Phys 551 Homework 4

1. Density matrix

Consider a spin=1 system with a Hamiltonian given by $H=\mu_{B} \mathbf{B} \cdot \mathbf{J}$. The density matrix $\rho(\mathrm{t})$ is given at $\mathrm{t}=0$ by

$$
\langle m| \rho(0)\left|m^{\prime}\right\rangle=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

in the basis with quantization axis along the z direction.
a) Use Liouville equation to find the evolution of the density matrix as a function of time for $\mathbf{B}=B_{0} \hat{X}$. Evaluate the form of the density matrix at $t=\pi \hbar / 2 \mu B$.
b) Decompose the initial density matrix $\rho(0)$ into irreducible spherical tensors and apply a rotation by $\pi / 2$ around the x axis. How does the form of the density matrix after rotation compare with part a)?
2. Spin squeezed state

Consider a state of spin J described by a wavefunction $|\psi\rangle=\cos \theta|J, J\rangle+\sin \theta|J,-J\rangle$ in the $\left|J, m_{J}\right\rangle$ basis. Evaluate $\left\langle J_{z}\right\rangle, \Delta J_{x}, \Delta J_{y}$ and find values of θ for which the state has reduced uncertainty $\Delta J_{x}<\left(\left\langle J_{z}\right\rangle / 2\right)^{1 / 2}$. Verify that the Heisenberg uncertainty relationship $\Delta J_{x} \Delta J_{y} \geq\left|\left\langle J_{z}\right\rangle\right| / 2$ is always satisfied.

