
ACM 217 Homework 3 Due: 05/03/07

Q. 1. LetWt be ann-dimensional Wiener process on some probability space(Ω,F , P).
For non-randomx ∈ Rn, we call the processW x

t = x+Wt a Brownian motionstarted
at x. We are going to investigate the behavior of this process in various dimensions.

1. Consider the annulusD = {x : r < ‖x‖ < R} for some0 < r < R < ∞,
and define the stopping timeτx = inf{t : W x

t 6∈ D}. For which functions
h : Rn → R is h(W x

t∧τx
) a martingale for allx ∈ D? You may assume thath is

C2 in some neighborhood ofD. (Such functions are calledharmonic).

2. Using the previous part, show thath(x) = |x| is harmonic forn = 1, h(x) =
log ‖x‖ is harmonic forn = 2, andh(x) = ‖x‖2−n is harmonic forn ≥ 3.

3. Let us writeτR
x = inf{t : ‖W x

t ‖ ≥ R} andτ r
x = inf{t : ‖W x

t ‖ ≤ r}. What is
P(τ r

x < τR
x ) for n = 1, 2, 3, . . .? [Hint : ‖W x

τx
‖ can only take valuesr or R.]

4. What isP(τ r
x < ∞)? Conclude the Brownian motion isrecurrentfor dimensions

1 and 2, but not for 3 and higher. [Hint : {τ r
x < ∞} =

⋃
R>r{τ r

x < τR
x }.]

Q. 2. We consider a single stock, which, if we were to invest one dollar at time zero,
would be worthSt = e(µ−σ2/2)t+σWt dollars by timet; hereµ > 0 (the return rate) and
σ > 0 (the volatility) are constants, andWt is a Wiener process on(Ω,F , {Ft}, P).
We also have a bank account, which, if we were to deposit one dollar at time zero,
would containRt = ert dollars at timet, wherer > 0 (the interest rate) is constant.

If we investα0 dollars in stock andβ0 dollars in the bank at time zero, then at time
t our total wealthis Xt = α0St + β0Rt dollars. We can decide to reinvest at timet,
so to putαt dollars in stock andβt dollars in the bank. However, if our investment is
self-financing, then we should make sure thatXt = α0St + β0Rt = αtSt + βtRt (i.e.,
the total amount of invested money is the same: we have just transferred some money
from stock to the bank or vice versa, without adding in any new money). Note that we
will allow αt andβt to be negative: you can borrow money or sell short.

1. Show that if we modify our investment at timest1, t2, . . ., then

Xtn+1 = α0 + β0 +
n∑

i=0

αti
(Sti+1 − Sti

) +
n∑

i=0

βti
(Rti+1 −Rti

),

provided our strategy is self-financing. Show that this expression is identical to

Xtn+1 = X0 +
∫ tn+1

0

(µαsSs + rβsRs) ds +
∫ tn+1

0

σαsSs dWs,

whereαt andβt are the simple integrands that take the valuesαti
andβti

on
the interval[ti, ti+1], respectively. [Assume thatαti andβti areFti-measurable
(obviously!) and sufficiently integrable.]
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The integral expression forXt still makes sense for continuous time strategies with
αtSt andβtRt in L2(µT × P) (which we will always assume). Hence we candefine
a self-financing strategy to be a pairαt, βt that satisfies this expression (in addition to
Xt = αtSt + βtRt, of course). You can see this as a limit of discrete time strategies.

In a sensible model, we should not be able to find a reasonable strategyαt, βt that
makes money for nothing. Of course, if we put all our money in the bank, then we will
always make money for sure just from the interest. It makes more sense to study the
normalized market, where all the prices arediscountedby the interest rate. So we will
consider the discounted wealthXt = Xt/Rt and stock priceSt = St/Rt. We want
to show that there does not exist a trading strategy withX0 = a, Xt ≥ a a.s., and
P(Xt > a) > 0. Such a money-for-nothing opportunity is calledarbitrage.

2. Show that the discounted wealth at timet is given by

Xt = X0 +
∫ t

0

(µ− r)αsSs ds +
∫ t

0

σαsSs dWs.

3. Find a new measureQ such thatQ � P, P � Q, andXt is a martingale under
Q (for reasonableαt). Q is called theequivalent martingale measure.

4. The equivalent martingale measure has a very special property:EQ(Xt) = X0

(assuming our initial wealthX0 is non-random), regardless of the trading strat-
egy. Use this to prove that there is no arbitrage in our model.

We are going to do some simple option pricing theory. Consider something called a
European call option. This is a contract that says the following: at some predetermined
time T (thematurity), we are allowed to buy one unit of stock at some predetermined
priceK (thestrike price). This is a sort of insurance against the stock price going very
high: if the stock price goes belowK by timeT we can still buy stock at the market
price, and we only lose the money we paid to take out the option; if the stock price goes
aboveK by timeT , then we make money as we can buy the stock below the market
price. The total payoff for us is thus(ST −K)+, minus the option price. The question
is what the seller of the option should charge for that service.

5. If we took out the option, we would make(ST − K)+ dollars (excluding the
option price). Argue that we could obtain exactly the same payoff by imple-
menting a particular trading strategyαt, βt, a hedging strategy, provided that
we have sufficient starting capital (i.e., for someX0, αt, βt, we actually have
XT = (ST −K)+). Moreover, show that there is only one such strategy.

6. Argue that the starting capital required for the hedging strategy is the only fair
price for the option. (If a different price is charged, either we or the seller of the
option can make money for nothing.)

7. What is the price of the option? [Hint: use the equivalent martingale measure.]

Congratulations—you have just developed the famous Black-Scholes model!
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Q. 3 (Bonus question: baby steps in the Malliavin calculus). Very roughly speak-
ing, whereas the It̂o calculus defines integrals

∫
· · · dWt with respect to the Wiener

process, the Malliavin calculus definesderivatives“d · · · /dWt” with respect to the
Wiener process. This has applications both in stochastic analysis (smoothness of den-
sities, anticipative calculus) and in finance (computation of sensitivities and hedging
strategies, variance reduction of Monte Carlo simulation, insider trading models, etc.)
This is a much more advanced topic than we are going deal with in this course. As we
have the necessary tools to get started, however, I can’t resist having you explore some
of the simplest ideas (for fun and extra credit—this is not a required problem!).

We work on a probability space(Ω,F , P), on which is defined a Wiener processWt

with its natural filtrationFt = σ{Ws : s ≤ t}. We restrict ourselves to a finite time
intervalt ∈ [0, T ]. AnFT -measurable random variableX is calledcylindrical if it can
be written asX = f(Wt1 , . . . ,Wtn) for a finite number of times0 < t1 < · · · < tn ≤
T and some functionf ∈ C∞

0 . For suchX, theMalliavin derivativeof X is defined as

DtX =
n∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn) It≤ti .

1. For cylindricalX, prove theClark-Ocone formula:

X = E(X) +
∫ T

0

E(DtX|Ft) dWt.

Hint: look at the proofs of lemmas 4.6.5 and 3.1.9 in the notes.

As anyFT -measurable random variableY in L2(P) can be approximated by cylindri-
cal functions, one can now extend the definition of the Malliavin derivative to a much
larger class of random variables by taking limits. Not all suchY are Malliavin differ-
entiable, but with a little work one can define a suitable Sobolev space of differentiable
random variables. If you want to learn more about this, see the book by Nualart (1995).

Let us take a less general approach (along the lines of Clark’s original result), which
allows a beautiful alternative development of the Clark-Ocone formula (the idea is due
to Haussmann and Bismut, here we follow D. Williams). Letf : C([0, T ]) → R be a
measurable map. We will consider random variables of the formX = f(W·) (actually,
anyFT -measurable random variable can be written in this way.)

2. Let ut be bounded andFt-adapted, and letε ∈ R. Prove theinvariance formula

E(f(W·)) = E
[
f

(
W· − ε

∫ ·

0

us ds

)
eε

∫ T
0 us dWs− ε2

2

∫ T
0 (us)2ds

]
.

We are now going to impose a (Fréchet) differentiability condition onf . We assume
that for any continuous functionx and bounded functionα on [0, T ], we have

f

(
x· + ε

∫ ·

0

αs ds

)
− f(x·) = ε

∫ T

0

f ′(s, x·)αs ds + o(ε),
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wheref ′ : [0, T ]×C([0, T ]) → R is some measurable function. Then forX = f(W·),
we define the Malliavin derivative ofX asDtX = f ′(t, W·).

3. Show that this definition ofDtX coincides with our previous definition for cylin-
drical random variablesX.

4. Let X = f(W·), and assume for simplicity thatf(x·) andf ′(t, x·) are bounded.
By taking the derivative with respect toε, at ε = 0, of the invariance formula
above, prove theMalliavin integration by parts formula

E

[
X

∫ T

0

us dWs

]
= E

[∫ T

0

us DsX ds

]

for any bounded andFt-adapted processut. Show, furthermore, that

E

[
X

∫ T

0

us dWs

]
= E

[∫ T

0

us E(DsX|Fs) ds

]
.

5. Using the It̂o representation theorem, prove that there exists a uniqueFt-adapted
processCt such that for any bounded andFt-adapted processut

E

[
X

∫ T

0

us dWs

]
= E

[∫ T

0

us Cs ds

]
.

Conclude that the Clark-Ocone formula still holds in this context.
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