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Abstract. A classical result of Kahn and Saks states that given any partially
ordered set with two distinguished elements, the number of linear extensions
in which the ranks of the distinguished elements differ by k is log-concave as a
function of k. The log-concave sequences that can arise in this manner prove to
exhibit a much richer structure, however, than is evident from log-concavity
alone. The main result of this paper is a complete characterization of the
extremals of the Kahn-Saks inequality: we obtain a detailed combinatorial
understanding of where and what kind of geometric progressions can appear
in these log-concave sequences. This settles a partial conjecture of Chan-Pak-
Panova, while the analysis uncovers new extremals that were not previously
conjectured. The proof relies on a much more general geometric mechanism—
a hard Lefschetz theorem for nef classes that was obtained in the setting of
convex polytopes by Shenfeld and Van Handel—which forms a model for the
investigation of such structures in other combinatorial problems.

1. Introduction

A sequence a1, . . . , an ≥ 0 is called log-concave if

a2k ≥ ak−1ak+1, k = 2, . . . , n− 1. (1.1)

It was observed long ago that many integer sequences that arise in a remarkably
broad range of combinatorial problems appear to be log-concave [20]. Whenever
the same mathematical phenomenon arises in many different situations, one may
wonder whether there is a more fundamental underlying mechanism that explains
its appearance. The discovery of such an explanation—that log-concavity arises
due to the presence of combinatorial analogues of the Hodge-Riemann relations
of algebraic geometry—has led to a striking series of recent breakthroughs in the
understanding of log-concavity in combinatorics [1, 12, 3].

While the ubiquity of this mechanism was understood only recently, its first
appearance dates back to Stanley’s inequalities for matroids and posets [18]. Stan-
ley studied these problems by expressing the combinatorial sequences in ques-
tion as mixed volumes of convex polytopes, whose log-concavity follows from the
Alexandrov-Fenchel inequality [16]. This classical result of convex geometry, which
is a far-reaching generalization of the isoperimetric inequality, may also be viewed
as a special instance of the Hodge-Riemann relations for toric varieties (see, e.g.,
[12] and [9, §5.4]). One interpretation of the basic insight behind the recent de-
velopments in [1, 12, 3, 5, 6] is that while most combinatorial problems cannot be
reformulated in terms of convex polytopes, one can often still prove Alexandrov-
Fenchel inequalities directly in the combinatorial context.
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Even within convex geometry, however, the Alexandrov-Fenchel inequality has
itself been the subject of an open problem that dates back to Alexandrov’s original
paper [2, 15]: when does equality hold? This problem is fundamental to the inter-
pretation of the Alexandrov-Fenchel inequality as an isoperimetric theorem, as it
characterizes which bodies are extremal for the geometric quantities that appear in
the inequality. Recently, this long-standing problem was completely resolved in the
setting of convex polytopes by Shenfeld and the first author [17]. This provides a
mechanism for obtaining new information on log-concave sequences that arise from
the Alexandrov-Fenchel inequality: as equality in (1.1)

a2k = ak−1ak+i ⇐⇒ ak+1

ak
=

ak
ak−1

corresponds to a geometric progression (when ak > 0), the characterization of the
equality cases provides information on where and what kind of geometric progres-
sions can appear in a log-concave sequence. The solution of the extremal problem
for the Alexandrov-Fenchel inequality was exploited in [17, §15] and [14] to obtain a
detailed combinatorial characterization of the geometric progressions that can ap-
pear in Stanley’s poset inequalities [18], revealing a much richer structure in these
sequences than is evident from log-concavity alone.

The aim of this paper is to develop further insight into such phenomena. We
investigate a classical log-concavity inequality for posets due to Kahn and Saks
that plays a central role in their work on sorting problems [13]. As the proof
of this inequality is a direct modification of that of Stanley’s poset inequalities,
one may expect that the characterization of its extremals will be similar as well.
Surprisingly, however, the Kahn-Saks inequality turns out to be much more delicate,
and its extremals exhibit unexpected new features that are not present in Stanley’s
inequalities. Our results confirm a partial conjecture of Chan-Pak-Panova [8], and
uncover further extremals that were not previously conjectured. The key challenge
in the proofs is to understand the geometric features that cause the rich structure
of the extremals of the Kahn-Saks inequality to appear.

Beside providing a case study of geometric progressions in log-concave sequences,
our results and those of [17, 14] may serve as a model for the investigation of such
phenomena in a broader context. Like the Alexandrov-Fechel inequality itself,
its equality characterization admits an algebraic interpretation as a hard Lefschetz
theorem for nef classes [17, §16.2]. The development of analogues of this mechanism
outside convex geometry could provide a common explanation for the appearance of
geometric progressions in much more general situations (see [11] for recent progress).
At the same time, let us note that despite the recent advances in establishing log-
concavity in combinatorics, no other method appears as of yet to be able to recover
the Kahn-Saks inequality [6, §7.2]. Its rich extremal structure, which perches it at
the cusp of log-concavity, may help explain why this is the case.

1.1. Main results. Throughout this paper, we consider an arbitrary partially or-
dered set (poset) P with n elements. Recall that a linear extension of P is a
bijection f : P → [n] such that f(z) < f(z′) whenever z < z′.

In the sequel, we fix two distinguished elements x, y ∈ P such that x 6≥ y. For
any k = 1, . . . , n − 1, we denote by Nk the number of linear extensions f of P so
that f(y) − f(x) = k. The fundamental result in this setting, due to Kahn and
Saks [13, Theorem 2.5], states that the sequence N1, . . . , Nn−1 is log-concave.
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Theorem 1.1 (Kahn-Saks inequality). N2
k ≥ Nk−1Nk+1 for k = 2, . . . , n− 2.

The aim of our main results is to characterize when equality N2
k = Nk−1Nk+1

holds in the Kahn-Saks inequality. Before we proceed to their formulation, let us
clarify the notation that will be used throughout the paper.

Notation. Given a clause C, we denote by PC the subset of elements of the poset
P that satisfy this clause. For example,

P≤x := {ω ∈ P : ω ≤ x},
Px<·<z := {ω ∈ P : x < ω < z},
P>x,‖y := {ω ∈ P : ω > x and ω ‖ y},

etc. We use the symbol z ‖ z′ to denote that z is incomparable to z′, and write
z l z′ to indicate that z′ covers z (that is, that z < z′ and Pz<·<z′ = ∅).

We begin by observing that equality in Theorem 1.1 holds trivially when Nk = 0.
The following lemma characterizes when this happens (cf. [8, Theorem 8.5]).

Lemma 1.2 (Vanishing condition). For any k ∈ [n−1], the following are equivalent.
a. Nk = 0.
b. |P<x|+ |P>y| > n− k − 1 or |Px<·<y| > k − 1.

The entire difficulty of the problem lies in characterizing the nontrivial equality
cases, that is, equality in Theorem 1.1 with Nk > 0. To this end, we first charac-
terize what kinds of geometric progressions can appear. In the following results, we
take for granted that 2 ≤ k ≤ n− 2 as in Theorem 1.1.

Theorem 1.3 (Geometric progressions). If Nk > 0, the following are equivalent:
a. N2

k = Nk−1Nk+1.
b. Either Nk+1 = Nk = Nk−1, or Nk+1 = 2Nk = 4Nk−1.

That is, only two types of geometric progressions are possible: flat and doubling
progressions. We will characterize each of these situations separately. In order to
formulate the equality conditions, we define a number of structural properties of
the poset P that will appear in different combinations below.

Definition 1.4. We define the following properties:
(Mk) |P<z|+ |P>y| > n− k for all z ∈ P>x, 6≥y.
(M∗k) |P>z|+ |P<x| > n− k for all z ∈ P<y,6≤x.
(Ek) |Pz<·<y ∪ {x}| > k for all z ∈ P<x, and |P<y ∪ {x}| > k.
(E∗k) |Px<·<z ∪ {y}| > k for all z ∈ P>y, and |P>x ∪ {y}| > k.
(Ck) |Pz<·<y|+ |Px<·<z′ | > k − 2 for all z ∈ P<y,‖x, z′ ∈ P>x,‖y with z < z′.

We first characterize the flat progressions, settling a conjecture of Chan-Pak-
Panova [8, Conjecture 8.7] (up to minor corrections, see Remark 1.7).

Theorem 1.5 (Flat progressions). If Nk > 0, the following are equivalent:
a. Nk+1 = Nk = Nk−1.
b. There is an element z ∈ {x, y} such that for every linear extension f of P with
f(y)− f(x) = k, there exist u, v ∈ P‖z so that f(u) + 1 = f(z) = f(v)− 1.

c. Either (Mk) and (Ek) hold, or (M∗k) and (E∗k) hold.
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In contrast, no plausible conjecture has been put forward on the structure of the
non-flat equality cases. These are completely settled by the following theorem.

Theorem 1.6 (Doubling progressions). If Nk > 0, the following are equivalent:
a. Nk+1 = 2Nk = 4Nk−1.
b. P = P≤x∪P<y,‖x∪P≥y∪P>x,‖y, and for every linear extension f of P<x∪P<y,‖x

and every linear extension f ′ of P>y ∪ P>x,‖y the following hold: the k largest
elements of f are incomparable to x, the k smallest elements of f ′ are incom-
parable to y, and for every 1 ≤ i ≤ k − 1 the i largest elements of f are
incomparable to the k − i smallest elements of f ′.1

c. P‖x,‖y = Px<·<y = ∅, and (Ek), (E∗k) and (Ck) hold.

Both Theorems 1.5 and 1.6 provide two distinct combinatorial characterizations
of the extremals of the Kahn-Saks inequality. On the one hand, we provide an ex-
plicit characterization in terms of the structure of the poset itself. This formulation
can be readily used to verify the equality condition in any concrete situation, as
the properties in Definition 1.4 can be read off directly from the Hasse diagram
of P . On the other hand, we provide a complementary characterization in terms
of the structure of the linear extensions of P . While less explicit, this formulation
explains the reason that equality arises in each situation (cf. section 2).

Remark 1.7 (On Definition 1.4). Definition 1.4 is formulated for an arbitrary poset
P and distinguished elements x 6≥ y. In most cases, (Ek) and (E∗k) can be somewhat
simplified. For example, in (Ek), the second condition |P<y ∪ {x}| > k follows
automatically from the first condition as long as P<x 6= ∅; we included it only to
account for the case that P<x = ∅. Similarly, when x < y, we automatically have
x ∈ Pz<·<y for any z ∈ P<x and there is no need to include {x} separately in (Ek);
the present formulation accounts also for the case that x ‖ y.

On the other hand, other relations among the properties of Definition 1.4 may
not be immediately evident. In particular, we will show as part of the proof of our
main results that the conditions (Mk) and (E∗k) are mutually exclusive, and that
(M∗k) and (Ek) are mutually exlusive (Lemma 5.14). This shows, for example, that
the two alternatives of Theorem 1.5(c) cannot hold simultaneously.

The first four properties of Definition 1.4 were anticipated (up to minor cor-
rections) by Chan-Pak-Panova [8]. There, the combination of (Mk) and (Ek) was
called the k-midway property, and the combination of (M∗k) and (E∗k) was called
the dual k-midway property. As these properties turn out to appear in a different
combination in Theorem 1.6, we do not adopt this terminology here.

1.2. Discussion. Our results provide a detailed picture of when, where, and why
geometric progressions can arise in the log-concave sequences N1, . . . , Nn−1. The
aim of this section is to further discuss the significance of these results.

1.2.1. Shapes of log-concave sequences. Despite the considerable interest in log-
concave sequences of combinatorics [20, 12], log-concavity in itself provides a lim-
ited qualitative picture on what such sequences look like. The study of geometric
progressions reveals that there can be significant additional structure in the shapes

1Here we view a linear extension f of a subset S ⊆ P as defining a linear ordering of S. Thus,
e.g., the smallest two elements of f are f−1(1), f−1(2), the largest element of f is f−1(|S|), etc.
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Figure 1.1. Structure of extremal sequences. The symbols denote vanishing (×),
flat progressions (•), doubling progressions (�), and strictly log-concave regions (◦).

of log-concave sequences that arise in a given combinatorial problem, and provides
more detailed qualitative and quantitative information.

In the setting of this paper, the qualitative picture is illustrated in Figure 1.1.
Recall that any log-concave sequence is unimodal on its support. Moreover, by
Lemma 1.2, the sequences in this paper can vanish only on an initial or final seg-
ment. We therefore claim that any extremal sequence (that is, one containing a
geometric progression) must look qualitatively like one of the plots in Figure 1.1
(however, some segments Ij may be empty in a given situation):

• The top plot illustrates the situation with no doubling progression. By unimodal-
ity, there can be at most one flat segment that is the maximum of the sequence.

• The bottom plot illustrates the situation where there is a doubling progression.
Note that the conditions (Ek), (E∗k), (Ck) automatically imply (El), (E∗l ), (Cl) for
all l < k. Thus Theorem 1.6 and Lemma 1.2 imply that a doubling progression
can only arise as the initial segment of the sequence.

Beyond this qualitative picture, however, our results provide detailed quantitative
information: they enable us to compute precisely where in the sequence the geo-
metric progressions appear (that is, we can compute the length of each segment
Ij explicitly in terms of the poset structure). It appears rather surprising that
such detailed information is accessible for the linear extension numbers of arbitrary
posets, which are themselves hard to compute [4].

It is not immediately obvious from the formulation of our results that all regions
of the log-concave sequences that are illustrated in Figure 1.1 can in fact appear
simultaneously. This is however readily verified by means of simple examples.

Example 1.8. Suppose that x is a globally minimal element of P , that is, x ≤ z for
all z ∈ P . Then x must appear first in any linear extension of P . Therefore, as
noted in [8], this special case reduces to the situation originally studied by Stanley:
Nk is the number of linear extensions of P\{x} in which y has rank k. In this
setting, the explicit construction of [17, Example 15.4] shows that we may engineer
the poset P to achieve a log-concave sequence as in the top plot of Figure 1.1 with
an essentially arbitrary choice of (positive) lengths of the segments I1, . . . , I5.
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Example 1.9. We now provide a counterpart of the previous example for the bottom
plot of Figure 1.1. Consider the poset P with |P | = r+s+2 defined by the relations

xl z1 l · · ·l zr, w1 l · · ·l ws, wu l zv, wu l y l zt

for any v < t ≤ r and u ≤ s. Then Px<·<y = P‖x,‖y = ∅, and Nk > 0 for
k ≤ t + s by Lemma 1.2. A straightforward computation shows that (Mk) holds
when k > t + s, (M∗k) holds when k > u + v, (Ek) holds when k ≤ u, (E∗k) holds
when k < t, and (Ck) holds when k ≤ v. Thus Theorems 1.5 and 1.6 yield

Nk+1 = 2Nk = 4Nk−1 if and only if 2 ≤ k ≤ min(u, v),

Nk+1 = Nk = Nk−1 if and only if u+ v < k < t,

Nk = 0 if and only if t+ s < k ≤ |P |.
In particular, we obtain a log-concave sequence as in the bottom plot of Figure 1.1,
and the lengths of the segments I1, . . . , I5 can be chosen essentially arbitrarily by
selecting the parameters r, s, t, u, v appropriately.

1.2.2. General mechanisms. One of the main reasons for the interest of the log-
concavity phenomenon in combinatorics is that it suggests the presence of a certain
universal structure2 that appears to arise in many combinatorial problems: com-
binatorial analogues of Alexandrov-Fenchel inequalities [3, 5, 6] or of more general
Hodge-Riemann relations [1, 12]. It is remarkable that the same kinds of structures
are fundamental to several other areas of mathematics, including convex geometry
[16], algebraic geometry [21, 9], and complex geometry [10].

In contrast to log-concavity, which is a robust qualitative property, one might
expect that the understanding of geometric progressions in log-concave sequences
must be developed on a case-by-case basis. We believe, however, that geometric
progressions likely arise in many problems through a common mechanism that is
nearly as universal as the structure that gives rise to log-concavity itself. As is ex-
plained in [17, §16.2], the equality cases of the Alexandrov-Fenchel inequality that
form the basis for the analysis in this paper admit a natural algebraic interpretation
(a precise counterpart of the hard Lefschetz theorem of degree 1 for nef classes).
In this form, such structures can be meaningfully formulated in much more general
situations, and it is natural to conjecture that they do indeed arise in many combi-
natorial problems. Such questions are largely open to date, though there is recent
progress on analogous questions in algebraic geometry [11].

The results of this paper and those of [17, 14] motivate the investigation of such
structures, and illustrate the kind of strong qualitative and quantitative information
that can be obtained when they are present.

1.2.3. Interplay between geometry and combinatorics. The proof of the Kahn-Saks
inequality, like that of Stanley’s inequality on which it is based, translates the
original combinatorial problem to a geometric problem for convex polytopes. As
will be explained in section 3, Kahn and Saks construct two (n − 1)-dimensional
convex polytopes K,L so that the linear extension numbers can be represented as a
mixed volume Nk = (n− 1)!V(K[n−k], L[k− 1]). The inequality N2

k ≥ Nk−1Nk+1

then follows immediately from the Alexandrov-Fenchel inequality

V(K,L,C1, . . . , Cn−3)2 ≥ V(K,K,C1, . . . , Cn−3)V(L,L,C1, . . . , Cn−3),

2In fact, the Kahn-Saks inequality is somewhat unusual in that it was developed in [13] as a
tool to investigate sorting problems, rather than being motivated by log-concavity in itself.
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which is a far-reaching generalization of the isoperimetric inequality in convex ge-
ometry. (We refer to [16] for background on convex geometry; the relevant notions
for this paper will be briefly reviewed in section 3.) One might view the Kahn-Saks
inequality as an isoperimetric inequality for posets, and its equality characterization
as the corresponding isoperimetric theorem.

The equality cases of the Alexandrov-Fenchel inequality were completely char-
acterized for convex polytopes in [17]. However, this characterization provides geo-
metric information on the polytopes in question. The main difficulty in the proof of
our main results is to understand how to translate this geometric information back
to the original combinatorial problem. This translation is far from straightforward,
and requires us to develop a detailed understanding of the interplay between the
geometric and combinatorial descriptions.

An unexpected consequence of the results of this paper is that they complete the
picture of what geometric extremals can arise in combinatorial problems. Let us
recall from [17, §2.2] that the equality cases of the Alexandrov-Fenchel inequality
arise from a superposition of three distinct mechanisms:

M1. Translation and scaling.

M2. Degeneration of the support of mixed area measures.

M3. “Critical” equality cases caused by dimensional collapse.

As there is enormous freedom in the choice of arbitrary convex polytopes, it may
not be too surprising that the Alexandrov-Fenchel inequality has numerous equality
cases. What is far more surprising is that all the equality mechanisms turn out to
arise even in natural combinatorial applications. While only M2 plays a role in the
setting of Stanley’s inequality [17, §15], M3 can arise in a general form of Stanley’s
inequality [14] (the latter has striking complexity implications [7]). It will turn out
that M1 plays a central role in this paper, completing the picture.

As the role of M1 is a novel feature of the problem investigated in this paper
that did not arise in previous works, we briefly discuss it further.

1.2.4. The role of translation and scaling. Geometrically, translation and scaling
may be viewed as trivial reasons for equality. For example, equality clearly holds
in the Alexandrov-Fenchel inequality when K = L; therefore, as mixed volumes
are homogeneous and translation invariant, we trivially obtain new equality cases
K = aL + v by translation and scaling. Nontrivial equality cases arise due to M2
above, which states that these polytopes need not be equal but need only have the
same supporting hyperplanes in some directions (cf. section 3.2).

From a combinatorial perspective, however, the appearance of nontrivial trans-
lation and scaling is unexpected. The connection between convexity and combi-
natorics arises when we work with lattice polytopes, in which case mixed volumes
are always combinatorial quantities [9, §5.4]. In particular, the polytopes used by
Stanley, Kahn and Saks have all their vertices in the set {0, 1}n, cf. [19]. One
may expect that this property provides sufficient rigidity that two such polytopes
cannot have the same supporting hyperplanes if we scale or translate one of them.
It is a surprising feature of the Kahn-Saks inequality that nontrivial scaling and
translation can nonetheless arise. In particular, the resulting equality cases of the
Alexandrov-Fenchel inequality do not respect the lattice structure of the underlying
polytopes, as will be illustrated in a simple example in section 5.5.
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The consequences of this breakdown of rigidity are fundamental to our main
results. Nontrivial scaling is responsible for the presence of the non-flat geometric
progressions (cf. section 3.2). At the same time, nontrivial translations arise in the
present setting even when we consider flat geometric progressions: the translation
determines which of the two cases of Theorem 1.5(c) is in force, as will become
clear in the proof (cf. Definition 5.2 and the following discussion).

1.3. Organization of this paper. The rest of this paper is organized as follows.
The implications (c)⇒(b)⇒(a) of Theorems 1.5 and 1.6 require only elementary

arguments. We first dispense with these implications in section 2. The remainder
of the paper is devoted to the core part of our main results—Theorem 1.3 and the
implication (a)⇒(c) of Theorems 1.5 and 1.6.

In section 3, we describe the convex geometric construction that underpins the
Kahn-Saks inequality. This yields, through the equality cases of the Alexandrov-
Fenchel inequality, a geometric description of its extremals. The main difficulty
in the proof is now to understand how one can use this geometric information to
characterize the combinatorial structure of the poset.

In section 4, we aim to translate the basic geometric data that was obtained in
section 3 into combinatorial conditions. This requires us to study the facial struc-
ture of the polytopes that appear in the geometric equality characterization. The
faces will turn out to be described by combinatorial constraints. As a byproduct,
we also obtain a short proof of Lemma 1.2 here.

Now that the geometric data has been converted to combinatorial information,
we arrive at the heart of the argument: we must use this combinatorial information
to fully characterize the structure of the poset. This is the main part of the proof
of our main results, which is contained in section 5.

2. Sufficiency

The main results of this paper provide necessary and sufficient conditions for
equality to hold in the Kahn-Saks inequality. One direction of these results is
considerably simpler than the other, however: the proof that the combinatorial
conditions of Theorems 1.5 and 1.6 are sufficient for equality to hold is entirely
elementary. Nonetheless, this direction sheds considerable light on the structure
of the problem, as its proof reveals the combinatorial mechanisms that give rise to
equality. This direction of our main results will be proved in the present section.
The main challenge ahead of us is to show that these are the only mechanisms that
can give rise to equality, that is, that the sufficient conditions are also necessary.
The proof of the latter will occupy the remainder of this paper.

We begin by proving the implications (c)⇒(b)⇒(a) of Theorem 1.5. The argu-
ment is essentially contained in [8, §8.3], and is very similar to the argument in the
proof of [17, Theorem 15.3]. We include the proof for completeness.

Proof of Theorem 1.5: (c)⇒(b). Suppose that (Mk) and (Ek) hold. Let f be any
linear extension of P such that f(y)− f(x) = k. Since |P<y ∪{x}| > k by (Ek), we
must have f(y) ≥ k + 2 and thus f(x) = f(y)− k ≥ 2.

Now consider u ∈ P such that f(u) = f(x) − 1, which exists as f(x) ≥ 2. If it
were the case that u < x, then (Ek) would imply that

k < |Pu<·<y ∪ {x}| ≤ f(y)− f(u)− 1 = k,
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which is impossible. But u > x is also impossible as f(u) < f(x). Thus u ‖ x.
Similarly, consider v ∈ P such that f(v) = f(x) + 1. Note that v 6≥ y because

f(v) < f(x) + 2 ≤ f(y) (as k ≥ 2). If v > x, then (Mk) would imply that

n− k < |P<v|+ |P>y| ≤ f(v)− 1 + n− f(y) = n− k,

which entails a contradiction. We conclude as above that v ‖ x.
We have therefore shown that the validity of (Mk) and (Ek) implies that condition

(b) of Theorem 1.5 holds with z = x. We omit the completely analogous argument
that (M∗k) and (E∗k) imply condition (b) of Theorem 1.5 with z = y. �

Proof of Theorem 1.5: (b)⇒(a). Suppose that condition (b) of Theorem 1.5 holds
with z = x. Let f be any linear extension of P such that f(y) − f(x) = k and
f(u) + 1 = f(x) = f(v) − 1. As u, v ‖ x, swapping v and x in the linear order
defined by f yields a new linear extension f ′ of P with f ′(y)− f ′(x) = k− 1, while
swapping u and x yields a linear extension f ′′ of P with f ′′(y)− f ′′(x) = k + 1.

As the maps f 7→ f ′ and f 7→ f ′′ are clearly injective, it follows that Nk ≤ Nk−1
and Nk ≤ Nk+1. Thus the Kahn-Saks inequality yields

Nk−1Nk ≥ N2
k ≥ Nk−1Nk+1 ≥ Nk−1Nk,

NkNk+1 ≥ N2
k ≥ Nk−1Nk+1 ≥ NkNk+1.

Since we assume that Nk > 0, it follows that Nk−1 = Nk = Nk+1.
We have therefore shown that condition (b) of Theorem 1.5 with z = x implies

condition (a). We omit the completely analogous argument in the case z = y. �

We now turn to the proof of the implications (c)⇒(b)⇒(a) of Theorem 1.6. The
mechanism by which equality arises here is very different than in Theorem 1.5: to
prove it, we will establish a bijection between certain sets of linear extensions.

Proof of Theorem 1.6: (c)⇒(b). That P = P≤x ∪ P<y,‖x ∪ P≥y ∪ P>x,‖y is merely
a reformulation of the conditions P‖x,‖y = Px<·<y = ∅. In the rest of the proof, we
fix any linear extension f of P<x ∪ P<y,‖x and f ′ of P>y ∪ P>x,‖y.

Let z ∈ P>y. As Px<·<y = ∅, we have Px<·<z\{y} ⊆ P>y ∪ P>x,‖y. Thus

k < |Px<·<z ∪ {y}| = |Px<·<z\{y}|+ 1 ≤ f ′(z)

by (E∗k), that is, we have shown that every z ∈ P>y has rank at least k + 1 with
respect to f ′. On the other hand, if P>y = ∅ then |P>x,‖y| = |P>x\{y}| ≥ k by
(E∗k). In either case, we conclude that the k smallest elements of f ′ must lie in
P>x,‖y. The completely analogous argument using (Ek) instead of (E∗k) shows that
the k largest elements of f must lie in P<y,‖x.

Now fix 1 ≤ i ≤ k − 1, let z ∈ P<y,‖x be among the i largest elements of f , and
let z′ ∈ P>x,‖y be among the k− i smallest elements of f ′. Note that we must have
Pz<·<y ⊆ P<y,‖x and Px<·<z′ ⊆ P>x,‖y as Px<·<y = ∅, z ‖ x, and z′ ‖ y, so that

|Pz<·<y| < i, |Px<·<z′ | < k − i.

Thus (Ck) implies that z 6< z′. On the other hand, z 6≥ z′ as Px<·<y = ∅, so we
must have z ‖ z′. We have therefore shown that the i largest elements of f are
incomparable to the k − i smallest elements of f ′, concluding the proof. �

Proof of Theorem 1.6: (b)⇒(a). Let P− := P<x ∪P<y,‖x and P+ := P>y ∪P>x,‖y.
Note that P−, P+, {x, y} are disjoint as x 6≥ y, and that P = P− ∪ P+ ∪ {x, y}.
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Let 1 ≤ l ≤ k + 1. Denote by E−, E+ the sets of all linear extensions of P−, P+,
and by El the set of all linear extensions f̄ of P such that f̄(y)− f̄(x) = l. We aim
to construct a bijection ι : El → E− × E+ × {0, 1}l−1.

The construction is as follows. Given any f̄ ∈ El, let f ∈ E− and f ′ ∈ E+ be
defined by restricting the linear order of f̄ to P− and P+, respectively. Moreover,
define ωi = 0 if the ith smallest element of f̄ between x and y is in P−, and ωi = 1
if the ith smallest element of f̄ between x and y is in P+. This defines a map
ι : f̄ 7→ (f, f ′, ω). We must show this map is injective and surjective.

To show ι is injective, note that by the definitions of P−, P+, El, every element
of P− must be smaller than y and every element of P+ must be larger than x in the
linear ordering defined by f̄ . Thus f̄ can be uniquely reconstructed from f, f ′, ω by
choosing the elements between x and y in order from the largest elements of f and
the smallest elements of f ′ as defined by ω, and placing the remaining elements of
f and f ′ below x and above y, respectively. This proves injectivity of ι.

Note that the above reconstruction procedure enables us to define a linear order-
ing f̄ of P with f̄(y)− f̄(x) = l starting from any (f, f ′, ω) ∈ E− × E+ × {0, 1}l−1.
To prove ι is surjective, we must show that any linear ordering f̄ thus defined is a
linear extension of P , that is, that it is compatible with the partial order of P . In
other words, we must show that f̄(u) < f̄(v) implies u 6≥ v.
• For u, v ∈ P− ∪ {y} or u, v ∈ P+ ∪ {x}, this follows by construction as f, f ′ are
linear extensions of P− ⊆ P 6≥y and P+ ⊆ P6≤x, respectively.

• For u ∈ P− ∪ {y} and v ∈ P+ ∪ {x}, we have u 6≥ v by the definitions of P−, P+

and as x 6≥ y, Px<·<y = ∅ (except u = y, v = x for which f̄(u) 6< f̄(v)).
• For u ∈ P+ ∪ {x} and v ∈ P− ∪ {y}, the construction of f̄ ensures that if u ∈ P+

it must be among the j smallest elements of f ′, and if v ∈ P− it must be among
the l − 1 − j largest elements of f , where j =

∑l−1
i=1 ωi. Thus condition (b) of

Theorem 1.6 yields u ‖ v, unless u = x, v = y in which case u 6≥ v by assumption.
Thus f̄ is a linear extension of P , proving surjectivity of ι.

As we have now shown that ι is a bijection, it follows that

Nl = |El| = 2l−1|E−||E+|

for every 1 ≤ l ≤ k + 1. In particular, Nk+1 = 2Nk = 4Nk−1. �

3. Geometric description of the extremals

The aim of this section is to recall the geometric construction that gives rise to
the Kahn-Saks inequality [13], and to deduce a geometric characterization of its
equality cases from the extremals of the Alexandrov-Fenchel inequality [17]. This
geometric description of the equality cases forms the basis for the remainder of the
paper: the main challenge in the following sections will be to understand how to
use this geometric information to extract combinatorial structure.

Before we proceed, let us recall some basic notions of convex geometry that will
be used without comment in the sequel. Given two convex bodies C,C ′,

C + C ′ := {x+ y : x ∈ C, y ∈ C ′}

denotes their Minkowski sum. The support function hC of C is defined by

hC(u) := sup
x∈C
〈u, x〉.
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If ‖u‖ = 1, then hC(u) may be interpreted as the signed distance from the origin
to the supporting hyperplane of C with outer normal u. The set

F (C, u) := {x ∈ C : 〈u, x〉 = hC(u)}

is the (exposed) face of C with outer normal u. Finally, we recall that hC+C′(u) =
hC(u) + hC′(u) and F (C + C ′, u) = F (C, u) + F (C ′, u) [16, Theorem 1.7.5].

3.1. The geometric construction. The following setting will be used throughout
the rest of this paper. Let RP be the n-dimensional real vector space that is spanned
by the coordinate basis {ez}z∈P . We always equip RP with the standard inner
product that makes the coordinate basis orthonormal. For any t ∈ RP , we denote
its coordinates as tz := 〈ez, t〉. Finally, we define

V := {ey − ex}⊥ = {t ∈ RP : ty − tx = 0},

where x 6≥ y are the distinguished elements of P .
A fundamental role in the following will be played by the order polytope of P ,

and in particular by two special slices of the order polytope.

Definition 3.1. The order polytope of P is defined as

OP := {t ∈ [0, 1]P : tz ≤ tz′ whenever z < z′}.

Moreover, the polytopes

K := {t ∈ OP : ty − tx = 0},
L := {t ∈ OP : ty − tx = 1}

will be fixed throughout the paper.

As K ⊂ V and L ⊂ V + ey, every Minkowski combination (1 − λ)K + λL lies
in a translate of the (n− 1)-dimensional space V . By a classical fact of Minkowski
[16, §5.1], the (n− 1)-dimensional volume then satisfies

Vn−1((1− λ)K + λL) =

n∑
k=1

(
n− 1

k − 1

)
(1− λ)n−kλk−1 V(K[n− k], L[k − 1]),

where V(K[n−k], L[k−1]) denotes the (n−1)-dimensional mixed volume in which
K appears n− k times and L appears k − 1 times. These mixed volumes turn out
to compute the linear extension numbers Nk [13, eq. (2.14)].

Lemma 3.2 (Kahn-Saks). Nk = (n− 1)!V(K[n− k], L[k − 1]).

With Lemma 3.2 in hand, the Kahn-Saks inequality N2
k ≥ Nk−1Nk+1 follows

immediately from the Alexandrov-Fenchel inequality [16, Theorem 7.3.1]

V(K,L,K[n− k − 1], L[k − 2])2 ≥
V(K,K,K[n− k − 1], L[k − 2])V(L,L,K[n− k − 1], L[k − 2]).

Equality in the Kahn-Saks inequality is therefore also a special case of equality in
the Alexandrov-Fenchel inequality, which is characterized in [17]. The latter will
provide an explicit description of the equality conditions in terms of the geometry
of the polytopes K and L, which we turn to next.
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Remark 3.3. In this paper, mixed volumes will only be used in order to apply
the results of [17] and do not appear outside this section. For this reason, we
have omitted most background material on mixed volumes, referring the interested
reader to the excellent monograph [16] for a detailed treatment.

Let us note that results on mixed volumes are usually formulated for convex
bodies lying in a given n-dimensional space, whereas the polytopes K and L lie in
different translates of the (n− 1)-dimensional space V . We can readily reduce the
latter setting to the former (with n← n−1) by replacing L by L′ = L− ey−ex

2 ⊂ V .
By translation-invariance of mixed volumes and as hL(u) = hL′(u) for all u ∈ V ,
any resulting statements for K,L′ ⊂ V hold verbatim for K,L.

3.2. Equality cases. At the heart of the extremal characterization of the Kahn-
Saks inequality lies the notion of a k-extreme vector.

Definition 3.4. A vector u ∈ V is said to be k-extreme if the following hold:

dimF (K,u) ≥ n− k − 1,

dimF (L, u) ≥ k − 2,

dimF (K + L, u) ≥ n− 3.

The following is the main result of this section.

Proposition 3.5 (Kahn-Saks extremals: geometric characterization). Let a > 0,
and assume that Nk > 0. Then the following are equivalent.
a. a2Nk+1 = aNk = Nk−1.
b. There exists v ∈ V so that hK(u) = haL+v(u) for all k-extreme u ∈ V .

Before we prove Proposition 3.5, let us also formulate a geometric characteriza-
tion of the vanishing condition.

Lemma 3.6 (Vanishing: geometric characterization). The following are equivalent.
a. Nk = 0.
b. dimK < n− k or dimL < k − 1 or dim(K + L) < n− 1.

Proof. This is immediate from Lemma 3.2 and [16, Theorem 5.1.8]. �

We now complete the proof of Proposition 3.5.

Proof of Proposition 3.5. We begin by observing that a k-extreme vector u is called
(B,K[n − k − 1], L[k − 2])-extreme in the terminology of [17, Lemma 2.3]. Thus
condition (b) implies, using [17, Lemma 2.8] and translation invariance, that

SK,K[n−k−1],L[k−2] = aSL,K[n−k−1],L[k−2],

where SC1,...,Cn−2 denotes the (n−1)-dimensional mixed area measure. Integrating
this identity against hK and hL yields condition (a) by [17, eq. (2.1)] and Lemma 3.2.
Thus we have proved the implication (b)⇒(a).

Now suppose condition (a) holds. Then Nk > 0 implies Nk−1 > 0 and Nk+1 > 0
as well. Lemma 3.6 yields dimK ≥ n− k+ 1, dimL ≥ k, and dim(K +L) = n− 1,
so that the bodies (K[n − k − 1], L[k − 2]) are supercritical in the terminology of
[17, Definition 2.14]. Therefore, by [17, Corollary 2.16] and Lemma 3.2, condition
(a) implies that there exist a′ > 0 and v ∈ V so that hK(u) = ha′L+v(u) for all
k-extreme vectors u ∈ V . It remains to note that we must have a′ = a by the
implication (b)⇒(a). Thus we have proved the implication (a)⇒(b). �
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Proposition 3.5 provides a complete characterization of the equality cases of the
Kahn-Saks inequality in terms of the geometry of the polytopes K and L. It is
far from clear, however, how the combinatorial structure of P emerges from this
geometric information. Understanding the latter is the main challenge in the proof
of our main results, which will be addressed in the following sections.

4. Facial structure

To exploit Proposition 3.5, we must first develop the connection between k-
extreme vectors and the combinatorial structure of the poset. Understanding which
vectors are k-extreme requires us to compute the dimensions of faces of the poly-
topes K, L, and K+L. In this section we will introduce a basic recipe that enables
us to compute face dimensions in terms of the poset structure. With this recipe in
hand, we will systematically catalogue the k-extreme directions that will be relevant
in the subsequent analysis. It will turn out that some of the combinatorial condi-
tions for vectors to be k-extreme are connected to the properties in Definition 1.4,
which explains how these arise in the analysis. Another simple application of the
basic recipe will yield a proof of Lemma 1.2 using Lemma 3.6.

Throughout this section, we denote by aff ′K the centered affine hull of a set K,
that is, aff ′K := span(K−K). In particular, note that aff ′(K+L) = aff ′K+aff ′ L
and that dimK = dim(aff ′K) for any convex bodies K,L.

4.1. The basic recipe. By definition, the polytopes K,L and their faces are de-
fined as intersections of the order polytope OP with certain affine hyperplanes. It
is straightforward to deduce an upper bound on their dimensions from this infor-
mation and the poset structure. For example, in K = OP ∩ {t ∈ RP : ty = tx}, the
constraint ty = tx forces tx = tz = ty for x < z < y by the definition of OP . Thus

K ⊂ H = {t ∈ RP : tx = tz = ty for all z ∈ Px<·<y},

which yields dimK ≤ dimH = n− 1− |Px<·<y|.
To prove a matching lower bound, however, we must show that there are no other

constraints than those accounted for in the upper bound. To make this reasoning
formal, we introduce the following definition.

Definition 4.1. For any linear extension f : P → [n], define the simplex

∆f := {t ∈ [0, 1]P : tf−1(1) ≤ tf−1(2) ≤ · · · ≤ tf−1(n)}.

Thus OP =
⋃

f ∆f , where the union is over all linear extensions of P .

To illustrate how this will be used, suppose there exists a linear extension f of P
so that Px<·<y are the only elements of P that lie between x, y in the linear order
defined by f (the existence of such a linear extension will be shown in Lemma 4.2).
Then it is obvious from the definition of ∆f that

aff ′(∆f ∩ {t ∈ RP : ty = tx}) = H.

As ∆f ∩ {t ∈ RP : ty = tx} ⊆ K ⊂ H, it follows immediately that aff ′K = H, and
we can therefore compute dimK = n− 1− |Px<·<y|.

The above example shows that the key to computing the dimension is to establish
the existence of linear extensions that minimally satisfy a given set of constraints.
We presently prove a number of lemmas that will be used to construct such minimal
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linear extensions. The basic recipe illustrated above will be applied systematically
in the remainder of this section to compute face dimensions.

In the following, we take for granted the standard fact that every poset has
at least one linear extension (such an extension may be found, for example, by
iteratively choosing the next element of the linear order to be minimal among
the poset elements that have not yet been ordered). We construct three kinds of
minimal linear extensions that will be used repeatedly below.

Lemma 4.2. There exists a linear extension f : P → [n] so that

{z ∈ P : f(x) < f(z) < f(y)} = Px<·<y.

Proof. Choose a linear extension f : P → [n] that minimizes f(y)− f(x) among all
linear extensions of P . By definition, we have f(x) < f(z) < f(y) for z ∈ Px<·<y.
On the other hand, if f(x) < f(z) < f(y) for some z 6∈ Px<·<y, then it must be the
case that either z ‖ x or z ‖ y. We aim to show this cannot occur.

To this end, consider the element z ‖ x so that f(x) < f(z) < f(y) and f(z) is
as small as possible. Then for every f(x) < f(z′) < f(z), we must have x < z′ and
thus z′ ‖ z. We can therefore obtain another linear extension g of P by moving
the element z to have rank right below x, while keeping the order of the remaining
elements as in f . As g(y) − g(x) = f(y) − f(x) − 1, this contradicts minimality
of f(y) − f(x). Thus we have ruled out the existence of f(x) < f(z) < f(y) with
z ‖ x. A completely analogous argument rules out z ‖ y, concluding the proof. �

Lemma 4.3. The following hold.
a. Let S, T ⊂ P satisfy S ∩ T = ∅, S is a lower set (P<z ⊆ S for all z ∈ S), and

T is an upper set (P>z ⊆ T for all z ∈ T ). Then there is a linear extension
f : P → [n] so that {z ∈ P : f(z) ≤ |S|} = S and {z ∈ P : f(z) > n−|T |} = T .

b. There exists a linear extension f : P → [n] so that

{z ∈ P : f(z) < f(x)} = P<x, {z ∈ P : f(z) > f(y)} = P>y.

Proof. As S is a lower set and T is an upper set, any z ∈ S, z′ ∈ P\(S ∪ T ), and
z′′ ∈ T must satisfy z′ 6≤ z and z′ 6≥ z′′. Therefore, if we define a linear ordering f
of P by choosing its |S| smallest elements to be any linear extension of S, its |T |
largest elements to be any linear extension of T , and the remaining elements to be
any linear extension of P\(S ∪ T ), then f is itself a linear extension of P . This
proves part (a). Part (b) follows by choosing S = P≤x and T = P≥y. �

Lemma 4.4. Let z1, z2 ∈ P such that z1 l z2, and let f : P → [n] be any linear
extension. Then there is a linear extension f ′ : P → [n] so that f ′(z2)−f ′(z1) = 1,
and so that f ′(z) = f(z) whenever f(z) < f(z1) or f(z) > f(z2).

Proof. Choose a linear extension f ′ : P → [n] that minimizes f ′(z2)−f ′(z1) among
all linear extensions of P such that f ′(z) = f(z) when f(z) < f(z1) or f(z) > f(z2).
If there exists f ′(z1) < f ′(z) < f ′(z2), then it must be the case that either z ‖ z1
or z ‖ z2 as z1 l z2. This entails a contradiction as in the proof of Lemma 4.2. �

4.2. The vanishing condition. As a first illustration of the basic recipe intro-
duced above, we will now give a short proof of Lemma 1.2 using Lemma 3.6. Before
we do so, let us define a shorthand notation for the linear spaces that will appear
repeatedly throughout the remainder of this section.
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Definition 4.5. For any disjoint subsets S1, . . . , Sk ⊆ P , we define

〈〈S1, . . . , Sk〉〉 := span
{∑

z∈S1
ez, . . . ,

∑
z∈Sk

ez,RP\{S1∪···∪Sk}
}
.

Note that dim〈〈S1, . . . , Sk〉〉 = n+ k −
∑k

i=1 |Si|.

We now proceed to the proof.

Proof of Lemma 1.2. As K = OP ∩ {t ∈ RP : ty = tx}, every t ∈ K must satisfy
tx = tz = ty for all z ∈ Px<·<y. Thus aff ′K ⊆ 〈〈Px≤·≤y〉〉. On the other hand, if f
is the linear extension provided by Lemma 4.2, we have

〈〈Px≤·≤y〉〉 = aff ′(∆f ∩ {t ∈ RP : ty = tx}) ⊆ aff ′K.

We have therefore shown that aff ′K = 〈〈Px≤·≤y〉〉.
Similarly, as L = OP ∩{t ∈ RP : tx = 0, ty = 1}, every t ∈ L satisfies tz = tx = 0

for all z ∈ P<x and tz = ty = 1 for all z ∈ P>y. Thus aff ′ L ⊆ RP\(P≤x∪P≥y). On
the other hand, if f is the linear extension provided by Lemma 4.3(b), we have

RP\(P≤x∪P≥y) = aff ′(∆f ∩ {t ∈ RP : tx = 0, ty = 1}) ⊆ aff ′ L.

We have therefore shown that aff ′ L = RP\(P≤x∪P≥y).
We can now immediately conclude that

dimK = n+ 1− |Px≤·≤y| = n− 1− |Px<·<y|,
dimL = n− |P≤x ∪ P≥y| = n− 2− |P<x| − |P>y|.

But as aff ′(K +L) = aff ′K + aff ′ L = 〈〈{x, y}〉〉, we also have dim(K +L) = n− 1.
The conclusion of Lemma 1.2 now follows from Lemma 3.6. �

The following corollary of Lemma 1.2 will be used frequently.

Corollary 4.6. If Nk > 0 and N2
k = Nk−1Nk+1, then

|Px<·<y|+ 1 < k < n− 1− |P<x| − |P>y|.

Proof. The assumption implies that Nk−1 > 0 and Nk+1 > 0. The conclusion
follows immediately from Lemma 1.2 and Lemma 3.2. �

4.3. Extreme vectors. We now turn to the main task of this section, which is to
characterize which vectors are k-extreme. More precisely, as we will only use the
implication (a)⇒(b) of Proposition 3.5, we do not need to (and will not) characterize
all k-extreme vectors; it suffices to find vectors that carry significant combinatorial
information. To this end, we will consider the following vectors.

Definition 4.7. A vector u ∈ V is called a
a. coordinate vector if u = ±ez for z ∈ P\{x, y};
b. transition vector if u = ezz′ := ez − ez′ for z, z′ ∈ P\{x, y};
c. anchor vector if u = ezxy := ez − ex+ey

2 or exyz :=
ex+ey

2 − ez for z ∈ P\{x, y}.

The motivation for considering these particular vectors is straightforward. By
definition, a vector u ∈ V is k-extreme if the associated faces of K, L, and K + L
are sufficiently high-dimensional. As K and L are slices of the order polytope OP ,
the most natural candidates for such vectors are the normal directions of the facets
(i.e., the highest-dimensional faces) of OP . It is well known [19, §1] that u is a
facet normal of OP if and only if u = ±ez for a maximal (minimal) element z of
P , or if u = ez − ez′ for z l z′. This motivates the consideration of coordinate and
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transition vectors for z, z′ 6∈ {x, y}. Note, however, that (for example) ez − ex 6∈ V
and thus cannot be k-extreme. In these cases we consider instead the projections
of such vectors onto V , which are the anchor vectors.

Remark 4.8. The above logic suggests we should consider one additional case u =
± ex+ey

2 , which corresponds to projecting ±ex or ±ey onto V . In principle such
vectors may indeed be needed in the analysis when x is a minimal element of P or
when y is a maximal element of P . However, in the proof of our main results we
will be able to assume without loss of generality this is not the case, as inserting
a new element in P that is smaller (larger) than all the other elements does not
change the numbers Nk. This simple observation does not make any fundamental
difference to the proof, but slightly shortens the analysis in a few places.

We now proceed to systematically investigate the combinatorial conditions for
coordinate, transition, and anchor vectors to be k-extreme.

4.3.1. Coordinate vectors. We begin with a basic observation.

Lemma 4.9. For z ∈ P\{x, y}, the following hold.
a. If z is a maximal element of P , then hK(ez) = hL(ez) = 1.
b. If z is a minimal element of P , then hK(−ez) = hL(−ez) = 0.

Proof. If z is a maximal element of P\{x, y}, then ez ∈ K. Thus

1 = 〈ez, ez〉 ≤ hK(ez) = sup
t∈K
〈ez, t〉 ≤ 1,

where we used that K ⊆ [0, 1]P in the second inequality. Therefore hK(ez) = 1.
Now let t′ ∈ RP be defined by t′z′ = 1z′∈P≥y∪{z}. As z is maximal, t′ ∈ L and thus

1 = 〈ez, t′〉 ≤ hL(ez) = sup
t∈L
〈ez, t〉 ≤ 1.

We have therefore shown that hL(ez) = 1, concluding the proof of part (a). The
proof of part (b) is completely analogous. �

We can now characterize k-extreme coordinate vectors.

Lemma 4.10. Let N2
k = Nk−1Nk+1 > 0. For z ∈ P\{x, y}, the following hold.

a. If z is a maximal element of P , then ez is k-extreme.
b. If z is a minimal element of P , then −ez is k-extreme.

Proof. Let z be a maximal element of P . Then Lemma 4.9 yields

F (K, ez) = OP ∩ {t ∈ RP : ty = tx, tz = 1},
F (L, ez) = OP ∩ {t ∈ RP : tx = 0, ty = tz = 1}.

Let us compute the affine hulls.
• Clearly aff ′ F (K, ez) ⊆ 〈〈Px≤·≤y〉〉 ∩ RP\{z} (note that z 6∈ Px≤·≤y as z is maxi-

mal). Now let f be the linear ordering of P obtained by applying Lemma 4.2 to
P\{z} and setting f(z) = n. As z is maximal, f is a linear extension of P . Thus

〈〈Px≤·≤y〉〉 ∩ RP\{z} = aff ′(∆f ∩ {t ∈ RP : ty = tx, tz = 1}) ⊆ aff ′ F (K, ez).

• Clearly aff ′ F (L, ez) ⊆ RP\(P≤x∪P≥y∪{z}). Now let f be the linear extension of P
obtained by applying Lemma 4.3(b) to P\{z} and setting f(z) = n. Then

RP\(P≤x∪P≥y∪{z}) = aff ′(∆f ∩ {t ∈ RP : tx = 0, ty = tz = 1}) ⊆ aff ′ F (L, ez).
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Thus aff ′ F (K, ez) = 〈〈Px≤·≤y〉〉 ∩ RP\{z} and aff ′ F (L, ez) = RP\(P≤x∪P≥y∪{z}),
which implies aff ′ F (K + L, ez) = 〈〈{x, y}〉〉 ∩ RP\{z}. Therefore

dimF (K, ez) = n− 2− |Px<·<y|,
dimF (L, ez) = n− 2− |P<x| − |P>y ∪ {z}|,

dimF (K + L, ez) = n− 2.

It follows readily from Corollary 4.6 that ez is k-extreme, which concludes the proof
of part (a). The proof of part (b) is completely analogous. �

4.3.2. Transition vectors. We now turn to the characterization of transition vectors.
As above, we must first identify the corresponding supporting hyperplanes.

Lemma 4.11. Consider z, z′ ∈ P\{x, y} such that z < z′, and assume that either
z 6∈ P<x or z′ 6∈ P>y. Then we have hK(ezz′) = hL(ezz′) = 0.

Proof. As z < z′, any t ∈ OP must satisfy 〈ezz′ , t〉 = tz − tz′ ≤ 0. Thus

0 ≤ hK(ezz′) = sup
t∈K
〈ezz′ , t〉 ≤ 0,

where we used that 0 ∈ K. On the other hand, define t ∈ L by tz′′ = 1z′′ 6≤x if
z 6∈ P<x, and by tz′′ = 1z′′≥y otherwise. Then

0 = 〈ezz′ , t〉 ≤ hL(ezz′) = sup
t′∈L
〈ezz′ , t′〉 ≤ 0,

concluding the proof. �

We can now characterize k-extreme transition vectors.

Lemma 4.12. Assume N2
k = Nk−1Nk+1 > 0. Let z, z′ ∈ P\{x, y} such that zlz′.

Then the transition vector ezz′ is k-extreme in each of the following situations:
a. z, z′ ∈ P<x, or z, z′ ∈ P>y.
b. z, z′ ∈ P>x,‖y, or z, z′ ∈ P<y,‖x.
c. z, z′ ∈ Px<·<y.
d. z ∈ P>x,‖y and P>z ⊆ P>y, or z′ ∈ P<y,‖x and P<z′ ⊆ P<x.
e. z ∈ P‖x,‖y and P>z ⊆ P>y, or z′ ∈ P‖x,‖y and P<z′ ⊆ P<x.
f. z ∈ P‖x,‖y and z′ 6∈ P>y, or z′ ∈ P‖x,‖y and z 6∈ P<x.
g. z ∈ Px<·<y, z′ ∈ P>x,‖y, and |Px<·<z′ ∪ Px<·<y| ≤ k − 1.
h. z ∈ P<y,‖x, z′ ∈ Px<·<y, and |Pz<·<y ∪ Px<·<y| ≤ k − 1.
i. z ∈ P<y,‖x, z′ ∈ P>x,‖y, and |Pz<·<y ∪ Px<·<z′ ∪ Px<·<y| ≤ k − 2.

Proof. We begin by noting that in all cases, we have

F (K, ezz′) = OP ∩ {t ∈ RP : ty = tx, tz = tz′},
F (L, ezz′) = OP ∩ {t ∈ RP : tx = 0, ty = 1, tz = tz′}

by Lemma 4.11. We now consider each case separately.

(a) Assume that z, z′ ∈ P<x (the proof for z, z′ ∈ P>y is completely analogous).
Clearly F (L, ezz′) = L and aff ′ F (K, ezz′) ⊆ 〈〈Px≤·≤y, {z, z′}〉〉. On the other hand,
by Lemmas 4.2 and 4.4, there is a linear extension f of P so that the only elements
between x and y are Px<·<y and such that z, z′ are adjacent in the linear order
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defined by f . Applying the basic recipe yields aff ′ F (K, ezz′) = 〈〈Px≤·≤y, {z, z′}〉〉.
As aff ′ L = RP\(P≤x∪P≥y) by the proof of Lemma 1.2, we obtain

dimF (K, ezz′) = n− 2− |Px<·<y|,
dimF (L, ezz′) = n− 2− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows readily from Corollary 4.6 that ezz′ is k-extreme.

(b) Assume z, z′ ∈ P>x,‖y (the proof for z, z′ ∈ P<y,‖x is completely analogous).
Then aff ′ F (K, ezz′) = 〈〈Px≤·≤y, {z, z′}〉〉 as in part (a). Moreover, we clearly have
aff ′ F (L, ezz′) ⊆ 〈〈{z, z′}〉〉 ∩ RP\(P≤x∪P≥y). By Lemmas 4.3(b) and 4.4, there is a
linear extension f of P in which the only elements less than x are P<x, the only
elements greater than y are P>y, and z, z′ are adjacent. Applying the basic recipe
yields aff ′ F (L, ezz′) = 〈〈{z, z′}〉〉 ∩ RP\(P≤x∪P≥y). We therefore obtain

dimF (K, ezz′) = n− 2− |Px<·<y|,
dimF (L, ezz′) = n− 3− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows readily from Corollary 4.6 that ezz′ is k-extreme.

(c) Clearly F (K, ezz′) = K, while aff ′ F (L, ezz′) = 〈〈{z, z′}〉〉 ∩ RP\(P≤x∪P≥y) as
in part (b). As aff ′K = 〈〈Px≤·≤y〉〉 by the proof of Lemma 1.2, we obtain

dimF (K, ezz′) = n− 1− |Px<·<y|,
dimF (L, ezz′) = n− 3− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows readily from Corollary 4.6 that ezz′ is k-extreme.

(d) Assume z ∈ P>x,‖y and P>z ⊆ P>y (the other case is completely analogous).
Then aff ′ F (K, ezz′) = 〈〈Px≤·≤y, {z, z′}〉〉 as in part (a). Moreover, we clearly have
aff ′ F (L, ezz′) ⊆ RP\(P≤x∪P≥y∪{z}). Applying Lemma 4.3(a) to S = P≤x and T =

P≥y ∪ {z} yields aff ′ F (L, ezz′) = RP\(P≤x∪P≥y∪{z}) using the basic recipe. Thus

dimF (K, ezz′) = n− 2− |Px<·<y|,
dimF (L, ezz′) = n− 3− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows readily from Corollary 4.6 that ezz′ is k-extreme.

(e) Assume z ∈ P‖x,‖y and P>z ⊆ P>y (the other case is completely analogous).
Then aff ′ F (L, ezz′) = RP\(P≤x∪P≥y∪{z}) as in part (d). Moreover, we clearly have
aff ′ F (K, ezz′) ⊆ 〈〈Px≤·≤y, {z, z′}〉〉. To prove equality we proceed as in part (a),
but we must be more careful in constructing the linear extension f .

By Lemma 4.2, there is a linear extension f of P in which the only elements
between x and y are Px<·<y. If f(z) < f(x), choose z1 ≥ z, f(z) ≤ f(z1) < f(x)
with maximal f(z1). We claim that any f(z1) < f(z2) ≤ f(y) must satisfy z2 ‖ z1:
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otherwise z2 > z1 ≥ z, which contradicts maximality of f(z1) if f(z2) < f(x) and
contradicts z ∈ P‖x,‖y if f(x) ≤ f(z2) ≤ f(y) (as the latter implies z ∈ Px≤·≤y).
We can therefore obtain a new linear extension of P by moving z1 right above y
in the linear order defined by f , while keeping the remaining ordering fixed. By
iterating this process, we can always modify the original linear extension f so that
f(z) > f(y). Applying Lemma 4.4 to the latter yields a linear extension in which
the only elements between x and y are Px<·<y and z, z′ are adjacent. We can now
apply the basic recipe to conclude that aff ′ F (K, ezz′) = 〈〈Px≤·≤y, {z, z′}〉〉.

The rest of the proof of part (e) is identical to that of part (d).

(f) Assume z ∈ P‖x,‖y and z′ 6∈ P>y (the other case is completely analogous).
Then aff ′ F (K, ezz′) = 〈〈Px≤·≤y, {z, z′}〉〉 as in part (e). Moreover, as z ∈ P‖x,‖y
also implies z′ 6∈ P<x, we obtain aff ′ F (L, ezz′) = 〈〈{z, z′}〉〉 ∩ RP\(P≤x∪P≥y) as in
part (b). The rest of the proof of part (f) is identical to that of part (b).

(g) We have aff ′ F (L, ezz′) = 〈〈{z, z′}〉〉∩RP\(P≤x∪P≥y) as in part (b). Moreover,
we clearly have aff ′ F (K, ezz′) ⊆ 〈〈Px≤·≤y ∪ Px≤·≤z′〉〉.

By Lemma 4.2, there is a linear extension f of P in which the only elements
between x and y are Px<·<y. As z′ ∈ P>x,‖y we must have f(y) < f(z′).

Choose z1 6∈ P<z′ with f(y) < f(z1) < f(z′), if it exists, so that f(z1) is maximal.
Then any f(z1) < f(z2) ≤ f(z′) must satisfy z2 ‖ z1: otherwise z1 < z2 ∈ P≤z′
yields a contradiction. We can therefore obtain a new linear extension of P by
moving z1 right above z′ while keeping the remaining ordering fixed. Iterating this
process, we can ensure that z′′ ∈ P<z′ for all f(y) < f(z′′) < f(z′).

Now choose z2 6∈ P>x with f(y) < f(z2) < f(z′), if it exists, so that f(z2)
is minimal. Then any f(x) ≤ f(z1) < f(z2) must satisfy z1 ‖ z2: otherwise
x ≤ z1 < z2 or y = z1 < z2, which contradict z2 6∈ P>x and z′ ∈ P>x,‖y (as we
already ensured above that z2 ∈ P<z′). Thus we can move z2 right below x while
keeping the remaining ordering fixed. Iterating this process, we can always modify
the original linear extension f so that z′′ ∈ Px<·<z′ for all f(y) < f(z′′) < f(z′).
In particular, the resulting linear extension satisfies

{z′′ ∈ P : f(x) ≤ f(z′′) ≤ f(z′)} = Px≤·≤y ∪ Px≤·≤z′ .

Applying the basic recipe yields aff ′ F (K, ezz′) = 〈〈Px≤·≤y ∪ Px≤·≤z′〉〉. Thus

dimF (K, ezz′) = n− 2− |Px<·<y ∪ Px<·<z′ |,
dimF (L, ezz′) = n− 3− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows from Corollary 4.6 and the assumption that ezz′ is k-extreme.

(h) The proof is completely analogous to that of part (g).

(i) We have aff ′ F (L, ezz′) = 〈〈{z, z′}〉〉∩RP\(P≤x∪P≥y) as in part (b). Next, note
that any t ∈ F (K, ezz′) must satisfy tz ≤ ty = tx ≤ tz′ = tz as z′ > x and z < y.
We therefore clearly have aff ′ F (K, ezz′) ⊆ 〈〈Px≤·≤y ∪ Px≤·≤z′ ∪ Pz≤·≤y〉〉.

To prove equality we reason similarly as in part (g). By Lemma 4.2, there is a
linear extension f of P in which the only elements between x and y are Px<·<y.
As z′ > x and z < y, we must have f(z) < f(x) < f(y) < f(z′). By modifying the
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linear extension as in part (g), we can ensure that all f(y) < f(z′′) < f(z′) satisfy
z′′ ∈ P<z′ and all f(z) < f(z′′) < f(x) satisfy z′′ ∈ P>z.

Now choose z2 6∈ P>x with f(y) < f(z2) < f(z′), if it exists, so that f(z2) is
minimal. Then any f(z) ≤ f(z1) < f(z2) must satisfy z1 ‖ z2: otherwise x ≤ z1 <
z2, y = z1 < z2, or z ≤ z1 < z2, which contradict z2 6∈ P>x, z′ ∈ P>x,‖y, and z l z′

(as we already ensured that z2 ∈ P<z′). Thus we can move z2 right below z while
keeping the remaining ordering fixed. Iterating this process, we can modify the
linear extension f so that z′′ ∈ Px<·<z′ for all f(y) < f(z′′) < f(z′). A completely
analogous argument ensures also that z′′ ∈ Pz<·<y for all f(z) < f(z′′) < f(x). In
particular, the resulting linear extension satisfies

{z′′ ∈ P : f(z) ≤ f(z′′) ≤ f(z′)} = Px≤·≤y ∪ Px≤·≤z′ ∪ Pz≤·≤y,

so the basic recipe yields aff ′ F (K, ezz′) = 〈〈Px≤·≤y ∪ Px≤·≤z′ ∪ Pz≤·≤y〉〉. Thus

dimF (K, ezz′) = n− 3− |Px<·<y ∪ Px<·<z′ ∪ Pz<·<y|,
dimF (L, ezz′) = n− 3− |P<x| − |P>y|,

dimF (K + L, ezz′) = n− 2,

where we use aff ′ F (K+L, ezz′) = aff ′ F (K, ezz′)+aff ′ F (L, ezz′) = 〈〈{z, z′}, {x, y}〉〉.
It follows from Corollary 4.6 and the assumption that ezz′ is k-extreme. �

4.3.3. Anchor vectors. We conclude with the characterization of anchor vectors. As
above, we first identify the corresponding supporting hyperplanes.

Lemma 4.13. The following hold.
a. If z ∈ Px<·<y ∪ P<y,‖x, then hK(ezxy) = 0 and hL(ezxy) = 1

2 .

b. If z ∈ Px<·<y ∪ P>x,‖y then hK(exyz) = 0 and hL(exyz) = 1
2 .

c. If z ∈ P<x, then hK(ezxy) = 0 and hL(ezxy) = − 1
2 .

d. If z ∈ P>y, then hK(exyz) = 0 and hL(exyz) = − 1
2 .

Proof. In all cases, the proof that hK(ezxy) = 0 or hK(exyz) = 0 is the same as in
Lemma 4.11. On the other hand, note that any t ∈ L satisfies 〈 ex+ey

2 , t〉 = 1
2 , so

hL(ezxy) = hL(ez)− 1
2 , hL(exyz) = hL(−ez) + 1

2 .

For (a), define t ∈ RP by tz = 1z∈P≥y∪P≥z
. As z 6≤ x, we have t ∈ L ⊂ [0, 1]P , so

1 = 〈ez, t〉 ≤ hL(ez) = sup
t′∈L
〈ez, t′〉 ≤ 1.

Consequently, we have hL(ezxy) = 1
2 . The proof of part (b) is completely analogous.

For part (c), it suffices to note that tz = 0 for all t ∈ L, so that hL(ez) = 0 and
thus hL(ezxy) = − 1

2 . The proof of part (d) is completely analogous. �

We can now characterize k-extreme anchor vectors.

Lemma 4.14. Assume N2
k = Nk−1Nk+1 > 0.

a. If z ∈ Px<·<y∪P<y,‖x and zly, then ezxy is k-extreme if |P>z|+ |P<x| ≤ n−k.
b. If z ∈ Px<·<y∪P>x,‖y and xlz, then exyz is k-extreme if |P<z|+ |P>y| ≤ n−k.
c. If z l x, then ezxy is k-extreme if |Pz<·<y ∪ {x}| ≤ k.
d. If y l z, then exyz is k-extreme if |Px<·<z ∪ {y}| ≤ k.
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Proof. We first prove (a) (the proof of part (b) is completely analogous). We have

F (K, ezxy) = OP ∩ {t ∈ RP : ty = tz = tx},
F (L, ezxy) = OP ∩ {tx = 0, ty = tz = 1}

by Lemma 4.13. As z < y, clearly aff ′ F (L, ezxy) ⊆ RP\(P≤x∪P≥z). Applying the
basic recipe with the linear extension of Lemma 4.3(a) with S = P≤x and T = P≥z
yields aff ′ F (L, ezxy) = RP\(P≤x∪P≥z). Next, we clearly have F (K, ezxy) = K if
z ∈ Px<·<y. If z ∈ P<y,‖x, we obtain aff ′ F (K, ezxy) = 〈〈Px≤·≤y ∪ {z}〉〉 as in the
proof of Lemma 4.12(h) (note that Pz<·<y = ∅ as z l y). In either case

dimF (K, ezxy) ≥ n− 2− |Px<·<y|,
dimF (L, ezxy) = n− 2− |P<x| − |P>z|,

dimF (K + L, ezxy) = n− 2,

where we use aff ′ F (K + L, ezxy) = aff ′ F (K, ezxy) + aff ′ F (L, ezxy) = 〈〈{x, y, z}〉〉.
It follows from Corollary 4.6 and the assumption that ezxy is k-extreme.

We now prove (d) (the proof of part (c) is completely analogous). We have

F (K, exyz) = OP ∩ {t ∈ RP : ty = tz = tx},
F (L, exyz) = OP ∩ {tx = 0, ty = tz = 1} = L

by Lemma 4.13. Clearly aff ′ F (K, exyz) ⊆ 〈〈Px≤·≤y ∪ Px≤·≤z〉〉.
To prove equality we reason similarly as for Lemma 4.12(g). By Lemma 4.2,

there is a linear extension f of P in which the only elements between x and y are
Px<·<y. As y < z we must have f(y) < f(z). By modifying f as in the proof of
Lemma 4.12(g), we can ensure that all f(y) < f(z′) < f(z) satisfy z′ ∈ P<z.

Now choose z2 6∈ P>x with f(y) < f(z2) < f(z), if it exists, so that f(z2) is
minimal. Then any f(x) ≤ f(z1) < f(z2) must satisfy z1 ‖ z2: otherwise x ≤ z1 <
z2 or y = z1 < z2, which contradict z2 6∈ P>x and y l z (as we already ensured
above that z2 ∈ P<z). We can now repeat the rest of the argument in the proof
of Lemma 4.12(g) verbatim to conclude that aff ′ F (K, exyz) = 〈〈Px≤·≤y ∪ Px≤·≤z〉〉.
Noting that Px≤·≤y ∪ Px≤·≤z = {x, y, z} ∪ Px<·<z, we obtain

dimF (K, exyz) = n− 1− |Px<·<z ∪ {y}|,
dimF (L, exyz) = n− 2− |P<x| − |P>y|,

dimF (K + L, exyz) = n− 2,

where we use aff ′ F (K + L, exyz) = aff ′ F (K, exyz) + aff ′ F (L, exyz) = 〈〈{x, y, z}〉〉.
It follows from Corollary 4.6 and the assumption that exyz is k-extreme. �

5. Proof of the main results

Now that we have characterized k-extreme vectors in combinatorial terms, we
aim to combine this information with the equality characterization provided by
Proposition 3.5 to prove the main results of this paper. More precisely, our analysis
will be based on the following consequences of Proposition 3.5. Here and in the
sequel, we will use the notation vxy :=

vx+vy

2 for v ∈ V .

Lemma 5.1. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1. Then there exists
v ∈ V so that the following hold for z, z′ ∈ P\{x, y}.
a. If z is a maximal element of P , then vz = 1− a.
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b. If z is a minimal element of P , then vz = 0.
c. If ezz′ is k-extreme for z < z′ with z 6∈ P<x or z′ 6∈ P>y, then vz = vz′ .
d. If ezxy is k-extreme for z ∈ Px<·<y ∪ P<y,‖x, then vz = vxy − a

2 .
e. If exyz is k-extreme for z ∈ Px<·<y ∪ P>x,‖y, then vz = vxy + a

2 .
f. If ezxy is k-extreme for z ∈ P<x, then vz = vxy + a

2 .
g. If exyz is k-extreme for z ∈ P>y, then vz = vxy − a

2 .

Proof. Proposition 3.5 states that there exists v ∈ V so that hK(u) = ahL(u)+〈u, v〉
for every k-extreme vector u. Parts (a) and (b) follow from Lemmas 4.9 and 4.10,
(c) follows from Lemma 4.11, and the remaining parts follow from Lemma 4.13. �

Lemma 5.1 shows that each k-extreme direction yields a linear constraint on the
vector v. The basic principle behind our main results is that if there are too many k-
extreme vectors, the resulting system of linear equations for v has no solution. The
latter entails a contradiction, as the existence of v is guaranteed by Proposition 3.5.
This will enable us to reason that some vectors must not be k-extreme, which gives
rise to the explicit combinatorial conditions in our main results (as in Definition 1.4)
using the characterization of k-extreme directions in the previous section. How to
reason about the existence of solutions is far from obvious, however, and will require
a careful analysis of the structure of the underlying poset.

The fact that many transition vectors, viz. those that are characterized in parts
(a)–(f) of Lemma 4.12, are always k-extreme will enable us to fix many entries
of v at the outset of the analysis. It will turn out that the nontrivial structure
of the extremals is largely (but not entirely) controlled by the value of vxy. In
particular, let us define four properties that will play a central role in the analysis;
the significance of these properties will become evident in the proofs.

Definition 5.2. We define the following properties:
(M ) a 6= 2

3 (1− vxy).
(M ∗) a 6= 2vxy.
(E ) a 6= −2vxy.
(E ∗) a 6= 2(1− vxy).

We now briefly outline the steps in the proof of our main results. We first
show in section 5.1 that (E )⇒(Ek) and (E ∗)⇒(E∗k). In section 5.2, we show that
(M )⇒(Mk) and (M ∗)⇒(M∗k). In section 5.3 we argue that if a 6= 1

2 , then either
(M ) and (E ), or (M ∗) and (E ∗), must hold. This simultaneously proves both
Theorems 1.3 and 1.5 (because the implication (c)⇒(a) of Theorem 1.5, which was
proved in section 2, then shows that a 6= 1

2 implies a = 1). Finally, we prove
Theorem 1.6 in section 5.4 using additional arguments specific to this case.

5.1. The conditions (E ), (E ∗). The aim of this section is to understand the origin
of conditions (Ek) and (E∗k) in Definition 1.4, which are concerned with elements
z ∈ P<x or P>y. We begin by computing vz for these elements.

Lemma 5.3. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let v ∈ V be
the vector provided by Lemma 5.1. Then the following hold.
a. vz = 0 for every z ∈ P<x.
b. vz = 1− a for every z ∈ P>y.
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Proof. If z ∈ P<x, let zmz1mz2m · · ·mzr be a decreasing chain from z to a minimal
element zr of P . Then zi ∈ P<x for all i, so that Lemma 4.12(a) and Lemma 5.1(c)
yield vz = vz1 = vz2 = · · · = vzr . Part (a) follows as vzr = 0 by Lemma 5.1(b). The
proof of part (b) follows in a completely analogous fashion using Lemma 5.1(a). �

We now show how the combinatorial conditions of (Ek) and (E∗k) arise.

Lemma 5.4. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let v ∈ V be
the vector provided by Lemma 5.1. Then the following hold.
a. If (E ) holds, then every z ∈ P<x satisfies |Pz<·<y ∪ {x}| > k.
b. If (E ∗) holds, then every z ∈ P>y satisfies |Px<·<z ∪ {y}| > k.

Proof. Suppose there exists z ∈ P<x such that |Pz<·<y ∪ {x}| ≤ k. Then the
latter holds automatically for any z′ ≥ z (as then Pz′<·<y ⊆ Pz<·<y). In partic-
ular, we consider z′ ≥ z that is a maximal element of P<x, so that z′ l x. Then
Lemma 4.14(c), Lemma 5.1(f), and Lemma 5.3(a) yield 0 = vz′ = vxy + a

2 , which
is the converse of (E ). Thus we proved the contrapositive of part (a).

Similarly, if there exists z ∈ P>y so that |Px<·<z ∪{y}| ≤ k, let yl z′ ≤ z. Then
Lemma 4.14(d), Lemma 5.1(g), and Lemma 5.3(b) yield 1 − a = vz′ = vxy − a

2 ,
which is the converse of (E ∗). Thus we proved the contrapositive of part (b). �

Lemma 5.4 states that (E ) implies the first part of (Ek), and that (E ∗) implies
the first part of (E∗k). The second part of (Ek) and of (E∗k) is already implied by the
first part when P<x and P>y are nonempty, so that these additional conditions only
need to be established in the special case that x is minimal or that y is maximal. We
do not need to consider these cases separately, however, as we can always modify
the poset to avoid this situation without changing the linear extension numbers
Nk by adding a globally minimal and maximal element to P . We postpone this
straightforward argument to the proof of Corollary 5.11.

5.2. The conditions (M ), (M ∗). The aim of this section is to understand the
origin of conditions (Mk) and (M∗k) in Definition 1.4, which are concerned with
elements z ∈ P>x,6≥y = Px<·<y∪P>x,‖y or P<y,6≤x = Px<·<y∪P<y,‖x. The argument
in the case that z ∈ P>x,‖y or P<y,‖x is similar to section 5.1. The case z ∈ Px<·<y

is more subtle, however, and will require additional insights.

5.2.1. The case z ∈ P>x,‖y or z ∈ P<y,‖x. We begin by computing vz.

Lemma 5.5. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let v ∈ V be
the vector provided by Lemma 5.1. Then the following hold.
a. vz = 0 for every z ∈ P<y,‖x.
b. vz = 1− a for every z ∈ P>x,‖y.
c. vz = vz′ for all z, z′ ∈ Px<·<y with z < z′.

Proof. If z ∈ P<y,‖x, let z m z1 m z2 m · · · m zr by a decreasing chain from z to a
minimal element zr of P<y,‖x. If zr is minimal in P , we stop the chain at this point.
Otherwise, zr m zr+1 for some element zr+1 ∈ P<x, and we can continue the chain
zr+1 m · · ·m zs until we reach a minimal element zs of P .

Now note that Lemma 4.12(a,b) and Lemma 5.1(c) yield vz = vz1 = · · · = vzr
and vzr+1

= · · · = vzs . On the other hand, as zr is a minimal element of P<y,‖x,
we have P<zr ⊆ P<x, and thus Lemma 4.12(d) and Lemma 5.1(c) yield zr = zr+1.
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Part (a) follows as vzs = 0 by Lemma 5.1(b). The proof of part (b) follows in a
completely analogous fashion using Lemma 5.1(a).

For part (c), let z l z1 l · · ·l zr l z′ be a chain connecting z, z′, and note that
we must have zi ∈ Px<·<y for all i. Thus Lemma 4.12(c) and Lemma 5.1(c) imply
that vz = vz1 = · · · = vzr = vz′ , concluding the proof. �

We now show how the conditions of (Mk) and (M∗k) arise in the present case.

Lemma 5.6. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let v ∈ V be
the vector provided by Lemma 5.1. Then the following hold.
a. If (M ) holds, then every z ∈ P>x,‖y satisfies |P<z|+ |P>y| > n− k.
b. If (M ∗) holds, then every z ∈ P<y,‖x satisfies |P>z|+ |P<x| > n− k.

Proof. Suppose there exists z ∈ P>x,‖y such that |P<z| + |P>y| ≤ n − k. Then
the latter condition holds automatically for any z′ ≤ z (as then P<z′ ⊆ P<z). In
particular, we consider z′ ≤ z that is a minimal element of P>x,‖y.

Suppose first that x l z′. Lemma 4.14(b), Lemma 5.1(e), and Lemma 5.5(b)
then yield 1 − a = vz′ = vxy + a

2 , which is the converse of (M ). Thus we have
proved the contrapositive of part (a) in this case.

On the other hand, if z′ does not cover x, then we must have Px<·<z′ ⊆ Px<·<y

as z′ was chosen to be minimal in P>x,‖y. Moreover, note that |Px<·<y| ≤ k − 1
by Corollary 4.6. Applying Lemma 4.12(g) and Lemma 5.1(c) then shows that
vz′ = vz′′ for x < z′′ l z′. In particular, Lemma 5.5(b,c) yields vz′′′ = 1− a for all
z′′′ ∈ Px<·≤z′′ . Now choose xl z′′′ ≤ z′′ < z, and note that |P<z′′′ |+ |P>y| ≤ n− k
still holds. Applying Lemma 4.14(b) and Lemma 5.1(e) yields 1 − a = vxy + a

2 ,
which is the converse of (M ). This completes the proof of part (a).

The proof of part (b) is completely analogous, but now we use Lemma 4.14(a),
Lemma 5.1(d), Lemma 5.5(a), and Lemma 4.12(h). �

5.2.2. The case z ∈ Px<·<y. Let us begin by explaining the basic difficulty in this
case. So far, all our arguments started with the construction of a chain that goes
from the element z of interest to a maximal or minimal element of P without
passing through x or y. We observed that such chains can be constructed in such
a way that all the transition vectors along the chain are k-extreme, so that we can
compute the value of vz using Lemma 5.1 (cf. Lemmas 5.3 and 5.5). However, when
z ∈ Px<·<y it is not even clear that there exists any chain connecting z to a minimal
or maximal element of P that does not pass through x or y. In the absence of such
a chain we would have no mechanism to obtain information about vz.

We presently aim to show that when the Kahn-Saks inequality holds with equal-
ity, such a chain must always exist. This is not obvious, and arises here in a rather
subtle manner from the equality conditions.

We begin by showing that the combinatorial conditions of (Mk) and (M∗k) cannot
simultaneously fail to hold for elements of Px<·<y.

Lemma 5.7. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1. Then for any
comparable elements z, z′ ∈ Px<·<y, the following hold.
a. If |P<z|+ |P>y| ≤ n− k, then |P>z′ |+ |P<x| > n− k.
b. If |P>z|+ |P<x| ≤ n− k, then |P<z′ |+ |P>y| > n− k.

Proof. It suffices to prove part (a), as part (b) is the contrapositive of part (a) with
the roles of z, z′ reversed. As z, z′ are comparable, there is a chain xlz1l· · ·lzrly
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so that zi = z and zj = z′ for some i, j. Now suppose that part (a) fails, that is, that
|P<z|+|P>y| ≤ n−k and |P>z′ |+|P<x| ≤ n−k. Then certainly |P<z1 |+|P>y| ≤ n−k
and |P>zr |+|P<x| ≤ n−k as well. Applying Lemma 4.14(a,b), Lemma 5.1(d,e), and
Lemma 5.5(c) yields vxy + a

2 = vz1 = vzr = vxy − a
2 , which entails a contradiction

as a > 0. Thus part (a) must hold, concluding the proof. �

We now use Lemma 5.7 to reason that if the combinatorial condition of (Mk) or
of (M∗k) fails, then there must exist a chain starting from any point in Px<·<y that
leaves this set without passing through x or y.

Lemma 5.8. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let z ∈ Px<·<y.
a. If |P<z|+|P>y| ≤ n−k, then any z ≤ z1ly satisfies z1lz2 for some z2 ∈ P>x,‖y.
b. If |P>z|+|P<x| ≤ n−k, then any z ≥ z1mx satisfies z1mz2 for some z2 ∈ P<y,‖x.

Proof. Suppose that |P<z| + |P>y| ≤ n − k, and let z ≤ z1 l y. Suppose that (a)
fails, that is, that z1 is not covered by any element of P>x,‖y. Then we must have
P>z1 = P≥y. We can therefore estimate using Lemma 5.7(a) and Corollary 4.6

n− k < |P>z1 |+ |P<x| = |P<x|+ |P>y|+ 1 < n− k,
which entails a contradiction. Thus part (a) is proved, and the proof of part (b) is
completely analogous using Lemma 5.7(b). �

With this structural information in hand, we can proceed to proving a counter-
part of Lemma 5.6 for elements z ∈ Px<·<y.

Lemma 5.9. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1, and let v ∈ V be
the vector provided by Lemma 5.1. Then the following hold.
a. If (M ) holds, then every z ∈ Px<·<y satisfies |P<z|+ |P>y| > n− k.
b. If (M ∗) holds, then every z ∈ Px<·<y satisfies |P>z|+ |P<x| > n− k.

Proof. Let z ∈ Px<·<y and xlz1 ≤ z ≤ z2ly. Suppose that |P<z|+ |P>y| ≤ n−k.
Then Lemma 5.8(a) shows that z2 l z3 for some z3 ∈ P>x,‖y, and Lemma 5.7(a)
yields |P>z2 |+ |P<x| > n− k. Moreover, note that the sets Px<·<y ∪Px<·<z3 , P<x,
and P>z2 are disjoint. We can therefore estimate

|Px<·<y ∪ Px<·<z3 |+ n− k + 1 ≤ |Px<·<y ∪ Px<·<z3 |+ |P>z2 |+ |P<x| ≤ n,
which yields |Px<·<y ∪ Px<·<z3 | ≤ k − 1. Thus Lemma 4.12(g), Lemma 5.1(c),
and Lemma 5.5(b,c) show that vz1 = vz2 = vz3 = 1 − a. On the other hand, as
|P<z| + |P>y| ≤ n − k clearly implies |P<z1 | + |P>y| ≤ n − k, Lemma 4.14(b) and
Lemma 5.1(e) yield 1− a = vz1 = vxy + a

2 which is the converse of (M ).
Thus we have proved the contrapositive of part (a). The proof of part (b) is com-

pletely analogous, but now we use Lemma 5.8(b), Lemma 5.7(b), Lemma 4.12(h),
Lemma 5.5(a,c), Lemma 4.14(a), and Lemma 5.1(d). �

Combining Lemma 5.6 and 5.9, we conclude that (M )⇒(Mk) and (M ∗)⇒(M∗k).

5.3. The case a 6= 1
2 . We are now ready to prove Theorems 1.3 and 1.5. The basic

observation is the following simple fact.

Lemma 5.10. If a 6= 1
2 , then either (M ) and (E ) hold, or (M ∗) and (E ∗) hold.

Proof. If the conclusion fails, then it must be the case that either (M ) and (M ∗)
fail, or (M ) and (E ∗) fail, or (E ) and (M ∗) fail, or (E ) and (E ∗) fail. We now
show that each of these possibilities yields a contradiction.
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a. If (M ) and (M ∗) both fail, then a = 2
3 (1 − vxy) = 2vxy implies that a = 1

2 ,
which contradicts the assumption.

b. If (M ) and (E ∗) both fail, then a = 2
3 (1− vxy) = 2(1− vxy) implies that a = 0,

which is impossible as a > 0 by assumption.
c. If (E ) and (M ∗) both fail, then a = 2vxy = −2vxy implies that a = 0, which is

impossible as a > 0 by assumption.
d. If (E ) and (E ∗) both fail, then −2vxy = 2(1− vxy) is evidently impossible.
This concludes the proof. �

We can now conclude the following.

Corollary 5.11. Assume that Nk > 0 and a2Nk+1 = aNk = Nk−1 with a 6= 1
2 .

Then either (Mk) and (Ek) hold, or (M∗k) and (E∗k) hold.

Proof. If P<x 6= ∅ and P>y 6= ∅, the second condition of (Ek) and (E∗k) is subsumed
by the first. Then the result follows from Lemmas 5.10, 5.4, 5.6, and 5.9.

Otherwise, we augment the poset P by adding a globally minimal and maximal
element, i.e., P̂ := P ∪ {0̂, 1̂} with the additional relations 0̂ < z < 1̂ for all z ∈ P .
As 0̂ and 1̂ must appear at the beginning and end of every linear extension, the
numbers Nk are unchanged if we replace P by P̂ . Thus we conclude that either
(Mk) and (Ek) hold for P̂ , or (M∗k) and (E∗k) hold for P̂ . It remains to verify that
these conditions for P̂ imply the corresponding conditions for P .

To this end, note that (Ek) for P̂ states that |P̂z<·<y ∪ {x}| > k for all z ∈ P̂<x.
Applying this condition to z ∈ P<x yields the first part of (Ek) for P , while applying
this condition to z = 0̂ yields the second part of (Ek) for P . The proof that (E∗k)

for P̂ implies (E∗k) for P is completely analogous. On the other hand, note that
(Mk) for P̂ states that |P̂<z|+ |P̂>y| > n+ 2−k for all P̂>x, 6≥y (as |P̂ | = n+ 2). As
P̂<z = P<z ∪ {0̂} and P̂>y = P>y ∪ {1̂}, the validity of (Mk) for P follows readily.
The proof that (M∗k) for P̂ implies (M∗k) for P is completely analogous. �

We now complete the proofs of Theorems 1.3 and 1.5.

Proof of Theorem 1.5. The implications (c)⇒(b)⇒(a) were proved in section 2.
The implication (a)⇒(c) follows by applying Corollary 5.11 with a = 1. �

Proof of Theorem 1.3. The implication (b)⇒(a) is trivial. Conversely, suppose that
(a) holds. Then we clearly have a2Nk+1 = aNk = Nk−1 for some a > 0 (as we
assumed Nk > 0). If a = 1

2 , we have Nk+1 = 2Nk = 4Nk−1. If a 6= 1
2 , then Corol-

lary 5.11 and the implication (c)⇒(a) of Theorem 1.5 yield Nk+1 = Nk = Nk−1.
Thus we have proved (a)⇒(b), concluding the proof. �

5.4. The case a = 1
2 . The proof of Theorem 1.6, which is concerned with the

equality case a2Nk+1 = aNk = Nk−1 for a = 1
2 (i.e., Nk+1 = 2Nk = 4Nk−1),

requires us to obtain additional information on the structure of P . Let us begin by
explaining why we must have P‖x,‖y = ∅ in this case.

Lemma 5.12. Let Nk > 0 and a2Nk+1 = aNk = Nk−1. If P‖x,‖y 6= ∅, then a = 1.

Proof. If P‖x,‖y 6= ∅, there is a chain z0 l z1 l · · · l zr from a minimal element
z0 to a maximal element zr of P‖x,‖y. Lemma 4.12(f) and Lemma 5.1(c) yield
vz0 = · · · = vzr . To conclude the proof, we show that vz0 = 0 and vzr = 1− a.
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If zr is maximal in P , then vzr = 1−a by Lemma 5.1(a). Otherwise, if there exists
zr l z ∈ P‖y, we must have z ∈ P>x,‖y (as z ∈ P‖x would contradict maximality of
zr in P‖x,‖y, while zr l z ∈ P≤x would contradict zr ∈ P‖x). Then Lemma 4.12(f),
Lemma 5.1(c), and Lemma 5.5(b) yield vzr = vz = 1 − a. Finally, if zr is not
maximal in P and there does not exist zr l z ∈ P‖y, we must have P>zr ⊆ P>y (as
zr < z ∈ P≤y would contradict zr ∈ P‖y). Then Lemma 4.12(e), Lemma 5.1(c), and
Lemma 5.3(b) yield vzr = 1−a. The proof that vz0 = 0 is completely analogous. �

Next, we prove a result that will be used to show that Px<·<y = ∅ when a = 1
2 .

We state a slightly more general form than is needed in the proof of Theorem 1.6,
as it will provide some additional information (Lemma 5.14 below): in essence, we
show that (Mk) and (E∗k) (and analogously (M∗k) and (Ek)) cannot both hold.

Lemma 5.13. The following hold.
a. Let xlz ∈ P>x, 6≥y and ylz′. If |P<z|+ |P>y| > n−k, then |Px<·<z′∪{y}| ≤ k.
b. Let ymz ∈ P<y,6≤x and z′lx. If |P>z|+ |P<x| > n−k, then |Pz′<·<y∪{x}| ≤ k.

Proof. Suppose that xl z ∈ P>x,6≥y satisfies |P<z|+ |P>y| > n− k, and let y l z′.
As the sets P>x,6>y, P<z, and P>y are disjoint, and as Px<·<z′ ⊆ P>x,6>y, we have

|Px<·<z′ |+ n− k + 1 ≤ |P>x,6>y|+ |P<z|+ |P>y| ≤ n,

so that |Px<·<z′ | ≤ k − 1. Thus |Px<·<z′ ∪ {y}| ≤ k, which completes the proof of
part (a). The proof of part (b) is completely analogous. �

We can now prove Theorem 1.6.

Proof of Theorem 1.6. The implications (c)⇒(b)⇒(a) were proved in section 2, so
it remains to prove the implication (a)⇒(c). By the same augmentation argument
as in the proof of Corollary 5.11, we can assume without loss of generality in the
remainder of the proof that P<x 6= ∅ and P>y 6= ∅.

By assumption, we have Nk > 0 and a2Nk+1 = aNk = Nk−1 with a = 1
2 . Thus

the conditions of Definition 5.2 reduce to

(M )⇔ (M ∗)⇔ vxy 6= 1
4 , (E )⇔ vxy 6= − 1

4 , (E ∗)⇔ vxy 6= 3
4 .

If vxy 6= 1
4 , then (M ), (M ∗), and either (E ) or (E ∗) hold. If this were the case, then

Lemmas 5.4, 5.6, and 5.9 and the implication (c)⇒(a) yield Nk+1 = Nk = Nk−1,
which contradicts the assumption. Thus we must have vxy = 1

4 . We therefore
conclude that both (E ) and (E ∗) hold, which implies using Lemma 5.4 (and as we
assumed that P<x, P>y are nonempty) that (Ek) and (E∗k) both hold.

That P‖x,‖y = ∅ was shown in Lemma 5.12. We claim that also Px<·<y = ∅.
Indeed, if the latter does not hold, then there exist x l z1 ≤ z2 l y, while there
exist z′lx and yl z′′ as we assumed that P<x, P>y are nonempty. By Lemma 5.7,
we have either |P<z1 |+ |P>y| > n− k or |P>z2 |+ |P<x| > n− k. Thus Lemma 5.13
shows that either |Pz′<·<y ∪ {x}| ≤ k or |Px<·<z′′ ∪ {y}| ≤ k. But this contradicts
the validity of (Ek) and (E∗k), establishing the claim.

It remains to prove that (Ck) holds. Suppose to the contrary that there exist
z ∈ P<y,‖x, z′ ∈ P>x,‖y with z < z′ so that |Pz<·<y| + |Px<·<z′ | ≤ k − 2. As
P‖x,‖y = Px<·<y = ∅, we must have Pz<·<z′ ⊂ P<y,‖x ∪ P>x,‖y. Thus there must
exist z ≤ z1 l z2 ≤ z′ so that z1 ∈ P<y,‖x and z2 ∈ P>x,‖y, and

|Pz1<·<y|+ |Px<·<z2 | ≤ |Pz<·<y|+ |Px<·<z′ | ≤ k − 2.
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Consequently ez1z2 is k-extreme by Lemma 4.12(i). But then Lemma 5.1(c) and
Lemma 5.5(a,b) yield 0 = vz1 = vz2 = 1−a, which contradicts the assumption that
a = 1

2 . Thus (Ck) must hold, concluding the proof. �

We conclude this section with an additional fact that is not needed in the proofs
of our main results, but helps clarify the conditions of Theorems 1.5 and 1.6.

Lemma 5.14. The following hold.
a. If (Mk) holds, then (E∗k) must fail.
b. If (M∗k) holds, then (Ek) must fail.

Proof. Suppose that (Mk) holds. We consider four cases.
• If P>x, 6≥y 6= ∅ and P>y 6= ∅, then (E∗k) must fail by Lemma 5.13(a).
• If P>x, 6≥y 6= ∅ and P>y = ∅, then (Mk) implies |P<z| > n−k for xlz ∈ P>x,6≥y.
As P<z and P>x are disjoint, n−k+ |P>x| < |P<z|+ |P>x| ≤ n contradicts (E∗k).

• If P>x, 6≥y = ∅ and P>y 6= ∅, then |Px<·<z ∪ {y}| = 1 for y l z contradicts (E∗k).
• Finally, if P>x, 6≥y = P>y = ∅, then |P>x ∪ {y}| = 1 which contradicts (E∗k).
This proves part (a). The proof of part (b) is completely analogous. �

5.5. An explicit example. A surprising aspect of the results of this paper is
that the equality cases of the Alexandrov-Fenchel inequality that arise here need
not respect the lattice structure of the underlying polytopes, as was discussed in
section 1.2.4. The following simple example illustrates this phenomenon.

Consider the poset P with |P | = 6 defined by the relations

z1 l z2 l y, xl z3 l z4.

It is readily verified that Theorem 1.6 yields a doubling progression for k = 2; in
fact, we manually compute N1 = 1, N2 = 2, N3 = 4.

In this example, the polytopes of Kahn and Saks are given by

K = {t ∈ RP : 0 ≤ tz1 ≤ tz2 ≤ ty = tx ≤ tz3 ≤ tz4 ≤ 1},
L = {t ∈ RP : 0 ≤ tz1 ≤ tz2 ≤ ty = 1, 0 = tx ≤ tz3 ≤ tz4 ≤ 1}.

Now note that Proposition 3.5 applies with a = 1
2 , so that hK(u) = haL+v(u) for

all k-extreme vectors u. We claim that the translation vector v may be chosen as

vz1 = vz2 = vy = 0, vz3 = vz4 = vx = 1
2 .

This can be read off from the proof of our main results. Indeed, the values of vzi
are given by Lemma 5.5. On the other hand, the proof of Theorem 1.6 shows that
vxy = 1

4 , so it is compatible with Proposition 3.5 to choose vy = 0 and vx = 1
2 (this

choice yields v 6∈ V , but this is irrelevant by Remark 3.3; the present choice was
made to make the equality condition easiest to visualize).

From these computations, it is readily seen that

aL+ v = {t ∈ RP : 0 ≤ tz1 ≤ tz2 ≤ ty = 1
2 = tx ≤ tz3 ≤ tz4 ≤ 1}

= K ∩ {t ∈ RP : tx = ty = 1
2}.

Even though the polytopes K and aL + v do not coincide, the proof of our main
results shows that they must have the same supporting hyperplanes in all k-extreme
directions. On the other hand, note that aL + v is obtained by intersecting K by
a non-lattice hyperplane, so that the equality condition of the Alexandrov-Fenchel
inequality does not respect the lattice structure of the polytopes K,L.
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