ACM 217 Homework 2 Due: 04/19/07

Q. 1. Let W, be a Wiener process.

1. Prove thatiV, = cW, 2 is also a Wiener process for amy> 0. Hence the
sample paths of the Wiener process sgH-similar(or fractal).

2. Define the stopping time = inf{¢ > 0 : W; = z} for somex > 0. Calculate
the moment generating functi@(e=*7), A > 0 by proceding as follows:

(a) Prove thatX, = ¢(V'*Wi=t is a martingale. Show thaX;, — 0 a.s.
ast — oo (first argue thatX; converges a.s.; it then suffices to show that
X, — 0a.s. @ € N), for which you may invoke Q.1 in homework 1.)

(b) It follows thatY; = X, is also a martingale. Argue that is bounded,
i.e.,Y; < K forsomeK > 0 and all¢, and that; — X a.s. ag — ~c.

(c) Show that it follows thaft (X, ) = 1 (this is almost the optional stopping
theorem, except that we have not required that oo!) The rest is easy.

What is the mean and variance @? (You don't have to give a rigorous argu-
ment.) In particular, doe®/; always hit the levet in finite time?

Q. 2 (Lyapunov functions). In deterministic nonlinear systems and control theory,
the notions of (Lyapunovjtability, asymptotic stabilityandglobal stability play an
important role. To prove that a system is stable, one generally looks for a suitable
Lyapunov functiopas you might have learned in a nonlinear systems class. Our goal
is to find suitable stochastic counterparts of these ideas, albeit in discrete time.

We work on a probability spadé?, 7, P) on which is defined a sequengg &, . . . of
i.i.d. random variables. We consider the dynamical system defined by the recursion

Tn =F(zn-1,&) (n=1,2,...), T IS non-random

whereF' : S x R — S is somecontinuoudunction andS is some compact subset of
R¢ (compactness is not essential, but we go with it for simplicity). Let us assume that
F(z*,£) = 0for somez* € S and all§ € R.

The following notions of stability are natural counterparts of the deterministic notions
(compare with your favorite nonlinear systems textbook). The equilibritins

e stableif for any ¢ > 0 anda €]0, 1], there exists @ < ¢ such that we have
P(sup,,>q |7 —2*|| <€) > awhenevet|zo—z*| < ¢ (“if we start sufficiently
close toz*, then with high probability we will remain close 10 forever”);

e asymptotically stableif it is stable and for every €10, 1], there exists & such
thatP(z, — x*) > o whenevel|zg — z*|| < x (“if we start sufficiently close
to z*, then we will converge te* with high probability™);

¢ globally stableif it is stable andr,, — z* a.s. for anyz.



1. Prove the following theorem:

Theorem 1. Suppose that there is a continuous function S — [0, oo, with
V(z*) =0andV (z) > 0 for z # 2*, such that

E(V(F(z,&))) —V(z) =Fk(z) <0 forall ze€S.
Thenz* is stable. (Note: ag,, are i.i.d., the condition does not depend-ai

Hint. Show that the proceds(z,,) is a supermartingale.
2. Prove the following theorem:

Theorem 2. Suppose that there is a continuous functién S — [0, co[ with
V(z*) =0andV (z) > 0 for z # «*, such that

E(V(F(z,&,))) —V(z) = k(z) <0 whenever z # z™.
Thenz* is globally stable.

Hint. The proof proceeds roughly as follows. Fill in the steps:

(a) Write V(zo) — E(V(z,)) as a telescoping sum. Use this and the condition
in the theorem to prove tha{z,) — 0 in probability “fast enough”.

(b) Prove that if some sequeneg € S converges to a point € S, then
k(sn) — k(s), i.e., thatk(z) is a continuous function.

(c) As k(z,) — 0 a.s.,k is continuous, and(s,) — 0 only if s, — z*
(why?), you can now conclude that — z* a.s.

3. (Inverted pendulum in the rain) A simple discrete time model for a controlled,
randomly forced overdamped pendulum is

Ont1 = 0n + (14 &) sin(0,)A + upy1 A mod 2,

whered,, is the angle{ = 0 is up) of the pendulum at timeA, A is the time

step size (be sure to take it small enough),; an applied control (using a servo
motor), andg,, are i.i.d. random variables uniformly distributed {n1]. The

sin #,, term represents the downward gravitational force, while the ggrsim 6,,
represents randomly applied additional forces in the downward direction—i.e.,
the force exerted on the pendulum by rain drops falling from ab@e@mittedly,

the model is completely contrived! Don't take it too seriously.)

Let us represent the circtee S* as the unit circle ilR?. Writing z,, = sin,,,
yn = cosb,, andf(z, & u) = (L + &)zA + ul, we get

Tn+1l = T COS(f((Env Sna un+1)) + Yn Sin(f(xna gnv un+1))7
Yn+1 = Yn COS(f(l‘m &ns Un+1)) — Tn Sin(f(l'm n,s U71+1))'
Find some control lawi,, 11 = g(x,, y,) that makes the inverted positién= 0

stable. (Try an intuitive control law and a linear Lyapunov function; you might
want to use your favorite computer program to g61).)



4. Bonus question:The previous results can be localized to a neighborhood. Prove
the following modifications of the previous theorems:

Theorem 3. Suppose that there is a continuous functién S — [0, oo[ with
V(z*) =0andV (z) > 0 for x # z*, and a neighborhood of x*, such that

E(V(F(z,&,))) —V(x) =k(z) <0 whenever z € U.

Thenz* is stable.

Theorem 4. Suppose that there is a continuous functién S — [0, co[ with
V(z*) =0andV(z) > 0for x # z*, and a neighborhood’ of «*, such that

E(V(F(z,&,))) —V(z) =k(z) <0 whenever z € U\{z"}.
Thenz* is asymptotically stable.

Hint. Define a suitable stopping time and apply the previous resultstqa.,.
You can now show that the controlled pendulum is asymptotically stable.



