
ACM 217 Homework 4 Due: 05/17/07

This problem set involves some programming; you may use whatever you want for
this, but I strongly recommend you use eitherMatlab (or something similar, such as
R) or a compiled programming language (e.g.,C++) for this purpose. If you have never
done any programming, please contact me and we will figure something out.

Q. 1. Consider the stochastic differential equations

dXr
t = sin(Xr

t ) dW 1
t + cos(Xr

t ) dW 2
t , Xr

0 = r, dY r
t = dW 1

t , Y r
0 = r,

wherer ∈ R is non-random and(W 1
t ,W 2

t ) is a two-dimensional Wiener process.

1. Show thatXr
t has the same law asY r

t for every fixed timet.

[Hint: investigate the Kolmogorov backward equations forXr
t andY r

t .]

2. Show thatXr
t has independent increments. Together with the previous part, this

implies that{Xr
t } is a one-dimensional Brownian motion started atr.

[Hint: show thatE(f(Xr
t − Xr

s )|Fs) = E(f(Xr
t − z)|Fs)|z=Xr

s
≡ g(Xr

s ) is
constant, i.e., the functiong(x) is independent ofx (you do not need to prove
the first equality; it follows as in the proof of lemma 3.1.9). Then show why this
impliesE(f(Xr

t −Xr
s )Z) = E(f(Xr

t −Xr
s )) E(Z) for anyFs-measurableZ.]

Xr
t is thus a Brownian motion started atr—what more can be said? Surprisingly,

Xr
t andY r

t behave very differently if we consider multiple initial pointsr1, . . . , rn

simultaneously,but driven by the same noise. In other words, we are interested in

Yt = (Y r1
t , . . . , Y rn

t ) = (r1 + W 1
t , . . . , rn + W 1

t ), Xt = (Xr1
t , . . . , Xrn

t ),

where the latter is the solution of then-dimensional SDE every component of which
satisfies the equation forXr

t above.

3. Use the Euler-Maruyama method to compute several sample paths ofXt and of
Yt in the intervalt ∈ [0, 10], with (r1, . . . , rn) = (−3,−2.5,−2 . . . , 3) and with
step size∆t = .001. Qualitatively, what do you see?

Apparently the SDEs forXr
t andY r

t are qualitatively different, despite that for every
initial condition their solutions have precisely the same law! These SDEs generate the
same Markov process, but a differentflow r 7→ Xr

t , r 7→ Y r
t . Stochastic flows are

important in the theory of random dynamical systems (they can be used to define Lya-
punov exponents, etc.), and have applications, e.g., in the modelling of ocean currents.
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Q. 2. We are going to investigate the inverted pendulum of example 6.6.5 in the lecture
notes, but with a different cost functional. Recall that we set

dθu
t = c1 sin(θu

t ) dt− c2 cos(θu
t )ut dt + σ dWt.

As the coefficients of this equation are periodic inθ, we may interpret its solution
modulo2π (i.e.,θu

t evolves on the circle, which is of course the intention).

Our goal is to keepθu
t as close to the up positionθ = 0 as possible on some reasonable

time scale. We will thus investigate the discounted cost

Jλ[u] = E
[∫ ∞

0

e−λs{p (us)2 + q (1− cos(θu
s ))} ds

]
.

This problem does not lend itself to analytic solution, so we approach it numerically.

1. Starting from the appropriate Bellman equation, develop a Markov chain ap-
proximation to the control problem of minimizingJλ[u] following the finite-
difference approach of section 6.6 in the lecture notes. Take the fact thatθu

t

evolves on the circle into account to introduce appropriate boundary conditions.

[Hint: it is helpful to realize what the discrete dynamic programming equation
for a discounted cost looks like. Ifxα

n is a controlled Markov chain with transi-
tion probabiliesPα

i,j from statei to statej under the controlα, and

K%[u] = E

[ ∞∑
n=0

%n w(xu
n, un+1)

]
, 0 < % < 1,

then the value function satisfiesV (i) = minα∈U{%
∑

j Pα
i,jV (j) + w(i, α)}.

You will prove a verification theorem for such a setting in part 2.]

2. To which discrete optimal control problem does your numerical method corre-
spond? Prove an analog of proposition 6.6.2 for this case.

3. Using the Jacobi iteration method, implement the numerical scheme you devel-
oped, and plot the optimal control and the value function.

You can try, for example,c1 = c2 = σ = .5, p = q = 1, λ = .1; a grid which
divides[0, 2π[ into 100 points; and500 iterations of the Jacobi method (but play
around with the parameters and see what happens, if you are curious!)
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