \sqrt{\frac{1}{6}}\left\|0, \frac{1}{2}, \frac{1}{2}\right\rangle=-\frac{5}{12} \psi_{3}+\frac{\sqrt{2}}{3} \psi_{2}$
$-\psi_{4}$	$\frac{1}{4} \sqrt{\frac{1}{3}}\left\|1,-\frac{1}{2},-\frac{1}{2}\right\rangle-\left(\frac{1}{2}-\frac{1}{4}\right) \sqrt{\frac{1}{6}}\left\|0, \frac{1}{2},-\frac{1}{2}\right\rangle-\left(\frac{1}{2}-\frac{1}{4}\right) \sqrt{\frac{1}{6}}\left\|0,-\frac{1}{2}, \frac{1}{2}\right\rangle+\frac{1}{4} \sqrt{\frac{1}{3}}\left\|-1, \frac{1}{2}, \frac{1}{2}\right\rangle=\frac{1}{4} \psi_{4}$

Note that we have constructed the wavefunctions to be eigenstates of $j_{1}=l_{1}+s_{1}$ and evaluation of $\mathbf{l}_{1} \cdot \mathbf{s}_{1}$ is trivial. One could also constuct the wavefunctions to be eigenstates of $S=s_{1}+s_{2}$, in which case the evaluation of $\mathbf{s}_{1} \cdot \mathbf{s}_{2}$ would be trivial. These two schemes of coupling the angular momenta are related by Racah W coefficients or equivalent $6-j$ symbols:

$$
\begin{align*}
\left\langle l_{1},\left(s_{1}, s_{2}, S\right), J \mid\left(l_{1}, s_{1}, j_{1}\right), s_{2}, J\right\rangle & =\sqrt{(2 S+1)\left(2 j_{1}+1\right)} W\left(l_{1}, s_{1}, J, s_{2} ; S, j_{1}\right) \tag{2}\\
& =\sqrt{(2 S+1)\left(2 j_{1}+1\right)}(-1)^{l_{1}+s_{1}+s_{2}+J}\left\{\begin{array}{ccc}
l_{1} & s_{1} & j_{1} \\
s_{2} & J & S
\end{array}\right\} \tag{3}
\end{align*}
$$

Using this technique we can express the wavefunctions ψ_{i} as a sum of the wavefunctions in the $\left|l_{1},\left(s_{1}, s_{2}, S\right), J, J\right\rangle$ coupling scheme, where the operator $\mathbf{s}_{1} \cdot \mathbf{s}_{2}$ can be trivially evaluated

$$
\begin{equation*}
\left|\left(l_{1}, s_{1, j_{1}}\right), s_{2,} J\right\rangle=\sum_{S=0,1}\left\langle l_{1},\left(s_{1}, s_{2}, S\right), J \mid\left(l_{1}, s_{1}, j_{1}\right), s, J\right\rangle\left|l_{1},\left(s_{1}, s_{2}, S\right), J\right\rangle \tag{4}
\end{equation*}
$$

$\begin{gathered} S \text { coupling } \\ \left\|l_{1},\left(s_{1}, s_{2}, S\right), J\right\rangle \end{gathered}$	$s_{1} \cdot s_{2}\left\|l_{1},\left(s_{1}, s_{2}, S\right), J\right\rangle$
$\psi_{1}=\left\|1, \frac{1}{2}, \frac{1}{2}, 1,2\right\rangle$	$\frac{1}{4}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,2\right\rangle=\frac{1}{4} \psi_{1}$
$\begin{aligned} & \psi_{2}=\sqrt{\frac{2}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,1\right\rangle-\sqrt{\frac{1}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 0,1\right\rangle \\ & \psi_{3}=\sqrt{\frac{1}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,1\right\rangle+\sqrt{\frac{2}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 0,1\right\rangle \\ & \psi_{4}=\left\|1, \frac{1}{2}, \frac{1}{2}, 1,0\right\rangle \end{aligned}$	$\begin{aligned} & \frac{1}{4} \sqrt{\frac{2}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,1\right\rangle+\frac{3}{4} \sqrt{\frac{1}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 0,1\right\rangle=\frac{\sqrt{2}}{3} \psi_{3}-\frac{1}{12} \psi_{2} \\ & \frac{1}{4} \sqrt{\frac{1}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,1\right\rangle-\frac{3}{4} \sqrt{\frac{2}{3}}\left\|1, \frac{1}{2}, \frac{1}{2}, 0,1\right\rangle=\frac{\sqrt{2}}{3} \psi_{2}-\frac{5}{12} \psi_{3} \\ & \frac{1}{4}\left\|1, \frac{1}{2}, \frac{1}{2}, 1,0\right\rangle=\frac{1}{4} \psi_{4} \end{aligned}$

This gives the same result but in much fewer steps. Now one can find the eigenstates of the Hamiltonian using its representation in the ψ_{i} basis:

$$
H\left(\begin{array}{l}
\psi_{1} \tag{5}\\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\begin{array}{cccc}
-\frac{a}{2}-\frac{b}{4} & & & \\
& a+\frac{b}{12} & -\frac{\sqrt{2} b}{3} & \\
& -\frac{\sqrt{2} b}{3} & -\frac{a}{2}+\frac{5 b}{12} & \\
& & & a-\frac{b}{4}
\end{array}\right)\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

Only the two states with $J=1$ mix together. The eigenvalues of the two mixed states are given by the roots of the quadratic $(a+b / 12-E)(-a / 2+5 b / 12-E)-3 b^{2} / 9=0, E_{ \pm}=(a+b \pm$ $\left.\sqrt{9 a^{2}-4 a b+4 b^{2}}\right) / 4$. For $b \rightarrow 0 E_{+}$corresponds to ψ_{2} and E_{-}corresponds to ψ_{3}.

The energy levels for the states in the j_{1} scheme are given in the NIST atomic energy levels database (http://physics.nist.gov/PhysRefData/ASD/index.html). For Ne I (unionized Ne) the atomic energies corresponding to the four states $\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)=(134041.8400,135888.7173$, $134459.2871,134818.6405) \mathrm{cm}^{-1}$. One can solve for a, b and an energy e_{0} common to all states using the first three energy levels, for example. There are two possible solutions but only one of them predicts an accurate value for $E_{4}=134819.98 \mathrm{~cm}^{-1}$ with ($e_{0}=134673, a=518.761, b=1486.18$) cm^{-1}. The error is only $1.3 \mathrm{~cm}^{-1}$, approximately 0.1% of the spin-orbit and spin-exchange interactions. Since a and b are comparable, the states ψ_{2} and ψ_{3} states are significantly mixed. For Xe I $\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)=(67067.547,77185.041,68045.156,76196.767) \mathrm{cm}^{-1}$. With similar procedure one finds the solution that gives closer result for $E_{4}=76607.45 \mathrm{~cm}^{-1}$ with $\left(e_{0}=70636.3\right.$, $a=$ $6359.94, b=1555.2) \mathrm{cm}^{-1}$. Now the error is $410 \mathrm{~cm}^{-1}$, a good fraction of the spin interactions. In a heavy atom like Xe interactions with other electrons are significant, so this is just a rough approximation. Note that a is now much larger, while b is about the same as in Ne atom, indicating that the spin-orbit interaction is increasing with Z while the spin-exchange interaction does not.

Problem 2:

The derivation follows the notes on Tensor Operators, only we start by considering the matrix element $\left\langle l, s, j, I, F, m_{F}\right| \mathbf{E} \cdot \mathbf{r}\left|l^{\prime}, s, j^{\prime}, I, F^{\prime}, m_{F}^{\prime}\right\rangle$, where $j=l+s$ and $F=j+I$. The reduced matrix element $\left(l\|r\| l^{\prime}\right)$ is replaced by $\left(l, s, j, I, F\|r\| l^{\prime}, s, j^{\prime}, I, F^{\prime}\right)$, but the m_{F} dependendence is exactly the same as in the notes with l replaced by F. Hence

$$
\begin{align*}
\left.\left|\left\langle l, s, j, I, F, m_{F}\right| \mathbf{E} \cdot \mathbf{r}\right| l^{\prime}, s, j^{\prime}, I, F^{\prime}, m_{F}^{\prime}\right\rangle\left.\right|^{2}= & E_{0}^{2}\left|\left(l, s, j, I, F \| r| | l^{\prime}, s, j^{\prime}, I, F^{\prime}\right)\right|^{2} \times \tag{6}\\
& \left(\begin{array}{lll}
F & 1 & F^{\prime} \\
-m_{F} & m_{F}-m_{F}^{\prime} & m_{F}^{\prime}
\end{array}\right)^{2} \varepsilon_{m_{F}^{\prime}-m_{F}} \varepsilon_{m_{F}-m_{F}^{\prime}}^{*} \tag{7}
\end{align*}
$$

The reduced matrix element can be simplified using 6 -j symbols as described at the end of the notes since operator r commutes with all quantum numbers except l.

$$
\begin{gather*}
\left(l, s, j, I, F\|r\| l^{\prime}, s, j^{\prime}, I, F^{\prime}\right)=(-1)^{j+I+F^{\prime}+1}\left(l, s, j\|r\| l^{\prime}, s, j^{\prime}\right) \sqrt{(2 F+1)\left(2 F^{\prime}+1\right)}\left\{\begin{array}{ccc}
j & F & I \\
F^{\prime} & j^{\prime} & 1
\end{array}\right\} \tag{8}\\
\left(l, s, j\|r\| l^{\prime}, s, j^{\prime}\right)=(-1)^{l+s+j^{\prime}+1}\left(l\|r\| l^{\prime}\right) \sqrt{(2 j+1)\left(2 j^{\prime}+1\right)}\left\{\begin{array}{ccc}
l & j & s \\
j^{\prime} & l^{\prime} & 1
\end{array}\right\} \tag{9}
\end{gather*}
$$

Putting everything together we get for $\left.\left|\left\langle 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, F, m_{F}\right| \mathbf{E} \cdot \mathbf{r}\right| 1, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}, F^{\prime}, m_{F}^{\prime}\right\rangle\left.\right|^{2}$ with $j^{\prime}=3 / 2$ and with linear polarization $\left(m_{F}=m_{F}^{\prime}\right)$:

	$F^{\prime}=0$	$F^{\prime}=1$						$F^{\prime}=2$								
F																
${ }^{m_{F^{\prime}}}$	0	-1	0	1	-2	-1	0	1	2	-3	-2	-1	0	1	2	3
1	$\frac{1}{9}$	$\frac{5}{36}$	0	$\frac{5}{36}$	0	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{1}{12}$	0	0	0	0	0	0	0	0
2	0	$\frac{1}{60}$	$\frac{1}{45}$	$\frac{1}{60}$	$\frac{1}{9}$	$\frac{1}{36}$	0	$\frac{1}{36}$	$\frac{1}{9}$	0	$\frac{1}{9}$	$\frac{8}{45}$	$\frac{1}{5}$	$\frac{8}{45}$	$\frac{1}{9}$	0

Based on this one gets the following selection rules for allowed transitions: $F^{\prime}=(F-1, F, F+1)$. For $F^{\prime}=F$ the transition $m_{F}=0 \rightarrow m_{F}=0$ is forbidden and transitions get stronger for larger m_{F}. The strongest transition is $F^{\prime}=F+1, m_{F}=0$; the weakest is $F^{\prime}=F-1, m_{F}= \pm 1$. There is more than a factor of 10 between the strongest and weakest transitions. Also note that from each $\left|F, m_{F}\right\rangle$ state the sum of transitions to all F^{\prime} states is the same, equal to $2 / 9$. For completeness, for the $\mathrm{P}_{1 / 2}$ transition with $j^{\prime}=1 / 2$

| | $F^{\prime}=1$ | | | | | | $F^{\prime}=2$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F \backslash m_{F^{\prime}}$ | -1 | 0 | 1 | -2 | -1 | 0 | 1 | 2 |
| 1 | $\frac{1}{36}$ | 0 | $\frac{1}{36}$ | 0 | $\frac{1}{12}$ | $\frac{1}{9}$ | $\frac{1}{12}$ | 0 |
| 2 | $\frac{1}{12}$ | $\frac{1}{9}$ | $\frac{1}{12}$ | $\frac{1}{9}$ | $\frac{1}{36}$ | 0 | $\frac{1}{36}$ | $\frac{1}{9}$ |

Here the sum of transitions from each state to all F^{\prime} is equal to $1 / 9$. Hence the sum of all possible transitions to levels $\left(j^{\prime}, F^{\prime}\right)$ from any given state is $1 / 3$, which is the same as was obtained for a simple $l \rightarrow l^{\prime}$ transition without any additional structure.

