Evaluation of the matrix elements for radiative transitions

The transition matrix element for electic dipole transition is proportional to $|\langle e| \mathbf{E} \cdot \mathbf{r}| g\rangle\left.\right|^{2}$ where $|e\rangle$ and $|g\rangle$ are described by some angular momentum quantum numbers. First consider the simplest case $|g\rangle=\left|l, m_{l}\right\rangle$ - a single uncoupled electron. We introduce polarization vector $\mathbf{E}=E_{0} \varepsilon$ and expand the vector product in terms in spherical tensor operators

$$
\begin{equation*}
\mathbf{E} \cdot \mathbf{r}=E_{0} \sum_{\rho=-1}^{1}(-1)^{\rho} \varepsilon_{\rho} r_{-\rho} \tag{1}
\end{equation*}
$$

here

$$
\begin{align*}
\varepsilon_{1} & =-\frac{1}{\sqrt{2}}\left(\varepsilon_{x}+i \varepsilon_{y}\right) \tag{2}\\
\varepsilon_{0} & =\varepsilon_{z} \tag{3}\\
\varepsilon_{-1} & =\frac{1}{\sqrt{2}}\left(\varepsilon_{x}-i \varepsilon_{y}\right) \tag{4}
\end{align*}
$$

and similar for components of \mathbf{r}. Therefore,

$$
\begin{equation*}
\left\langle l m_{l}\right| \mathbf{E} \cdot \mathbf{r}\left|l^{\prime}, m_{l}^{\prime}\right\rangle=E_{0} \sum_{\rho}(-1)^{\rho} \varepsilon_{\rho}\left\langle l m_{l}\right| r_{-\rho}\left|l^{\prime}, m_{l}^{\prime}\right\rangle \tag{5}
\end{equation*}
$$

Here $r_{-\rho}$ is a component of a tensor of rank 1 (i.e. vector) and can be evaluated using a general relationship for expectation value of a tensor operator

$$
\langle l m| T_{k q}\left|l^{\prime}, m^{\prime}\right\rangle=(-1)^{l-m}\left(l| | T_{k}| | l^{\prime}\right)\left(\begin{array}{lll}
l & k & l^{\prime} \tag{6}\\
-m & q & m^{\prime}
\end{array}\right)
$$

The expression in the parenthesis is the Wigner 3 j symbol and $\left(l\left\|T_{k}\right\| l^{\prime}\right)$ is known as the reduced matrix element. Eq. (6) is known as the Wigner-Eckart Theorem. The 3 j symbol is related to the usual Clebsch-Gordon coefficient coupling two angular momenta j_{1} and j_{2} to a total momentum j by

$$
\left(j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right)=(-1)^{-j_{1}+j_{2}-m} \sqrt{2 j+1}\left(\begin{array}{lll}
j_{1} & j_{2} & j \tag{7}\\
m_{1} & m_{2} & -m
\end{array}\right)
$$

To calculate the reduced matrix element $\left(l\|r\| l^{\prime}\right)$ we can first experes it in terms of spherical harmonics, $r_{\rho}=\sqrt{4 \pi / 3} r Y_{1 \rho}$. Then one can do the angular integral explicitly for one particular value of ρ and use Wigner-Eckart theorem to calculate the reduced matrix element. In general,

$$
\left(l\left\|Y_{k}\right\| l^{\prime}\right)=(-1)^{l} \sqrt{\frac{(2 l+1)\left(2 l^{\prime}+1\right)(2 k+1)}{4 \pi}}\left(\begin{array}{ccc}
l & k & l^{\prime} \tag{8}\\
0 & 0 & 0
\end{array}\right)
$$

Finally, we get $\left(l\|r\| l^{\prime}\right)=\langle r\rangle\left(l-l^{\prime}\right) \sqrt{l_{\max }}$, where $l_{\max }=\max \left(l, l^{\prime}\right)$ and $l^{\prime}=l \pm 1$. The reduced matrix element is equal to zero if $l^{\prime} \neq l \pm 1$. Therefore a dipole transition has to change l quantum number. Here $\langle r\rangle$ is the purely radial matrix element between the two states, $\langle r\rangle=\int R_{g}(r) R_{e}(r) r^{3} d r$. Hence

$$
\begin{align*}
\left\langle l m_{l}\right| \mathbf{E} \cdot \mathbf{r}\left|l^{\prime}, m_{l}^{\prime}\right\rangle= & E_{0}\langle r\rangle \sqrt{l_{\max }} \sum_{\rho}(-1)^{\rho+l-m}\left(l-l^{\prime}\right)\left(\begin{array}{ccc}
l & 1 & l^{\prime} \\
-m & -\rho & m^{\prime}
\end{array}\right) \varepsilon_{\rho} \tag{9}\\
|\langle e| \mathbf{E} \cdot \mathbf{r}| g\rangle\left.\right|^{2}= & \left\langle l m_{l}\right| \mathbf{E} \cdot \mathbf{r}\left|l^{\prime}, m_{l}^{\prime}\right\rangle\left\langle l^{\prime} m_{l}^{\prime}\right| \mathbf{E}^{*} \cdot \mathbf{r}\left|l, m_{l}\right\rangle=E_{0}^{2}\langle r\rangle^{2} l_{\max } \times \tag{10}\\
& \sum_{\rho, \rho^{\prime}}(-1)^{\rho+\rho^{\prime}+l+l^{\prime}-m-m^{\prime}+1}\left(\begin{array}{llll}
l & 1 & l^{\prime} \\
-m & -\rho & m^{\prime}
\end{array}\right)\left(\begin{array}{lll}
l^{\prime} & 1 & l \\
-m^{\prime} & -\rho^{\prime} & m
\end{array}\right) \varepsilon_{\rho} \varepsilon_{\rho^{\prime}}^{*} \tag{11}
\end{align*}
$$

For the 3 j symbol to be non-zero we need $-m-\rho+m^{\prime}=0$ and $-m^{\prime}-\rho^{\prime}+m=0$. So, $\rho=m^{\prime}-m=$ $-\rho^{\prime}$. Also by symmetry of the 3 j symbols

$$
\left(\begin{array}{lll}
l & 1 & l^{\prime} \tag{12}\\
-m & -\rho & m^{\prime}
\end{array}\right)=(-1)^{l+l^{\prime}+\rho}\left(\begin{array}{lll}
l^{\prime} & 1 & l \\
m^{\prime} & -\rho & -m
\end{array}\right)=\left(\begin{array}{lll}
l^{\prime} & 1 & l \\
-m^{\prime} & \rho & m
\end{array}\right)
$$

So,

$$
\left.|\langle l m| \mathbf{E} \cdot \mathbf{r}| l^{\prime} m^{\prime}\right\rangle\left.\right|^{2}=E_{0}^{2}\langle r\rangle^{2} l_{\max }(-1)^{l+l^{\prime}-m-m^{\prime}+1}\left(\begin{array}{lll}
l & 1 & l^{\prime} \tag{13}\\
-m & m-m^{\prime} & m^{\prime}
\end{array}\right)^{2} \varepsilon_{m^{\prime}-m} \varepsilon_{m-m^{\prime}}^{*}
$$

As an example, calculate

$$
|\langle 00| \mathbf{E} \cdot \mathbf{r}| 11\rangle\left.\right|^{2}=-E_{0}^{2}\langle r\rangle^{2} l_{\max }\left(\begin{array}{lll}
0 & 1 & 1 \tag{14}\\
0 & -1 & 1
\end{array}\right)^{2} \varepsilon_{1} \varepsilon_{-1}^{*}=-\frac{E_{0}^{2}\langle r\rangle^{2} l_{\max }}{3} \varepsilon_{1} \varepsilon_{-1}^{*}
$$

Note that ε_{-1}^{*} refers to the complex conjugate of the field, not the spherical tensor, $\varepsilon_{-1}^{*}=\left(\varepsilon_{x}^{*}-\right.$ $\left.i \varepsilon_{y}^{*}\right) / \sqrt{2}$.

If the light is right circularly polarized, $\varepsilon_{R}=-(\widehat{x}+i \widehat{y}) / \sqrt{2}$, then one gets $\varepsilon_{1} \varepsilon_{-1}^{*}=-1$ and $|\langle 00| \mathbf{E} \cdot \mathbf{r}| 11\rangle\left.\right|^{2}=E_{0}^{2}\langle r\rangle^{2} l_{\max } / 3$. For left circularly or linearly polarized light $\varepsilon_{1} \varepsilon_{-1}^{*}=0$. Similarly,

$$
|\langle 00| \mathbf{E} \cdot \mathbf{r}| 10\rangle\left.\right|^{2}=E_{0}^{2}\langle r\rangle^{2} l_{\max }\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)^{2} \varepsilon_{0} \varepsilon_{0}^{*}=E_{0}^{2}\langle r\rangle^{2} l_{\max } \varepsilon_{z}^{2} / 3
$$

In more general case, the quantum state is described by additional quantum numbers, for example, $\left|l, s, j, I, F, m_{F}\right\rangle$, where $j=l+s$ and $F=j+I$. To evaluate the transition matrix element in this case one first uses the Wigner-Eckert therem to get a reduced matrix element

$$
\langle l, s, j, I, F, m| T_{k q}\left|l^{\prime}, s, j^{\prime}, I, F^{\prime}, m^{\prime}\right\rangle=(-1)^{F-m}\left(l, s, j, I, F| | T_{k} \| \mid l^{\prime}, s, j^{\prime}, I, F^{\prime}\right)\left(\begin{array}{lll}
F & k & F^{\prime} \tag{15}\\
-m & q & m^{\prime}
\end{array}\right)
$$

Then one looks for the interaction of the operator T_{k} with the angular momenta involved. In the case of $T_{k}=r$, there is only interaction with orbital angular momentum, not electron or nuclear spin. There is a general relationship for reduced matrix elements

$$
\left(J_{1}, J_{2}, J\left\|T_{k}\right\| J_{1}^{\prime}, J_{2}, J^{\prime}\right)=(-1)^{J_{1}+J_{2}+J^{\prime}+k}\left(J_{1}\left\|T_{k}\right\| J_{1}^{\prime}\right) \sqrt{(2 J+1)\left(2 J^{\prime}+1\right)}\left\{\begin{array}{ccc}
J_{1} & J & J_{2} \tag{16}\\
J^{\prime} & J_{1}^{\prime} & k
\end{array}\right\}
$$

when the operator T_{k} commutes with J_{2} but not J_{1}. The quantity in $\}$ is the 6 j symbol. In the case of $\left|l, s, j, I, F, m_{F}\right\rangle$ state, one needs to apply this relationship twice, first to get $\left(l, s, j\left\|T_{k}\right\| l^{\prime}, s, j^{\prime}\right)$ and then $\left(l\left|\left|T_{k}\right|\right| l^{\prime}\right)$.

This general method allows one to calculate transition matrix elements as well as any other operator represented in terms of spherical tensor components.

