ACM 217 Homework 3 Due: 05/03/07

Q. 1. LetW; be ann-dimensional Wiener process on some probability spacer, IP).
For non-randomr € R", we call the procesi’ = x+ W, a Brownian motiorstarted
at x. We are going to investigate the behavior of this process in various dimensions.

1. Consider the annulu® = {z : » < ||z|]| < R} for some0 < r < R < o0,
and define the stopping timg, = inf{¢t : W;* ¢ D}. For which functions
h:R™ — Ris h(W{,, ) amartingale for all: € D? You may assume thatis
C? in some neighborhood d?. (Such functions are calléghrmonig.

2. Using the previous part, show thiafz) = |z| is harmonic forn = 1, h(z) =
log ||z|| is harmonic fom = 2, andh(z) = ||z||*~™ is harmonic fom > 3.

3. Letus writer* = inf{¢ : |WZ| > R} and7? = inf{t : |[W7| < r}. What is
P(r; < ) forn =1,2,3,...2 [Hint: |[WZ || can only take valuesor R.]

4. WhatisP(r] < co0)? Conclude the Brownian motionriscurrentfor dimensions
1 and 2, but not for 3 and highetint: {77 < oo} = Up., {75 < 7'}

Q. 2. We consider a single stock, which, if we were to invest one dollar at time zero,
would be worthS, = e(#=o°/2t+eW: dollars by timet; herew > 0 (the return rate) and

o > 0 (the volatility) are constants, arid; is a Wiener process off2, F, {F:},P).

We also have a bank account, which, if we were to deposit one dollar at time zero,
would containRk; = " dollars at timef, wherer > 0 (the interest rate) is constant.

If we investag dollars in stock angiy dollars in the bank at time zero, then at time

t ourtotal wealthis X; = «(S; + Gy R; dollars. We can decide to reinvest at time

so to putw; dollars in stock angs, dollars in the bank. However, if our investment is
self-financingthen we should make sure th¥t = ayS; + Bo Ry = oS¢ + By Ry (i.€.,

the total amount of invested money is the same: we have just transferred some money
from stock to the bank or vice versa, without adding in any new money). Note that we
will allow «; andg; to be negative: you can borrow money or sell short.

1. Show that if we modify our investment at times ¢,, . . ., then

n

n
th+1 =ao+ fo + Z ati(stiJrl - Stz) + Z ﬁti (Rt'iJrl - Rti)’

=0 =0

provided our strategy is self-financing. Show that this expression is identical to

tni1 trnt1
Xt = Xo + / (pasSs + rBsRs) ds + / oagSs dWy,
0 0
wherea; and §; are the simple integrands that take the valagsand 3;, on
the intervallt;, t;1+1], respectively. [Assume that;, andg;, areF;,-measurable
(obviously!) and sufficiently integrable.]



The integral expression fak; still makes sense for continuous time strategies with
aySy and 3, R, in L2(ur x P) (which we will always assume). Hence we adefine

a self-financing strategy to be a paiy, 5, that satisfies this expression (in addition to
Xy = oSy + By Ry, of course). You can see this as a limit of discrete time strategies.

In a sensible model, we should not be able to find a reasonable strate@ythat
makes money for nothing. Of course, if we put all our money in the bank, then we will
always make money for sure just from the interest. It makes more sense to study the
normalized market, where all the prices digcountedy the interest rate. So we will
consider the discounted weal®; = X;/R; and stock price5; = S;/R;. We want

to show that there does not exist a trading strategy With= a, X; > « a.s., and

P(X; > a) > 0. Such a money-for-nothing opportunity is call@dbitrage

2. Show that the discounted wealth at timis given by
t

¢ ¢
X=Xy + / (u—r)asSsds + / ocasS, dWs.
0 0

3. Find a new measur® such that) < P, P « Q, andX, is a martingale under
Q (for reasonabley,). Q is called theequivalent martingale measure

4. The equivalent martingale measure has a very special prof@styX;) = X,
(assuming our initial wealttX, is non-random), regardless of the trading strat-
egy. Use this to prove that there is no arbitrage in our model.

We are going to do some simple option pricing theory. Consider something called a
European call optionThis is a contract that says the following: at some predetermined
time T' (the maturity), we are allowed to buy one unit of stock at some predetermined
price K (thestrike price. This is a sort of insurance against the stock price going very
high: if the stock price goes below by timeT we can still buy stock at the market
price, and we only lose the money we paid to take out the option; if the stock price goes
aboveK by time T, then we make money as we can buy the stock below the market
price. The total payoff for us is thuys$ — K)™, minus the option price. The question

is what the seller of the option should charge for that service.

5. If we took out the option, we would makgsr — K)* dollars (excluding the
option price). Argue that we could obtain exactly the same payoff by imple-
menting a particular trading strategy, 8;, a hedging strategyprovided that
we have sufficient starting capital (i.e., for somg, oy, 5;, we actually have
X7 = (St — K)™T). Moreover, show that there is only one such strategy.

6. Argue that the starting capital required for the hedging strategy is the only fair
price for the option. (If a different price is charged, either we or the seller of the
option can make money for nothing.)

7. What is the price of the optionMjnt: use the equivalent martingale measure.]

Congratulations—you have just developed the famous Black-Scholes model!



Q. 3 (Bonus question: baby steps in the Malliavin calculus). Very roughly speak-

ing, whereas the & calculus defines integralg- - - dW, with respect to the Wiener
process, the Malliavin calculus defindsrivatives“d - - - /dW;” with respect to the
Wiener process. This has applications both in stochastic analysis (smoothness of den-
sities, anticipative calculus) and in finance (computation of sensitivities and hedging
strategies, variance reduction of Monte Carlo simulation, insider trading models, etc.)
This is a much more advanced topic than we are going deal with in this course. As we
have the necessary tools to get started, however, | can't resist having you explore some
of the simplest ideas (for fun and extra credit—this is not a required problem!).

We work on a probability spacg?, 7, P), on which is defined a Wiener proce§
with its natural filtrationF;, = o{W; : s < t}. We restrict ourselves to a finite time
intervalt € [0, T]. An Fp-measurable random variableis calledcylindrical if it can
be written asX = f(W,,, ..., W, ) for afinite number of time8 < t; < --- < ¢, <

T and some functiorf € Cg°. For suchX, theMalliavin derivativeof X is defined as

"9
DX =) TL(th,...,th)ItSti.
=1

1. For cylindrical X, prove theClark-Ocone formula:
T
X =EX)+ / E(D:X|F:) dWy.
0
Hint: look at the proofs of lemmas 4.6.5 and 3.1.9 in the notes.

As any Fr-measurable random variabiein £2(P) can be approximated by cylindri-

cal functions, one can now extend the definition of the Malliavin derivative to a much
larger class of random variables by taking limits. Not all stichre Malliavin differ-
entiable, but with a little work one can define a suitable Sobolev space of differentiable
random variables. If you want to learn more about this, see the book by Nualart (1995).

Let us take a less general approach (along the lines of Clark’s original result), which
allows a beautiful alternative development of the Clark-Ocone formula (the idea is due
to Haussmann and Bismut, here we follow D. Williams). lfetC([0,7]) — Rbe a
measurable map. We will consider random variables of the fére f(1V.) (actually,

any Fr-measurable random variable can be written in this way.)

2. Letu; be bounded and;-adapted, and let € R. Prove thanvariance formula
E(f(W)) = E[f (W. _p / u, d8> o I3 s dWom 5 [ o) |
0

We are now going to impose a @ahet) differentiability condition orf. We assume
that for any continuous functianand bounded functioa on [0, T'], we have

f(ac. +5/0'04st> — f(z.) ze/OTf’(s,x.)asds+o(s),

3



wheref’ : [0, T] x C(]0,T]) — R is some measurable function. Then for= f(WW.),
we define the Malliavin derivative oX asD; X = f/(¢t, W.).

3. Show that this definition dD; X coincides with our previous definition for cylin-
drical random variableX .

4. Let X = f(W.), and assume for simplicity thg{(z.) and f’ (¢, x.) are bounded.
By taking the derivative with respect tg ate = 0, of the invariance formula
above, prove th#lalliavin integration by parts formula

T T
X/ Ug dW‘;] =E / us Dy X ds]
0 0

for any bounded and;-adapted process. Show, furthermore, that

T
ElX/ ug dW
0

5. Using the I6 representation theorem, prove that there exists a utfgraelapted
proces<”; such that for any bounded adg-adapted process

T T
X/ ustVs] =E / ug Cyds| .
Jo Jo

Conclude that the Clark-Ocone formula still holds in this context.

E

=E

T
/ Us E(DSX|fS)ds] .
0

E




