Phys 551 Homework 4

1. Density matrix

Consider a spin=1 system with a Hamiltonian given by $H = \mu_B \mathbf{B} \cdot \mathbf{J}$. The density matrix $\rho(t)$ is given at t = 0 by

$$\left< m | \rho(0) | m' \right> = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in the basis with quantization axis along the z direction.

- a) Use Liouville equation to find the evolution of the density matrix as a function of time for $\mathbf{B} = B_0 \hat{x}$. Evaluate the form of the density matrix at $t = \pi \hbar / 2\mu B$.
- b) Decompose the initial density matrix $\rho(0)$ into irreducible spherical tensors and apply a rotation by $\pi/2$ around the *x* axis. How does the form of the density matrix after rotation compare with part a)?

2. Spin squeezed state

Consider a state of spin J described by a wavefunction $|\psi\rangle = \cos\theta |J,J\rangle + \sin\theta |J,-J\rangle$ in the $|J,m_J\rangle$ basis. Evaluate $\langle J_z\rangle$, ΔJ_x , ΔJ_y and find values of θ for which the state has reduced uncertainty $\Delta J_x < (\langle J_z \rangle / 2)^{1/2}$. Verify that the Heisenberg uncertainty relationship $\Delta J_x \Delta J_y \ge |\langle J_z \rangle| / 2$ is always satisfied.