
PHYS 551 Homework 3 Solutions

Problem 1
Atomic polarizability is defined as the dipole moment induced in the atom in response to ap-

plication of electric field, d = αE. Near a resonance the dipole moment can be calculated from
d = 〈Ψ|er|Ψ〉 , where Ψ = C1 |1〉 e−iE1t/h̄ +C2 |2〉 e−iE2t/h̄ and C1 and C2 are given by the solution of
the two-level problem. This derivation is discussed in section 2.5 of Loudon’s text book ”Quantum
theory of light”. The case of collisional broadening is discussed in section 2.9. Collisional broaden-
ing results in increase of the Lorentzian linewidth but no change in the spontaneous emission rate.
The result for susceptibility χ equal to the polarizability α times the density of atoms (N/V ) is
given by equation (2.9.8)

χ = α
N

V
=

2πc3N

ω3
0V

γsp(ω0 − ω + iγ)

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
(1)

where γ = γsp + γcol and Ω is the Rabi rate. The spontaneous emission rate from the excited state
2γsp can be related to the square of the dipole matrix element

2γsp =
4αω3

0

3c2
|D|2 (2)

and to the oscillator strength

f =
2mω0

3h̄
|D|2 (3)

(Note that there are differences in these definitions depending on whether one assumes that D =
〈r〉 or D = 〈er〉, here we assume the former). Hence

χ = α
N

V
=

Ne2f

2V ε0mω0

(ω0 − ω + iγ)

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
(4)

A similar result can be derived (see section 7.5 of Jackson) assuming a classical dumped oscillator
subjected to oscillating field

m(ẍ + γ′x + ω2
0x) = −eEe−iωt (5)

One obtains

χ =
Ne2f

V ε0m

1

(ω2
0 − ω2 − iωγ′)

(6)

assuming the classical oscillator has ”oscillator strength” = f. For γ′ ¿ ω0 one can consider ω only
close to ω0, so that (ω + ω0) ' 2ω0 and ω/ω0 ' 1 and we obtain

χ =
Ne2f

2V ε0mω0

1

(ω0 − ω − iγ′/2)
, (7)

which is equivalent to Eq. (4) for γ′ = 2γ. and small Ω (no saturation). This is consistent with the
fact that the decay rate of the excited state is equal to 2γsp.

The propagation of light E(x, t) = E0e
−i(kx−ωt) is derived from the relationship k =

√
µεω and

ε = ε0(1+χ). Since the medium is optically thin we can assume that χ ¿ 1 (actually it is sufficient
that the optical thickness is much less than the wavelength of light) and k = (1 + χ/2)ω/c. Hence
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the intensity of the light I ∼ E2 will be attenuated as exp[Im[χ]lω/c] = exp[Im[χ]2πl/λ] where
λ = 2πc/ω is the wavelength of light in empty space. For optically thin vapor Im[χ]2πl/λ ¿ 1 and
the relative attenuation coefficient is equal to

I − I0

I0

=
Ne2fl

2V ε0mc

γ

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
(8)

. The phase shift of electric field relative to empty space will be given by φ = Re[χ]πl/λ.
Another way to find the attenuation of light is to calculate the absorption cross-section. This is

discussed, for example, in Foot’s book on ”Atomic Physics” in section 7.6. To find the cross-section
one can equate the rate of photon absorption Φσ, where Φ is the photon flux (# of photons per
unit area), to the rate of actual photon emission from the excited state Φσ = 2γspρ22

σ =
2γspρ22

Φ
=

Ω2

Φ

γ/2

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
(9)

Now Ω2 = e2 |〈e|r · ε|g〉|2 E2
0/h̄

2 and as shown in previous homeworks, when |〈e|r · ε|g〉|2 is averaged
over all possible final states one gets a factor of 1/3, |〈e|r · ε|g〉|2 = |D|2/3. Also Φ = I/h̄ω =
ε0cE

2
0/2h̄ω. Hence one gets

σ =
fe2

2ε0mc

γ

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
(10)

Light attenuation is then given by I = I0 exp[−σNx/V ] and for small attenuation

I − I0

I0

=
Ne2fl

2V ε0mc

γ

(ω0 − ω)2 + γ2 + (γ/2γsp)2Ω2
, (11)

in agreement with Eq.(8). Incidentally, in the regime of small exciation (Ω2 ¿ γ2
sp), the cross-section

satisfies a simple sum rule
∫

σ(ω)dω = πfe2

2ε0mc
= 2π2recf, where re is the ”classical electron radius”,

re = 2.82 × 10−13cm. Remembering the sum rule and the fact that the absorption cross-section
is a Lorentzian, one can easily obtain all factors in front. The same sum-rule of course applies to
Doppler-broadened profiles as well.

Problem 2
The energy shift is given by second-order time-dependent perturbation theory in the basis of S

and P states. We can write
Ψ = cs(t) |s〉+ cp(t)e

−iω0t |p〉 (12)

taking the energy of the ground state to be zero. In zeros order c(0)
s (t) = 1, c(0)

p (t) = 1. The
perturbation is V = −eE0r · (εe−iωt + ε∗eiωt)/2. Plugging it into the Schrodinger equation one gets

c(1)
p (t) = −eE0

2ih̄

t∫

0

eiω0t′
〈
p|r · (εe−iωt′ + ε∗eiωt′)|s

〉
c0
s(t

′)dt′ (13)

=
eE0

2h̄

(〈p|r · ε|s〉 (ei(ω0−ω)t − 1)

(ω0 − ω)
+
〈p|r · ε∗|s〉 (ei(ω0+ω)t − 1)

(ω0 + ω)

)
(14)
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Now in second order

c(2)
s (t) = −eE0

2ih̄

t∫

0

e−iω0t′
〈
s|r · (εe−iωt′ + ε∗eiωt′)|p

〉
c(1)
p (t′)dt′ (15)

= −e2E2
0

4ih̄2

(〈p|r · ε|s〉 〈s|r · ε∗|p〉
(ω0 − ω)

+
〈p|r · ε∗|s〉 〈s|r · ε|p〉

(ω0 + ω)

)
t (16)

where we only pick terms that do not average to zero. This linear time evolution of c(2)
s (t) can

be interpreted as the first term in the expansion cs(t) = exp[−iδEt/h̄] = 1 − iδEt/h̄ + ... =
c(0)
s (t) + c(2)

s (t) + ... Hence the energy shift is given by

δE = −e2E2
0

4h̄

(〈s|r · ε∗|p〉 〈p|r · ε|s〉
(ω0 − ω)

+
〈s|r · ε|p〉 〈p|r · ε∗|s〉

(ω0 + ω)

)
(17)

Now we use spherical expansion ε · r =
∑1

ρ=−1(−1)ρερr−ρ and

|〈l, s, J,mJ |ε · r|l′, s, J ′,m′
J〉|2 = |(l, s, J ||r||l′, s, J ′)|2 × (18)

(−1)J+J ′−mJ−m′
J+1

(
J 1 J ′

−mJ mJ −m′
J m′

J

)2

εm′
J−mJ

ε∗mJ−m′
J

and get the following shifts by summing over m′
J

δEmJ=1/2 = −e2E2
0

4h̄
|(J ||r||J ′)|2

[(
ε0ε

∗
0 − 2ε−1ε

∗
1

6(ω0 − ω)

)
+

(
ε0ε

∗
0 − 2ε∗−1ε1

6(ω0 + ω)

)]
(19)

δEmJ=−1/2 = −e2E2
0

4h̄
|(J ||r||J ′)|2

[(
ε0ε

∗
0 − 2ε1ε

∗
−1

6(ω0 − ω)

)
+

(
ε0ε

∗
0 − 2ε∗1ε−1

6(ω0 + ω)

)]
(20)

Consider the sum of these shifts and their difference

δEm=1/2 + δEm=−1/2 = −e2E2
0

4h̄
|(J ||r||J ′)|2

(
ε0ε

∗
0 − ε−1ε

∗
1 − ε1ε

∗
−1

3

) (
1

(ω0 − ω)
+

1

(ω0 + ω)

)
(21)

δEm=1/2 − δEm=−1/2 = −e2E2
0

4h̄
|(J ||r||lJ ′)|2

(
ε1ε

∗
−1 − ε−1ε

∗
1

3

) (
1

(ω0 − ω)
− 1

(ω0 + ω)

)
(22)

Using the definitions of spherical polarization vectors

ε1 = − 1√
2
(εx + iεy) (23)

ε0 = εz (24)

ε−1 =
1√
2
(εx − iεy) (25)

one can show that ε0ε
∗
0−ε−1ε

∗
1−ε1ε

∗
−1 = ε2

x+ε2
y+ε2

z = 1 and ε1ε
∗
−1−ε−1ε

∗
1 = ε2

L−ε2
R,where εL and εR

specify the components of left and right circular polarization ε = εL(−x̂− iŷ)/
√

2+ εR(x̂− iŷ)/
√

2.
Hence we can write

δE(m) = −e2E2
0

12h̄
|(l, s, J ||r||l′, s, J ′)|2

(
ω0

(ω2
0 − ω2)

+
2ω(ε2

L − ε2
R)m

(ω2
0 − ω2)

)
(26)
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It follows that the scalar light shift approaches a constant as ω → 0, while the vector light shift goes
to zero at low frequencies. The vector light shift is proportional to the difference in the intensities
of left and right circularly polarized light.

One check the scalar shift using the equation for atomic polarizability away from resonance

α =
e2f

m

1

ω2
0 − ω2

(27)

Note that this equation agrees with Eq. (4) for γ ¿ (ω − ω0) ¿ ω0, but it gives a result different
by a factor of 2 from Eq. (4) for ω close to zero. That is because Eq. (4) is derived using rotating
wave approximation and is not valid for (ω − ω0) ∼ ω0. Using

f =
2mω0

3h̄(2J + 1)
|(l, s, J ||r||l′, s, J ′)|2 (28)

we get from Eq. (26)

δE = − e2E2
0f

4m(ω2
0 − ω2)

(29)

which is in agreement with Eq. (27) since δE = −αE2
0/4 for an oscillating electric field with

amplitude E0.
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