
ACM 217 Homework 2 Due: 04/19/07

Q. 1. Let Wt be a Wiener process.

1. Prove thatW̃t = cWt/c2 is also a Wiener process for anyc > 0. Hence the
sample paths of the Wiener process areself-similar(or fractal).

2. Define the stopping timeτ = inf{t > 0 : Wt = x} for somex > 0. Calculate
the moment generating functionE(e−λτ ), λ > 0 by proceding as follows:

(a) Prove thatXt = e(2λ)1/2Wt−λt is a martingale. Show thatXt → 0 a.s.
ast → ∞ (first argue thatXt converges a.s.; it then suffices to show that
Xn → 0 a.s. (n ∈ N), for which you may invoke Q.1 in homework 1.)

(b) It follows thatYt = Xt∧τ is also a martingale. Argue thatYt is bounded,
i.e.,Yt < K for someK > 0 and allt, and thatYt → Xτ a.s. ast →∞.

(c) Show that it follows thatE(Xτ ) = 1 (this is almost the optional stopping
theorem, except that we have not required thatτ < ∞!) The rest is easy.

What is the mean and variance ofτ? (You don’t have to give a rigorous argu-
ment.) In particular, doesWt always hit the levelx in finite time?

Q. 2 (Lyapunov functions). In deterministic nonlinear systems and control theory,
the notions of (Lyapunov)stability, asymptotic stability, andglobal stabilityplay an
important role. To prove that a system is stable, one generally looks for a suitable
Lyapunov function, as you might have learned in a nonlinear systems class. Our goal
is to find suitable stochastic counterparts of these ideas, albeit in discrete time.

We work on a probability space(Ω,F , P) on which is defined a sequenceξ1, ξ2, . . . of
i.i.d. random variables. We consider the dynamical system defined by the recursion

xn = F (xn−1, ξn) (n = 1, 2, . . .), x0 is non-random,

whereF : S × R → S is somecontinuousfunction andS is some compact subset of
Rd (compactness is not essential, but we go with it for simplicity). Let us assume that
F (x∗, ξ) = 0 for somex∗ ∈ S and allξ ∈ R.

The following notions of stability are natural counterparts of the deterministic notions
(compare with your favorite nonlinear systems textbook). The equilibriumx∗ is

• stable if for any ε > 0 andα ∈ ]0, 1[, there exists aδ < ε such that we have
P(supn≥0 ‖xn−x∗‖ < ε) > α whenever‖x0−x∗‖ < δ (“if we start sufficiently
close tox∗, then with high probability we will remain close tox∗ forever”);

• asymptotically stableif it is stable and for everyα ∈ ]0, 1[, there exists aκ such
thatP(xn → x∗) > α whenever‖x0 − x∗‖ < κ (“if we start sufficiently close
to x∗, then we will converge tox∗ with high probability”);

• globally stable if it is stable andxn → x∗ a.s. for anyx0.
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1. Prove the following theorem:

Theorem 1. Suppose that there is a continuous functionV : S → [0,∞[, with
V (x∗) = 0 andV (x) > 0 for x 6= x∗, such that

E(V (F (x, ξn)))− V (x) = k(x) ≤ 0 for all x ∈ S.

Thenx∗ is stable. (Note: asξn are i.i.d., the condition does not depend onn.)

Hint. Show that the processV (xn) is a supermartingale.

2. Prove the following theorem:

Theorem 2. Suppose that there is a continuous functionV : S → [0,∞[ with
V (x∗) = 0 andV (x) > 0 for x 6= x∗, such that

E(V (F (x, ξn)))− V (x) = k(x) < 0 whenever x 6= x∗.

Thenx∗ is globally stable.

Hint. The proof proceeds roughly as follows. Fill in the steps:

(a) Write V (x0)−E(V (xn)) as a telescoping sum. Use this and the condition
in the theorem to prove thatk(xn) → 0 in probability “fast enough”.

(b) Prove that if some sequencesn ∈ S converges to a points ∈ S, then
k(sn) → k(s), i.e., thatk(x) is a continuous function.

(c) As k(xn) → 0 a.s.,k is continuous, andk(sn) → 0 only if sn → x∗

(why?), you can now conclude thatxn → x∗ a.s.

3. (Inverted pendulum in the rain) A simple discrete time model for a controlled,
randomly forced overdamped pendulum is

θn+1 = θn + (1 + ξn) sin(θn)∆ + un+1∆ mod 2π,

whereθn is the angle (θ = 0 is up) of the pendulum at timen∆, ∆ is the time
step size (be sure to take it small enough),un+1 an applied control (using a servo
motor), andξn are i.i.d. random variables uniformly distributed on[0, 1]. The
sin θn term represents the downward gravitational force, while the termξn sin θn

represents randomly applied additional forces in the downward direction—i.e.,
the force exerted on the pendulum by rain drops falling from above.(Admittedly,
the model is completely contrived! Don’t take it too seriously.)

Let us represent the circleθ ∈ S1 as the unit circle inR2. Writing xn = sin θn,
yn = cos θn, andf(x, ξ, u) = (1 + ξ)x∆ + u∆, we get

xn+1 = xn cos(f(xn, ξn, un+1)) + yn sin(f(xn, ξn, un+1)),
yn+1 = yn cos(f(xn, ξn, un+1))− xn sin(f(xn, ξn, un+1)).

Find some control lawun+1 = g(xn, yn) that makes the inverted positionθ = 0
stable. (Try an intuitive control law and a linear Lyapunov function; you might
want to use your favorite computer program to plotk(·).)
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4. Bonus question:The previous results can be localized to a neighborhood. Prove
the following modifications of the previous theorems:

Theorem 3. Suppose that there is a continuous functionV : S → [0,∞[ with
V (x∗) = 0 andV (x) > 0 for x 6= x∗, and a neighborhoodU of x∗, such that

E(V (F (x, ξn)))− V (x) = k(x) ≤ 0 whenever x ∈ U.

Thenx∗ is stable.

Theorem 4. Suppose that there is a continuous functionV : S → [0,∞[ with
V (x∗) = 0 andV (x) > 0 for x 6= x∗, and a neighborhoodU of x∗, such that

E(V (F (x, ξn)))− V (x) = k(x) < 0 whenever x ∈ U\{x∗}.

Thenx∗ is asymptotically stable.

Hint. Define a suitable stopping timeτ , and apply the previous results toxn∧τ .

You can now show that the controlled pendulum is asymptotically stable.
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