ACM 217 Homework 4 Due: 05/17/07

This problem set involves some programming; you may use whatever you want for
this, but | strongly recommend you use eithésitlab (or something similar, such as

R) or a compiled programming language (e@t+) for this purpose. If you have never
done any programming, please contact me and we will figure something out.

Q. 1. Consider the stochastic differential equations
dXT =sin(X7)dW, + cos(X])dW?, X§=r,  dYy =dW}!, Yy =r,
wherer € R is non-random an¢v,!, W?) is a two-dimensional Wiener process.

1. Show thatX] has the same law as" for every fixed timet.
[Hint: investigate the Kolmogorov backward equationsXgrandY;".]

2. Show thatX;] has independent increments. Together with the previous part, this
implies that{ X } is a one-dimensional Brownian motion started .at
[Hint: show thatE(f(X] — XT)|Fs) = E(f(X] — 2)|Fs)|.=xr = 9(X]) is
constant, i.e., the functiog(z) is independent of: (you do not need to prove
the first equality; it follows as in the proof of lemma 3.1.9). Then show why this
impliesE(f(X] — XI)Z) = E(f(X] — X)) E(Z) for any Fs-measurable’.]

X[ is thus a Brownian motion started atwhat more can be said? Surprisingly,
X[ andY,” behave very differently if we consider multiple initial points, ..., r,
simultaneouslybut driven by the same noisk other words, we are interested in

Y=Y, Y = (W AW, X = (XL X,

where the latter is the solution of thedimensional SDE every component of which
satisfies the equation fox; above.

3. Use the Euler-Maruyama method to compute several sample patfisafd of
Y; inthe intervak € [0, 10], with (rq,...,r,) = (—=3,-2.5,—2...,3) and with
step sizeAt = .001. Qualitatively, what do you see?

Apparently the SDEs foX; andY," are qualitatively different, despite that for every
initial condition their solutions have precisely the same law! These SDEs generate the
same Markov process, but a differdtaw » — X[, r — Y;". Stochastic flows are
important in the theory of random dynamical systems (they can be used to define Lya-
punov exponents, etc.), and have applications, e.g., in the modelling of ocean currents.



Q. 2. We are going to investigate the inverted pendulum of example 6.6.5 in the lecture
notes, but with a different cost functional. Recall that we set

doy = c1sin(0)) dt — co cos(0}) uy dt + o dW;.
As the coefficients of this equation are periodicfinwe may interpret its solution
modulo2r (i.e., 8} evolves on the circle, which is of course the intention).

Our goal is to keep}* as close to the up positigh= 0 as possible on some reasonable
time scale. We will thus investigate the discounted cost

Inu] = E {/ e {p(us)? + q (1 — cos(6%))} ds| .
0
This problem does not lend itself to analytic solution, so we approach it numerically.

1. Starting from the appropriate Bellman equation, develop a Markov chain ap-
proximation to the control problem of minimizing,[«] following the finite-
difference approach of section 6.6 in the lecture notes. Take the factjthat
evolves on the circle into account to introduce appropriate boundary conditions.

[Hint: it is helpful to realize what the discrete dynamic programming equation
for a discounted cost looks like. ¥ is a controlled Markov chain with transi-
tion probabiliesP’?; from state; to statej under the controk, and

Kyul=E

oo
Z o" w(xz,unﬂ)] , 0<o<1,
n=0

then the value function satisfi@s(i) = minaeu{o)_; P75V (j) + w(i,a)}.
You will prove a verification theorem for such a setting in part 2.]

2. To which discrete optimal control problem does your numerical method corre-
spond? Prove an analog of proposition 6.6.2 for this case.

3. Using the Jacobi iteration method, implement the numerical scheme you devel-
oped, and plot the optimal control and the value function.

You can try, for exampleg; = ¢ = 0 = .5, p = ¢ = 1, A = .1; a grid which
divides|0, 2| into 100 points; andb00 iterations of the Jacobi method (but play
around with the parameters and see what happens, if you are curious!)



