
EXTREMAL RANDOM MATRICES WITH INDEPENDENT ENTRIES
AND MATRIX SUPERCONCENTRATION INEQUALITIES

TATIANA BRAILOVSKAYA AND RAMON VAN HANDEL

Abstract. We prove nonasymptotic matrix concentration inequalities for the
spectral norm of (sub)gaussian random matrices with centered independent
entries that capture fluctuations at the Tracy-Widom scale. This considerably
improves previous bounds in this setting due to Bandeira and Van Handel,
and establishes the best possible tail behavior for random matrices with an
arbitrary variance pattern. These bounds arise from an extremum problem for
nonhomogeneous random matrices: among all variance patterns with a given
sparsity parameter, the moments of the random matrix are maximized by
block-diagonal matrices with i.i.d. entries in each block. As part of the proof,
we obtain sharp bounds on large moments of Gaussian Wishart matrices.

1. Introduction

Let X be an n×m matrix whose entries are independent, centered Gaussian vari-
ables with an arbitrary variance pattern Xij ∼ N(0, b2ij). This paper is concerned
with bounding the spectral norm ‖X‖ of such matrices.

In the special case that bij = 1 for all i, j, we recover one of the most classical
models of random matrix theory: then ‖X‖2 = ‖X∗X‖ is the norm of a Wishart
matrix with unit covariance. In this case, classical methods of random matrix
theory yield the exact asymptotic behavior [11]

lim
n,m→∞
m=cn

P
[
‖X‖ >

√
n+
√
m+ 1

2 ( 1√
n

+ 1√
m

)1/3s
]

= 1− F1(s), (1.1)

where F1(s) is the distribution function of the Tracy-Widom law of order one.
From this expression, we immediately read off that in the above asymptotic regime
‖X‖ = (1+o(1))(

√
n+
√
m) with fluctuations of order n−1/6∨m−1/6. It is important

to note that the scale of the fluctuations is much smaller than what is predicted by
general concentration of measure principles [13], which yield fluctuations of order
O(1) in the present setting. The presence of such unexpectedly small fluctuations
is sometimes called the superconcentration phenomenon [6].

The Wishart model is amenable to explicit computations due to its simple struc-
ture and large degree of symmetry. However, there is little hope to perform explicit
computations for an arbitrary variance pattern (bij), as such models can exhibit
a wide variety of different structures and behaviors that are specific to the given
pattern (for example, this class includes random band matrices and sparse matri-
ces with an arbitrary deterministic sparsity pattern as special cases). Nonetheless,
given their importance in many applications, it is of considerable interest to obtain
bounds for random matrices with an arbitrary variance pattern.
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One of the main results in this direction was obtained some years ago by Bandeira
and the second author. To describe this result, define the parameters

σ2
1 := max

j≤m

∑
i≤n

b2ij , σ2
2 := max

i≤n

∑
j≤m

b2ij , σ2
∗ := max

i≤n
j≤m

b2ij . (1.2)

The following is shown in [3, Corollary 3.11].

Theorem 1.1 ([3]). Let n ≤ m, and let X be the n × m random matrix whose
entries Xij ∼ N(0, b2ij) are independent. Then we have

P
[
‖X‖ > (1 + ε)(σ1 + σ2) + σ∗t

]
≤ n e−Cεt

2

for all t ≥ 0 and 0 < ε ≤ 1
2 , where the constant Cε depends only on ε.

Theorem 1.1 implies that

‖X‖ ≤ (1 + ε)(σ1 + σ2) + C ′ε σ∗
√

log n w.h.p. (1.3)

In the Wishart case bij = 1 for all i, j, this yields ‖X‖ ≤ (1 + o(1))(
√
n +
√
m)

which captures the exact leading order behavior in (1.1). However, the order of the
fluctuations in Theorem 1.1 is much larger than in (1.1): the second term in (1.3)
diverges as n,m → ∞, while the second order term in (1.1) is o(1). In particular,
Theorem 1.1 fails to recover any form of superconcentration.

On the other hand, the large second term in (1.3) is unavoidable in general for
sparse matrices, as the following classical example illustrates.

Example 1.2. Let n = m and bij = 1|i−j|≤k, that is, X is a random band matrix
with bandwidth 2k + 1. Then we have

σ1 + σ2 = 2
√

2k + 1, ‖X‖ ≥ max
i
|Xii| = (1 + o(1))

√
2 log n

with high probability as n→∞. It follows that the second term in (1.3) dominates
the behavior of ‖X‖ in the sparse regime k � log n. In fact, (1.3) optimally
captures the phase transition for the leading order behavior of the norm of random
band matrices (cf. [3, Corollary 4.4] in the self-adjoint case).

Such examples suggest that the large scale of the fluctuations in Theorem 1.1 is
a necessary feature of any bound for random matrices with an arbitrary variance
pattern. Surprisingly, this expectation turns out to be incorrect. The main results
of this paper will yield a considerable improvement on Theorem 1.1, which simulta-
neously captures the fluctuations at Tracy-Widom scale of (1.1) and sharpens the
phase transition between sparse and dense matrices that is implicit in (1.3).

1.1. Main results. While the main results of this paper will be proved both for
non-self-adjoint and for self-adjoint random matrices, we focus the presentation in
the introduction on the non-self-adjoint case for concreteness. We further consider
a slightly more general setting than the above Gaussian model.

Model 1.3. X is an n ×m matrix with Xij = bijξij , where bij ≥ 0 are arbitrary
scalars and ξij are independent symmetrically distributed real random variables
with E[ξ2pij ] ≤ E[g2p] for all i, j and p ∈ N (here g ∼ N(0, 1)).

In the setting of Model 1.3, we always define σ1, σ2, σ∗ as in (1.2).
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1.1.1. Small deviations. Our main result in this setting is the following.

Theorem 1.4 (Small deviations). Let X be as in Model 1.3 and σ1 ≤ σ2. Then

P
[
‖X‖ > σ1 + σ2 + σ

4/3
∗ σ

−1/3
1 t

]
≤ nσ2

∗
Cσ2

1

e−Ct
3/2

for all 0 ≤ t ≤ σ
1/3
1 σ2

σ
4/3
∗

, where C is a universal constant.

Remark 1.5. The assumption σ1 ≤ σ2 entails no loss of generality, as in the opposite
case σ1 > σ2 we may simply apply Theorem 1.4 to the adjoint matrix X∗.

In the Wishart case bij = 1 for all i, j with n ≤ m, Theorem 1.4 yields

P
[
‖X‖ >

√
n+
√
m+ n−1/6t

]
≤ C−1e−Ct

3/2

for 0 ≤ t ≤ n1/6
√
m. This captures precisely the fluctuations and the upper tail of

the Tracy-Widom asymptotics (1.1), up to a universal constant. To the best of our
knowledge, the nonasymptotic bound is new even in this very special case.

For arbitrary variance patterns with σ1 ≤ σ2, Theorem 1.4 yields

‖X‖ ≤ σ1 + σ2 + C ′
σ
4/3
∗

σ
1/3
1

log2/3

(
nσ2
∗

σ2
1

)
w.h.p. (1.4)

provided σ
1/4
1 σ

3/4
2 & σ∗

√
log n. In particular, as soon as σ1 � σ∗

√
log n, (1.4)

improves drastically on (1.3). We will explain in section 1.1.3 that this bound is
essentially the best possible even for nonhomogeneous random matrices.

1.1.2. Large deviations. Theorem 1.4 controls small deviations, that is, deviations
up to the order of the mean. In contrast, the large deviations of ‖X‖ are controlled
by its Gaussian tail behavior [17, Corollary 3.2], and we cannot expect a qualitative
improvement over Theorem 1.1 in this setting.

Nonetheless, the basic principle behind Theorem 1.4 gives rise to a quantitative
improvement: a variant of Theorem 1.1 with optimal constants.

Theorem 1.6 (Large deviations). Let X be as in Model 1.3 and n ≤ m. Then

P
[
‖X‖ > σ1 + σ2 + σ∗(1 + t)

]
≤ 2n e−t

2/2

for all t ≥ 0.

Theorem 1.6 implies that

‖X‖ ≤ σ1 + σ2 + (1 + o(1))σ∗
√

2 log n w.h.p. (1.5)

as n → ∞. The significance of this result is that in many examples, the second
term in (1.5) matches the trivial lower bound ‖X‖ ≥ maxi,j |Xij |; this is the case,
for example, for the random band matrix of Example 1.2. In such situations, (1.5)
captures the exact leading order behavior ‖X‖ = (1 +o(1))σ∗

√
2 log n in the sparse

regime σ1 + σ2 � σ∗
√

log n, while (1.3) necessarily loses a universal constant.
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Figure 1.1. An extremal block-diagonal matrix.

1.1.3. Extremum principle. The proofs of Theorems 1.4 and 1.6 are based on a
more fundamental principle that is of independent interest.

To explain this principle, let us begin by recalling the idea behind the proof
of Theorem 1.1. Rather than bound the norm of the nonhomogeneous model X
directly, the approach of [3] compares X with an i.i.d. matrix of smaller dimension,
whose norm can be controlled by any classical method for homogeneous random
matrices. In particular, the main technical device in [3] shows that when normalized
so that σ∗ = 1, the 2p-moment of X can be bounded by the 2p-moment of a matrix
with i.i.d. entries of dimension dσ2

1 + pe × dσ2
2 + pe. This suffices to capture the

leading order behavior of ‖X‖, but the dependence of the comparison matrix on p
precludes any accurate control of the fluctuations.

The basis for the results of this paper may be viewed as an optimal comparison
principle of this kind. In the following, we denote by TrM the (unnormalized) trace
and by trM := 1

n TrM the normalized trace of an n× n matrix M .

Theorem 1.7 (Extremum principle). Let X be as in Model 1.3 with σ∗ = 1. Then

E[tr(XX∗)p] ≤ E[tr(Y Y ∗)p] for all p ∈ N,

where Y is the dσ2
1e × dσ2

2e matrix with independent entries Yij ∼ N(0, 1).

Note that the inequality in Theorem 1.7 holds with equality when X has i.i.d.
entries. Thus, in contrast to the comparison principle of [3], Theorem 1.7 may
be viewed as an extremum principle for random matrices. In terms of normalized
moments, this principle may be expressed as follows.

Corollary 1.8. Fix d1, d2 ∈ N. Among all X as in Model 1.3 with σ2
∗ = 1, σ2

1 ≤ d1,
σ2
2 ≤ d2, and arbitrary dimensions n×m, the normalized moments E[tr(XX∗)p] are

maximized for all p by the matrix of dimension d1 × d2 with i.i.d. N(0, 1) entries.

In terms of unnormalized moments, we obtain the following.

Corollary 1.9. Fix n,m, d1, d2 ∈ N with m
d2
≥ n

d1
∈ N. Among all X as in

Model 1.3 with σ2
∗ = 1, σ2

1 ≤ d1, σ2
2 ≤ d2, and fixed dimensions n × m, the

unnormalized moments E[Tr(XX∗)p] are maximized for all p by the block-diagonal
matrix whose blocks have dimension d1× d2 and i.i.d. N(0, 1) entries (Figure 1.1).

In particular, that block-diagonal matrices have the largest moments explains the
form of Theorem 1.4. Indeed, as the norm of a block-diagonal matrix is the maxi-
mum of the norms of its blocks, (1.1) suggests that its distribution is approximately
the maximum of n

d1
independent Tracy-Widom variables. The tail probabilities of

this distribution are precisely of the form that is captured by the tail bound of
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Theorem 1.4. In particular, the bound (1.4) is essentially the best possible in that
it yields the correct behavior of block-diagonal matrices.

Theorem 1.7 will be proved in section 4 below. With this result in hand, the
proof of Theorems 1.4 and 1.6 will reduce to the proof of analogous tail bounds for
Wishart matrices. The latter is made possible by a beautiful method, pioneered
by Ledoux [14, 15, 16], for deriving Tracy-Widom type tail bounds from sharp
moment estimates. While such estimates were obtained by Ledoux for GUE [14]
and GOE [16] matrices, sharp moment bounds for Wishart matrices do not appear
to be known in the literature. Such bounds are obtained here in section 5. The
Wishart model is considerably more delicate than the GUE and GOE models due
to the fact that we require bounds that hold uniformly for all dimensions n,m, not
just in the asymptotic regime (1.1) where m = cn are proportional.

Let us emphasize that, despite the apparent similarity between Theorem 1.7 and
the comparison principles of [3], the proofs of these results are completely different.
The method of [3] uses a classical combinatorial expression for the moments as a sum
over equivalence classes of even closed walks, and estimates each term separately.
In contrast, the proof of Theorem 1.7 expresses the moments of a Gaussian random
matrix as a sum over pairings by the Wick formula, and then uses an iterative
procedure to reduce each term to a noncrossing pairing. This new approach turns
out to provide a much more efficient mechanism for controlling the moments.

1.1.4. Self-adjoint models and outline. While we have focused the discussion in the
introduction on non-self-adjoint models for concreteness, analogous results hold also
for self-adjoint models. Beside that self-adjoint random matrices arise frequently in
applications, the proofs of the self-adjoint analogues of our main results turn out to
be simpler than those in the non-self-adjoint case. We will therefore develop these
results in detail before we return to the non-self-adjoint case.

• In section 2 we consider self-adjoint random matrices with independent complex
Gaussian entries. The extremum principle admits a particularly simple proof in
this setting that avoids almost all the complications that arise in the real case.

• We then consider in section 3 self-adjoint random matrices with independent
real entries, that is, the self-adjoint analogue of Model 1.3. The proof of the
the extremum principle is much more involved in this case, and shares the same
difficulties as the proof of the extremum principle for non-self-adjoint models.
However, for both complex and real self-adjoint models, we can directly invoke
the moment estimates of Ledoux [14, 15, 16] to obtain tail bounds.

• Finally, the non-self-adjoint case is developed in section 4, while section 5 devel-
opes the sharp moment estimates that are needed in this case.

1.2. Discussion and open questions.

1.2.1. Intrinsic freeness. To date, two main approaches have been developed for
obtaining sharp nonasymptotic bounds for the spectral norm of nonhomogeneous
random matrices X that are of a fundamentally different nature:

1. The extremum principles of [3] and of this paper compare the spectral statistics
of X with those of an i.i.d. random matrix Y of smaller dimension.

2. The intrinsic freeness principle of [1] compares the spectral statistics of X with
those of a deterministic operator Xfree that arises in free probability theory.
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The theory of [1] is in fact much more general than the setting of this paper, in
that it captures both random matrices with dependent entries and more general
spectral statistics. However, the following special case may be directly compared
to the bounds of this paper: if X is an n × m random matrix with independent
Gaussian entries Xij ∼ N(0, b2ij) and n ≤ m, then [1, Corollary 2.2] yields

‖X‖ ≤ (1 + ε)‖Xfree‖+ Cε σ∗(logm)3/2 w.h.p. (1.6)

for every ε > 0 (this may be shown as in [1, Lemma 3.1]). As

‖Xfree‖ ≤ σ1 + σ2

by [1, Lemma 2.5], the intrinsic freeness principle readily yields a slightly weaker
form of (1.3). Note that the second term in (1.6) is even larger than that of (1.3),
while the results of this paper yield a much smaller second-order term.

On the other hand, there are many situations where the intrinsic freeness prin-
ciple yields strictly better results than those of this paper: whenever

σ∗(logm)3/2 � ‖Xfree‖ ≤ (1− δ)(σ1 + σ2)

for some δ > 0, the bound of (1.6) is strictly better to leading order, which renders
any improvement to the second-order term negligible.

In view of the above discussion, the bounds of this paper are of particular interest
when ‖Xfree‖ = σ1 + σ2. The following lemma explains when this is the case.

Lemma 1.10. ‖Xfree‖ = σ1 + σ2 when
∑
i b

2
ij = σ2

1 and
∑
j b

2
ij = σ2

2 for all i, j.

Proof. We can apply [1, Lemma 3.2 and Remark 2.6] to obtain

‖Xfree‖ ≥ 2
∑
i

√
wi
∑
j

b2ijvj + 2
∑
j

√
wi
∑
i

b2ijvj

for every w ∈ Rn+, v ∈ Rm+ with
∑
i wi +

∑
j vj = 1. The conclusion follows by

choosing wi = 1
2n , vj = 1

2m , and noting that
∑
i,j b

2
ij = mσ2

1 = nσ2
2 . �

Variance patterns with constant row and column sums as in Lemma 1.10 arise
naturally in applications, for example, in the study of sparse random matrices whose
sparsity pattern is biregular. At the same time, the results of this paper are stronger
than those obtained by the intrinsic freeness principle for very sparse matrices (so
that they capture phase transitions as in Example 1.2), and provide the strongest
easily computable norm bounds for arbitrary variance patterns.

One may wonder whether it might in fact be possible to achieve the best of both
worlds: could the tail bound of Theorem 1.4 with fluctuations at Tracy-Widom
scale remain valid if the leading term σ1 +σ2 is replaced by ‖Xfree‖? The following
example shows that such a bound cannot exist.

Example 1.11. Let n = m and b2ij = n−1(1+δ21i=1), known as the spiked covariance
model (originally due to Baik, Ben Arous, and Péché in the complex case). Then
the leading order behavior of ‖X‖ exhibits the following phase transition:

‖X‖ = (1 + o(1))‖Xfree‖ = (1 + o(1))

{
2 if δ ≤ 1,

δ + 1
δ if δ > 1

w.h.p.

as n→∞ (cf. [1, 2] and [19, §2.1]). Moreover, it is shown in [19, Theorem 3] that
when δ > 1, the fluctuations of ‖X‖ are of order σ∗ ∼ n−1/2. This shows that we
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cannot replace σ1 + σ2 by ‖Xfree‖ in Theorem 1.4, as that would imply a much
smaller bound on the fluctuations of order σ4/3

∗ .

Example 1.11 illustrates in a particularly clear manner that the extremum and
intrinsic freeness principles capture fundamentally different mathematical phenom-
ena. This may appear somewhat surprising, given that both the proofs in this
paper and those of [1] are based on the control of crossings in the Wick formula
(in the latter case, this idea is due to [22]). However, these results exploit crossings
in very different ways: here we show that the contribution of each crossing to the
nonhomogeneous model is bounded by that in the i.i.d. model, while the intrinsic
freeness principle aims to show that crossings are negligible altogether.

1.2.2. Superconcentration. The concentration of measure phenomenon [13] is a pow-
erful tool for bounding the fluctuations of random structures. While general con-
centration inequalities often yield optimal bounds, there are also situations where
the scale of the flucutations is much smaller than is predicted by general principles.
This phenomenon was called superconcentration in [6].

When applied to the random matrix models of this paper, classical concentration
inequalities ensure that the scale of the fluctuations of ‖X‖ is at most of order σ∗,
cf. [1, Corollary 4.14]. In contrast, the fluctuation term in Theorem 1.4, of order
σ
4/3
∗ σ

−1/3
1 , is often much smaller than σ∗. We may therefore think of Theorem 1.4

as a “matrix superconcentration inequality”. Indeed, this bound accurately captures
the well known superconcentration property of the upper tail of the norm of Wishart
matrices, and extends it to a much larger class of models.1

This interpretation must be treated with care, however, as the second-order
term in Theorem 1.4 can only provide information on the fluctuations of ‖X‖ when
the first-order term is captured correctly. In particular, Theorem 1.4 can only
establish genuine superconcentration for variance patterns that satisfy conditions
as in Lemma 1.10. This is necessarily the case: Example 1.11 illustrates that general
variance patterns may not exhibit any superconcentration at all.

More generally, it is not expected that the specific setting of Lemma 1.10 is nec-
essary for superconcentration. General principles explained in [6] suggest that the
spectral norm should exhibit superconcentration provided there are many singular
values near the maximal one (this fails in Example 1.11, where the largest singular
value is isolated from the bulk). Furthermore, even in the setting of Lemma 1.10,
our results yield an upper bound that is sharp for block-diagonal matrices, but
other such models may exhibit even smaller fluctuations (e.g., [21]). A precise un-
derstanding of when and how much superconcentration arises for nonhomogeneous
random matrices remains out of reach of any known method.

1.2.3. Universality. The setting of Model 1.3 requires the entries of X to be sym-
metrically distributed and have all their moments dominated by those of the Gauss-
ian distribution. However, the classical Tracy-Widom asymptotics (1.1) remain
valid in a much more general setting [20]: it suffices that the entries of X have zero
mean, unit variance, and soft control of the higher moments.

1After the completion of this paper, we learned that a weaker superconcentration property
was previously obtained by entirely different methods in [9, Theorem 3.4] for self-adjoint random
matrices satisfying the analogue of Lemma 1.10. Theorem 3.4 below yields a much more precise
tail bound in the self-adjoint setting that is essentially optimal by the extremum principle.
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It is of considerable interest to understand whether nonasymptotic bounds can
also be achieved in this much more general setting. An extension of Theorem 1.1
along these lines was proved in [12, §4.3]: it was shown there that for any random
matrix X whose entries are independent and have zero mean, the statement of
Theorem 1.1 remains valid if we replace the parameters (1.2) by

σ2
1 ← max

j

∑
i

Var(Xij), σ2
2 ← max

i

∑
j

Var(Xij), σ2
∗ ← max

i,j
‖Xij‖2∞.

However, just as Theorem 1.1, this result fails to capture fluctuations at the Tracy-
Widom scale. It is natural to conjecture the validity of an analogous extension of
Theorem 1.4 and of the other main results of this paper. Such results would be of
particular interest in applications, e.g., to random graphs [4].

Unfortunately, it is not clear whether the methods of this paper can be adapted to
achieve such results (nor do they follow from the very general universality principles
in [5], whose error terms are far larger than the fluctuations in Theorem 1.4). While
much less precise, the method used in [3, 12] does not use any special properties of
the Gaussian distribution and is therefore readily adapted to more general models.
In contrast, the proof of the sharp extremum principle of Theorem 1.7 is based on
the Wick formula, and is therefore inherently Gaussian in nature. For this reason,
an analogous extension of our main results remains an open problem.

1.3. Notation. The following notation will be used throughout this paper.
We denote byN(0, σ2) or byNR(0, σ2) the distribution of a real Gaussian random

variable with mean 0 and variance σ2. The distribution of a complex random vari-
able, whose real and imaginary parts are independent with distribution NR(0, σ

2

2 )

(i.e., a complex Gaussian variable), is denoted as NC(0, σ2).
For a matrix M , its adjoint is denoted as M∗; in particular, a∗ denotes the

complex conjugate of a ∈ C. We always denote by ‖M‖ the spectral norm (i.e.,
the largest singular value) of M . Recall that for a square matrix M , we denote by
TrM and trM the unnormalized and normalized trace, respectively.

We write [n] := {1, . . . , n} for n ∈ N. We denote by P2([n]) the set of all pairings
of [n] (that is, partitions each of whose elements has size two). Recall that given
any π ∈ P2([n]), two pairs {i, k}, {j, l} ∈ π such that i < j < k < l are said to form
a crossing. A pairing that contains no crossing is said to be noncrossing, and we
denote by NC2([n]) the set of all noncrossing pairings of [n].

Finally, we will write x . y to indicate that x ≤ Cy for a universal constant C.

2. The Hermitian case

The aim of this section is to investigate Hermitian random matrices with inde-
pendent complex Gaussian entries. That is, we consider the following model.

Model 2.1. X is an n × n Hermitian matrix whose entries Xij = (Xji)
∗ are

independent for i ≥ j with Xij ∼ NC(0, b2ij) for i > j and Xii ∼ NR(0, b2ii), where
bij = bji ≥ 0 are arbitrary nonnegative scalars.

This setting admits particularly simple proofs, which will guide the more involved
arguments required for real random matrices in the following sections.

Define the parameters

σ2 := max
i≤n

∑
j≤n

b2ij , σ2
∗ := max

i,j≤n
b2ij . (2.1)
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Then we have the following extremum principle and tail bounds.

Theorem 2.2 (Extremum principle). Define X as in Model 2.1, and assume that
σ2
∗ = 1 and that σ2 ≤ d ∈ N. Then we have

E[trX2p] ≤ E[trY 2p]

for all p ∈ N, where Y is the d×d Hermitian matrix whose entries Yij = (Yji)
∗ are

independent for i ≥ j with Yij ∼ NC(0, 1) for i > j and Yii ∼ NR(0, 1).

Theorem 2.3 (Small deviations). For X as in Model 2.1, we have

P
[
‖X‖ > 2σ + 4σ

4/3
∗ σ−1/3t

]
≤ enσ2

∗
σ2

e−t
3/2

for every 0 ≤ t ≤ σ4/3

σ
4/3
∗

.

Theorem 2.4 (Large deviations). For X as in Model 2.1, we have

P
[
‖X‖ > 2σ + σ∗(1 + t)

]
≤ 2n e−t

2/2

for every t ≥ 0.

The remainder of this section is devoted to the proofs of these results.

2.1. Extremum principle. In this subsection, we will use the following notation.
Let (gij)i≥j be i.i.d. NC(0, 1) random variables, and define

Uij := bijeie
∗
j , Uii := 1√

2
biieie

∗
i

for i > j. Then we can represent the random matrix X of Model 2.1 as

X =
∑
i≥j

(gijUij + g∗ijU
∗
ij).

We can compute the moments of X as follows.

Lemma 2.5 (Wick formula). For any p ∈ N, we have

E[trX2p] =
∑

π∈P2([2p])

∑
(i,j,ε)∼π

trUε1i1j1 · · ·U
ε2p
i2pj2p

.

Here i = (i1, . . . , i2p) ∈ [n]2p, j = (j1, . . . , j2p) ∈ [n]2p, ε = (ε1, . . . , ε2p) ∈ {1, ∗}2p,
and (i, j, ε) ∼ π denotes ik ≥ jk and ik = il, jk = jl, εk 6= εl for all {k, l} ∈ π.

Proof. Clearly

E[trX2p] =
∑

i1≥j1,...,i2p≥j2p

∑
ε1,...,ε2p∈{1,∗}

E[gε1i1j1 · · · g
ε2p
i2pj2p

] trUε1i1j1 · · ·U
ε2p
i2pj2p

.

The conclusion follows as

E[gε1i1j1 · · · g
ε2p
i2pj2p

] =
∑

π∈P2([2p])

∏
{k,l}∈π

1ik=il,jk=jl,εk 6=εl

by the classical Wick formula [18, Theorem 22.3 and Remark 22.5]. �

Free probability theory suggests [18, p. 367] that the expression in Lemma 2.5
should be dominated by noncrossing pairings. The idea behind the proof of Theo-
rem 2.2 is to consider separately the effect of noncrossing and crossing pairs on the
terms in the sum in Lemma 2.5. We first consider noncrossing pairings.
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Lemma 2.6. For any p ∈ N and noncrossing pairing π ∈ NC2([2p]), we have∑
(i,j,ε)∼π

trUε1i1j1 · · ·U
ε2p
i2pj2p

≤ σ2p.

Moreover, equality holds when bij = 1 for all i, j.

Proof. Recall the elementary fact that any noncrossing pairing π must contain a
consecutive pair {k, k + 1} ∈ π. (If not, choose {k, k + l} ∈ π with minimal l ≥ 2.
Then {k + 1, r} ∈ π must satisfy |k + 1 − r| ≥ l. In particular, {k, k + l} and
{k + 1, r} form a crossing, contradicting the assumption.)

By cyclic permutation of the trace, we may assume without loss of generality
that {2p− 1, 2p} ∈ π. Then we can compute∑

(i,j,ε)∼π

trUε1i1j1 · · ·U
ε2p
i2pj2p

=

∑
(i,j,ε)∼π\{{2p−1,2p}}

trUε1i1j1 · · ·U
ε2p−2

i2p−2j2p−2

∑
i≥j

(UijU
∗
ij + U∗ijUij).

Now note that ∑
i≥j

(UijU
∗
ij + U∗ijUij) =

∑
i≤n

(∑
j≤n

b2ij

)
eie
∗
i .

As all Uij have nonnegative entries, we have trUε1i1j1 · · ·U
ε2p−2

i2p−2j2p−2
eie
∗
i ≥ 0. Thus∑

(i,j,ε)∼π

trUε1i1j1 · · ·U
ε2p
i2pj2p

≤ σ2
∑

(i,j,ε)∼π\{{2p−1,2p}}

trUε1i1j1 · · ·U
ε2p−2

i2p−2j2p−2
,

with equality if bij = 1 for all i, j. As π\{{2p − 1, 2p}} is again a noncrossing
pairing, we can iterate this argument to conclude the proof. �

Next, we analyze the effect of a single crossing.

Lemma 2.7 (Crossing inequality). Let M1, . . . ,M4 be any n × n matrices with
nonnegative entries. Then we have∑

i≥j,k≥l

∑
ε,δ∈{1,∗}

trUεijM1U
δ
klM2U

!ε
ijM3U

!δ
klM4 ≤ σ4

∗ trM3M2M1M4,

with equality when bij = 1 for all i, j. Here we denote !1 := ∗ and !∗ := 1.

Proof. Substituting the definition of Uij into the left-hand side yields∑
i≥j,k≥l

∑
ε,δ∈{1,∗}

trUεijM1U
δ
klM2U

!ε
ijM3U

!δ
klM4 =

1

n

∑
i,j,k,l∈[n]

b2ijb
2
kl(M3)il(M2)lj(M1)jk(M4)ki

by an explicit computation. The conclusion follows readily. �

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Fix a pairing π ∈ P2([2p]). Suppose that {1, l}, {k,m} form
a crossing 1 < k < l < m. Then Lemma 2.7 yields∑

(i,j,ε)∼π

trUε1i1j1 · · ·U
ε2p
i2pj2p

≤ σ4
∗

∑
(i,j,ε)∼π′

trUε1i1j1 · · ·U
ε2p−4

i2p−4j2p−4
.
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where π′ ∈ P2([2p−4]) is obtained from π by removing {1, l}, {k,m} and reordering
the remaining elements as l+1, . . . ,m−1, k+1, . . . , l−1, 2, . . . , k−1,m+1, . . . , 2p.
(Here we used that any product of matrices Uεij has nonnegative elements.)

We can now iterate this procedure until we arrive at a final pairing π′ that
is noncrossing. More precisely, given any pairing π that contains at least one
crossing, we choose the smallest crossing in the lexicographic order and use cyclic
permutation of the trace to make its smallest element equal to one. We then apply
the above inequality. If π′ still contains a crossing, we repeat this procedure until
no crossings are left. Denote by `(π) the number of times this process is repeated
until we reach a noncrossing pairing. Then Lemmas 2.5 and 2.6 yield

E[trX2p] ≤
∑

π∈P2([2p])

σ2p−4`(π)σ
4`(π)
∗ .

Note that, by construction, the quantity `(π) is uniquely determined by π and does
not depend on the random matrix X.

We now apply precisely the same argument to the random matrix Y . However,
as every entry of Y has equal variance, Lemmas 2.6 and 2.7 ensure that all the
above inequalities become equalities in this case. In particular, we obtain

E[trY 2p] =
∑

π∈P2([2p])

dp−2`(π).

As we assumed σ2 ≤ d and σ2
∗ = 1, the conclusion is immediate. �

Remark 2.8. An identity of the above form for E[trY 2p] is classical in random
matrix theory, where it is known as the genus expansion [18, Theorem 22.12]. In
particular, the precise combinatorial meaning of `(π) can be understood in terms of
the genus of the orientable surface obtained by gluing together the edges of a regular
2p-gon corresponding to each pair of π. However, this combinatorial intepretation is
completely irrelevant for our purposes: all we used is that the inequalities we apply
to the nonhomogeneous matrix X become equality for Y . For the real random
matrices investigated in the following sections, the combinatorial structure is much
more delicate while a comparison argument remains tractable.

2.2. Small deviations. We can now combine Theorem 2.2 with a method of
Ledoux [15, §5.2] to obtain small deviations inequalities at the Tracy-Widom scale.
The basis for this method is an accurate estimate on the pth moment of Y for
moderately large p. The following can be read off from [15, pp. 210–211].

Lemma 2.9 (Ledoux). Define Y as in Theorem 2.2. For all p ∈ N, we have

E[trY 2p] ≤ 1

p3/2
√
π

(
4d+

p(p− 1)

d

)p
.

We obtain the following.

Proposition 2.10. For X as in Model 2.1 and 0 ≤ ε ≤ 1, we have

P
[
‖X‖ > 2

√
σ2 + σ2

∗ (1 + ε)
]
≤ enσ2

∗
σ2

e
− σ2
σ2∗
ε3/2

.

Proof. Suppose first that σ∗ = 1, and let d = dσ2e. Using Markov’s inequality,
‖X‖2p ≤ n trX2p, and Theorem 2.2, we obtain

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ n

(4d)p
E[trY 2p]

(1 + ε)2p
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for all p ∈ N. Applying Lemma 2.9 yields

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ 1√

π

n

p3/2
e−εp log 4+p2(p−1)/4d2

using that (1 + ε)−2p ≤ 4−εp for 0 < ε ≤ 1. Choosing p = dd
√

2εe yields

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ 1.3

n

d

1

(dε3/2)1/2
e−dε

3/2

using p2(p−1) ≤ (d
√

2ε+1)2d
√

2ε ≤ 2
√

2 d3ε3/2+4d2+d
√

2 and
√

2 log 4− 1√
2
≥ 1.

We now consider two cases. First, if σ2ε3/2 ≥ 1, we can estimate

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ en

σ2
e−σ

2ε3/2

using e ≥ 1.3 and d ≥ σ2. On the other hand, for σ2ε3/2 < 1, we have

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ 1 ≤ en

σ2
e−σ

2ε3/2

as σ2 ≤ nσ2
∗ = n. Combining these bounds, we obtain

P
[
‖X‖ > 2

√
σ2 + 1 (1 + ε)

]
≤ en

σ2
e−σ

2ε3/2 .

where we used d ≤ σ2 + 1. This concludes the proof when σ∗ = 1. For general σ∗,
it suffices to apply the above bound to the random matrix X

σ∗
. �

Theorem 2.3 follows readily.

Proof of Theorem 2.3. Proposition 2.10 implies

P
[
‖X‖ > 2

√
σ2 + σ2

∗ + 2
√
σ2 + σ2

∗ σ
4/3
∗ σ−4/3t

]
≤ enσ2

∗
σ2

e−t
3/2

by setting ε = tσ
4/3
∗ σ−4/3. We now bound√

σ2 + σ2
∗ ≤ σ +

σ2
∗

2σ
≤ 3

2
σ

to obtain

P
[
‖X‖ ≥ 2σ +

σ2
∗
σ + 3σ

4/3
∗ σ−1/3t

]
≤ enσ2

∗
σ2

e−t
3/2

.

This readily implies the conclusion for t ≥ σ2/3
∗ σ−2/3. On the other hand, as

1 ≤ nσ2
∗

σ2
≤ enσ2

∗
σ2

e−t
3/2

for t < σ
2/3
∗ σ−2/3 ≤ 1, the conclusion holds trivially in this case. �

2.3. Large deviations. The moment estimate of Lemma 2.9 is not accurate for
large p: indeed, this estimate yields a subexponential bound E[trY 2p]1/2p = O(p)
as p→∞, while the large deviations of the norms of Gaussian random matrices are
in fact subgaussian. To obtain a large deviation inequality, we will instead employ
the following estimate of Haagerup and Thorbjørnsen [10, Eq. (3.5)].

Lemma 2.11 (Haagerup-Thorbjørnsen). Let Y be as in Theorem 2.2. For all t ≥ 0

E[tr etY ] ≤ e2
√
d t+t2/2.

This yields the following.



EXTREMAL RANDOM MATRICES WITH INDEPENDENT ENTRIES 13

Proposition 2.12. For X as in Model 2.1 and ε ≥ 0, we have

P
[
‖X‖ > 2

√
σ2 + σ2

∗ + σ∗ε
]
≤ 2n e−ε

2/2.

Proof. Suppose first that σ∗ = 1, and let d = dσ2e. Note that all odd moments of
our random matrices vanish E[trX2p+1] = E[trY 2p+1] = 0 by the symmetry of the
Gaussian distribution. We can therefore estimate

E[tr etX ] ≤ E[tr etY ]

for t ≥ 0 by Taylor expanding the exponential function and applying Theorem 2.2
to the terms of even degree. As et‖X‖ ≤ n tr etX + n tr e−tX , we obtain

E[et‖X‖] ≤ 2n e2
√
d t+t2/2

using Lemma 2.11. By Markov’s inequality

P
[
‖X‖ > 2

√
d+ ε

]
≤ E[et‖X‖]

e(2
√
d+ε)t

≤ 2n e−εt+t
2/2.

Optimizing over t ≥ 0 yields

P
[
‖X‖ > 2

√
σ2 + 1 + ε

]
≤ 2n e−ε

2/2

for all ε ≥ 0, where we used d ≤ σ2 + 1. This concludes the proof for σ∗ = 1. For
general σ∗, it suffices to apply the above bound to the random matrix X

σ∗
. �

Theorem 2.4 follows readily.

Proof of Theorem 2.4. The conclusion follows immediately from Proposition 2.12
using that

√
σ2 + σ2

∗ ≤ σ +
σ2
∗

2σ ≤ σ + σ∗
2 . �

3. The symmetric case

We now turn to the case of (real) symmetric matrices. The following model is
the real symmetric analogue of Model 1.3.

Model 3.1. X is an n × n real symmetric matrix with Xij = bijξij for i 6= j

and Xii =
√

2 biiξii. Here ξij = ξji are independent symmetrically distributed real
random variables for i ≥ j with E[ξ2pij ] ≤ E[g2p] for all p ∈ N (here g ∼ N(0, 1)),
and bij = bji ≥ 0 are arbitrary nonnegative scalars.

Remark 3.2. The slightly different scaling of the off-diagonal and diagonal entries
ensures that X is GOE (a real symmetric random matrix whose law is invariant
under orthogonal conjugation) when bij = 1 for all i, j and ξij are Gaussian.

In this setting, the parameters σ and σ∗ are defined as in (2.1). The main results
of this section are the following extremum principle and tail bounds.

Theorem 3.3 (Extremum principle). Define X as in Model 3.1, and assume that
σ2
∗ = 1 and that σ2 ≤ d ∈ N. Then we have

E[trX2p] ≤ E[trY 2p]

for all p ∈ N, where Y is the d × d real symmetric matrix whose entries Yij = Yji
are independent for i ≥ j with Yij ∼ N(0, 1) for i > j and Yii ∼ N(0, 2).
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Theorem 3.4 (Small deviations). For X as in Model 3.1, we have

P
[
‖X‖ > 2σ + σ

4/3
∗ σ−1/3t

]
≤ nσ2

∗
Cσ2

e−Ct
3/2

for every 0 ≤ t ≤ σ4/3

σ
4/3
∗

, where C is a universal constant.

Theorem 3.5 (Large deviations). For X as in Model 3.1, we have

P
[
‖X‖ > 2σ + σ∗(1 + t)

]
≤ 2n e−t

2/4

for every t ≥ 0.

The remainder of this section is devoted to the proofs of these results.

Remark 3.6. The scale of the fluctuations in the tail bound of Theorem 3.5 is
√

2σ∗,
while the scale of the fluctuations in Theorem 2.4 is only σ∗. The larger tail in the
real symmetric case is necessary, however: for example, Theorem 3.5 implies that

‖X‖ ≤ 2σ + (1 + o(1)) 2σ∗
√

log n w.h.p.

as n→∞, while we have

‖X‖ ≥ max
i
Xii ≥ (1 + o(1)) 2σ∗

√
log n w.h.p.

whenever bii = σ∗ and ξii ∼ N(0, 1) for all i (as then Xii =
√

2σ∗ξii). Moreover, it
follows from [17, Corollary 3.2] that the tail bounds of both Theorems 2.4 and 3.5
cannot be improved in general for t→∞ (even in models where bii = 0 for all i).

3.1. Extremum principle. Let (gij)i≥j be i.i.d. N(0, 1) random variables. We
first show that there is no loss in assuming that ξij = gij in Model 3.1.

Lemma 3.7. Let X be as in Model 3.1, and let X̃ be defined as X where ξij is
replaced by gij. Then E[trX2p] ≤ E[tr X̃2p] for all p ∈ N.
Proof. Note that trX2p is a polynomial of (Xij)i≥j with nonnegative coefficients,
and that the expectation of each monomial is either zero or a product of terms of
the form E[X2k

ij ] (k ∈ N) as Xij are symmetrically distributed and independent.
The conclusion follows from the assumption that E[ξ2kij ] ≤ E[g2kij ] for all k ∈ N. �

We will therefore assume in the remainder of the proof of Theorem 3.3 that X
is defined as in Model 3.1 with ξij = gij . Then we define

Hij := bij(eie
∗
j + eje

∗
i ), Hii :=

√
2 biieie

∗
i

for i > j, and represent the random matrix X as

X =
∑
i≥j

gijHij .

We can now compute the moments of X as follows.

Lemma 3.8 (Wick formula). For any p ∈ N, we have

E[trX2p] =
∑

π∈P2([2p])

trH(π)

with
H(π) :=

∑
(i,j)∼π

Hi1j1 · · ·Hi2pj2p .

Here i, j ∈ [n]2p, and (i, j) ∼ π denotes ik ≥ jk and ik = il, jk = jl for {k, l} ∈ π.
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Proof. The proof is identical to that of Lemma 2.5. �

The challenge in the real case is that the effect of a crossing is much more
complicated than in the complex case (Lemma 2.7): we will have to distinguish in
the analysis between two different types of crossings that contribute in a different
way to the Wick formula. In order to do so efficiently, it will turn out to be necessary
to work with the following upper bound on the trace moments.

Lemma 3.9. For any k ∈ N and π ∈ P2([2k]), define

C(π) := max
r

(H(π))rr.

Then
E[trX2p] ≤

∑
π∈P2([2p])

C(π).

Moreover, when bij = 1 for all i, j, the matrix H(π) is a multiple of the identity
matrix for every π and thus the above inequality holds with equality.

Proof. The inequality is immediate from Lemma 3.8. It remains to show that H(π)
is a multiple of the identity matrix when bij = 1 for all i, j. To this end, note that
we may write H(π) = E[X1 · · ·X2k], where Xk = Xl is an independent copy of X
for each {k, l} ∈ π. When bij ≡ 1, X is a GOE matrix and its distribution is there-
fore orthogonally invariant. Thus OE[X1 · · ·X2k]O∗ = E[OX1O

∗ · · ·OX2kO
∗] =

E[X1 · · ·X2k] for every O ∈ O(n), from which the conclusion follows directly. �

We will now analyze the quantity C(π). We first consider noncrossing pairings.

Lemma 3.10. For any p ∈ N and noncrossing pairing π ∈ NC2([2p]), we have

C(π) ≤ σ̃2p, σ̃2 := max
i

(∑
j

b2ij + b2ii

)
.

Moreover, equality holds when bij = 1 for all i, j.

Proof. As in the proof of Lemma 2.6, there exists {k, k + 1} ∈ π. Then

C(π) = max
r

∑
(i,j)∼π\{{k,k+1}}

(Hi1j1 · · ·Hik−1jk−1
ΣHik+2jk+2

· · ·Hi2pj2p)rr,

where

Σ :=
∑
i≥j

H2
ij =

∑
i

(∑
j

b2ij + b2ii

)
eie
∗
i .

But note that (Hi1j1 · · ·Hik−1jk−1
eie
∗
iHik+2jk+2

· · ·Hi2kj2k)rr ≥ 0 as all Hij have
nonnegative entries. We can therefore readily estimate

C(π) ≤ σ̃2 C(π\{{k, k + 1}}),

with equality if bij = 1 for all i, j. As π\{{k, k + 1}} is again noncrossing, we can
iterate this argument to conclude the proof. �

We now consider the effect of a crossing. We will need the following identities,
which follow from somewhat tedious but straightforward computations.

Lemma 3.11 (Crossing identities). The following hold.
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a. For any matrices M1,M2,M3, we have∑
i≥j

∑
k≥l

HijM1HklM2HijM3Hkl =
∑
i,j,k,l

b2ijb
2
kl

{
(M1)jk(M2)lj(M3)il +

(M1)jl(M2)kj(M3)il + (M1)jk(M2)li(M3)jl + (M1)jl(M2)ki(M3)jl
}
eie
∗
k.

b. For any matrix M , we have∑
i≥j

Tr[MHij ]Hij =
∑
i,j

b2ij(Mij +Mji)eie
∗
j .

Proof. We readily compute that for any matrix M , we have∑
i≥j

HijMHij =
∑
i,j

b2ij(Mjjeie
∗
i +Mjieie

∗
j ).

The first part of the statement follows by applying this identity twice. The second
part of the statement is again a straightforward computation. �

To proceed, we must distinguish between two types of crossings that play a
fundamentally different role in the argument.

Definition 3.12. Let π ∈ P2([2p]), and fix a crossing {i, k}, {j, l} ∈ π such that
i < j < k < l. Then this crossing is said to be of type I if there exists {a, b} ∈ π
with a ∈ (i, j) ∪ (k, l) and b 6∈ (i, j) ∪ (k, l), an is said to be of type II otherwise.

We consider each type of crossing in turn.

Lemma 3.13 (Type I crossing). Let p ∈ N, π ∈ P2([2p]), {a, c}, {b, d}, {e, f} ∈ π
with a < b < c < d and e ∈ (a, b)∪(c, d), f 6∈ (a, b)∪(c, d). Then there exist pairings
π1, π2, π3 ∈ P2([2p − 4]) and π4, π5 ∈ P2([2p − 6]), whose definition depends only
on π, a, b, c, d, e, f (and not on the matrix X), so that2

C(π) ≤ σ4
∗{C(π1) + C(π2) + C(π3)}+ σ6

∗ {C(π4) + C(π5)}.

Moreover, equality holds when bij = 1 for all i, j.

Proof. For any M1,M2,M3 with nonnegative entries, Lemma 3.11(a) yields∑
i≥j

∑
k≥l

(HijM1HklM2HijM3Hkl)rs

≤ σ4
∗
(
M3M2M1 +M3M

∗
1M

∗
2 +M∗2M

∗
2M1 + Tr[M∗1M3]M∗2

)
rs

with equality if bij = 1 for all i, j. We can therefore write

C(π) ≤ σ4
∗max

r

∑
(i,j)∼π\{{a,c},{b,d}}

{
(M0M3M2M1M4)rr + (M0M3M

∗
1M

∗
2M4)rr

+ (M0M
∗
2M

∗
2M1M4)rr + Tr[M∗1M3](M0M

∗
2M4)rr

}
2Here C(π4) = C(∅) := 1 if 2p− 6 = 0. The analogous convention will be used in the sequel.
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with equality if bij = 1 for all i, j, where

M0 := Hi1j1 · · ·Hia−1ja−1
,

M1 := Hia+1ja+1
· · ·Hib−1jb−1

,

M2 := Hib+1jb+1
· · ·Hic−1jc−1

,

M3 := Hic+1jc+1
· · ·Hid−1jd−1

,

M4 := Hid+1jd+1
· · ·Hi2pj2p .

For simplicity, we consider in the remainder of the proof the case that c < e < d
and f > d; the proof of the five other possible cases is completely analogous. Then
we can use Lemma 3.11(b) to estimate∑

(i,j)∼π\{{a,c},{b,d}}

Tr[M∗1M3](M0M
∗
2M4)rr

=
∑

(i,j)∼π\{{a,c},{b,d},{e,f}}

∑
i≥j

Tr[M∗1M
−
3 HijM

+
3 ](M0M

∗
2M

−
4 HijM

+
4 )rr

≤ σ2
∗

∑
(i,j)∼π\{{a,c},{b,d},{e,f}}

{
(M0M

∗
2M

−
4 M

+
3 M

∗
1M

−
3 M

+
4 )rr

+ (M0M
∗
2M

−
4 M

−∗
3 M1M

+∗
3 M+

4 )rr
}

with equality if bij = 1 for all i, j, where

M−3 := Hic+1jc+1
· · ·Hie−1je−1

,

M+
3 := Hie+1je+1

· · ·Hid−1jd−1
,

M−4 := Hid+1jd+1
· · ·Hif−1jf−1

,

M+
4 := Hif+1jf+1

· · ·Hi2pj2p .

From the above, we can readily read off the existence of π1, π2, π3 ∈ P2([2p − 4])
and π4, π5 ∈ P2([2p− 6]), whose definition depends only on π, a, b, c, d, e, f , so that

C(π) ≤ max
r

{
σ4
∗
(
H(π1) +H(π2) +H(π3)

)
rr

+ σ6
∗
(
H(π4) +H(π5)

)
rr

}
with equality if bij = 1 for all i, j, where H(π) was defined in Lemma 3.8. The
inequality in the statement follows immediately by using (H(π))rr ≤ C(π) for all
r, π. On the other hand, when bij = 1 for all i, j, Lemma 3.9 yields H(π) = C(π)1
for all π, so that the inequality in the statement holds with equality. �

When Lemma 3.11(a) is applied as in the proof of Lemma 3.13, it creates a term
that involves an unnormalized trace. For crossings of type I, we can subsequently
apply Lemma 3.11(b) to eliminate the trace and regain a term of the form H(π).
This is not possible, however, for crossings of type II, which would cause the trace
to factor out of the expression. As this trace is unnormalized, that would ultimately
yield a dimension-dependent factor in the final bound.

To avoid this, we must apply Lemma 3.11(a) in a different manner to crossings
of type II. It is here that we rely on the fact that we work with the quantity C(π),
rather than the smaller quantity trH(π) that appears in the Wick formula itself.
(This is in contrast to the statement and proof of Lemma 3.13, which would work
equally well if we replace C(π) by trH(π) throughout.)
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Lemma 3.14 (Type II crossing). Let p ∈ N, π ∈ P2([2p]), and let {a, c}, {b, d} ∈ π
with a < b < c < d be a crossing of type II. Then there exist pairings π1, π2, π3 ∈
P2([2p−4]) and π4 ∈ P2([b−a+d− c−2]), π5 ∈ P2([2p−2− b+a−d+ c]), whose
definition depends only on π, a, b, c, d (and not on the matrix X), so that

C(π) ≤ σ4
∗{C(π1) + C(π2) + C(π3)}+ σ2σ2

∗ C(π4)C(π5).

Moreover, equality holds when bij = 1 for all i, j.

Proof. Define M0, . . . ,M4 (which depend on i, j) and π1, π2, π3 as in the proof of
Lemma 3.13. Then we can estimate using Lemma 3.11(a)

C(π) ≤ max
r

{
σ4
∗
(
H(π1) +H(π2) +H(π3)

)
rr

+

σ2
∗

∑
(i,j)∼π\{{a,c},{b,d}}

∑
k,l

b2kl(M0M
∗
2 )rk(M∗1M3)ll(M4)kr

}
,

with equality if bij = 1 for all i, j. Note that we applied Lemma 3.11(a) here exactly
as in the proof of Lemma 3.13, except that we only upper bounded b2ij ≤ σ2

∗ in the
last term of Lemma 3.11(a) and avoided upper bounding b2kl as well.

To proceed more efficiently in the present setting, we will now use the spe-
cial structure of type II crossings. By the type II assumption, we can decompose
π\{{a, c}, {b, d}} = πI ∪ πJ where πI ∈ P2(I), πJ ∈ P2(J) with

I := (a, b) ∪ (c, d), J := (1, a) ∪ (b, c) ∪ (d, 2p).

Denote by iI := (is)s∈I , with the analogous notation for j and J . Then∑
(i,j)∼π\{{a,c},{b,d}}

∑
k,l

b2kl(M0M
∗
2 )rk(M∗1M3)ll(M4)kr

=
∑
k

( ∑
(iJ ,jJ )∼πJ

(M0M
∗
2 )rk(M4)kr

)(∑
l

b2kl
∑

(iI ,jI)∼πI

(M∗1M3)ll

)

≤ σ2

( ∑
(iJ ,jJ )∼πJ

(M0M
∗
2M4)rr

)
max
l

( ∑
(iI ,jI)∼πI

(M∗1M3)ll

)
,

with equality if bij = 1 for all i, j (for the equality case, we used the second part
of Lemma 3.9). From the above, we can readily read off the existence of pairings
π4 ∈ P2([b− a+ d− c− 2]) and π5 ∈ P2([2p− 2− b+ a− d+ c]), whose definition
depends only on π, a, b, c, d, such that

C(π) ≤ max
r

{
σ4
∗
(
H(π1) +H(π2) +H(π3)

)
rr

+ σ2σ2
∗C(π4)(H(π5))rr

}
with equality if bij = 1 for all i, j. The conclusion now follows by precisely the same
argument as at the end of the proof of Lemma 3.13. �

We can now conclude the proof of Theorem 3.3.

Proof of Theorem 3.3. We first estimate E[trX2p] as in Lemma 3.9. We then re-
peatedly apply the following to each quantity C(π) in the resulting expression:
• If π contains a crossing, we apply either Lemma 3.13 or Lemma 3.14 to the

smallest crossing in the lexicographic order, depending on whether that crossing
is of type I or type II, respectively. In the former case, we choose the smallest pair
{e, f} in the lexicographic order that satisfies the assumption of Lemma 3.13.
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• If π is noncrossing, we apply Lemma 3.10.
This algorithm gives rise to an inequality of the form

E[trX2p] ≤
∑

k,l≥0:k+l≤p

κp(k, l)σ̃2kσ2lσ2p−2k−2l
∗ ,

where the coefficients κp(k, l) ∈ Z+ are independent of the matrix X.
Moreover, as all the inequalities used above become equalities when bij = 1 for

all i, j, we can apply the same algorithm to compute

E[trY 2p] =
∑

k,l≥0:k+l≤p

κp(k, l)(d+ 1)kdl.

The conclusion readily follows from the assumptions that σ∗ = 1 and σ2 ≤ d, and
as we can estimate σ̃2 ≤ σ2 + 1 ≤ d+ 1 using σ∗ = 1. �

3.2. Small deviations. With the extremum principle in hand, we can now repeat
the arguments of section 2.2 in the symmetric case. The main difference is that
now Y is a GOE matrix rather than a GUE matrix. However, a suitable moment
estimate for GOE matrices was also obtained by Ledoux [16, Theorem 8].

Lemma 3.15 (Ledoux). Define Y as in Theorem 3.3. Then for p ≥ d2/3, we have

E[trY 2p] .
1

d
(4d)p

(
1 +

p2

d2

)2p

.

This yields the following.

Proposition 3.16. For X as in Model 3.1, we have

P
[
‖X‖ > 2

√
σ2 + σ2

∗ (1 + ε)
]
≤ nσ2

∗
Cσ2

e
− 1

4
σ2

σ2∗
ε3/2

for all 0 ≤ ε ≤ 1, where C is a universal constant.

Proof. Suppose first that σ∗ = 1, and let d = dσ2e. Using Markov’s inequality,
‖X‖2p ≤ n trX2p, Theorem 3.3, and Lemma 3.15, we obtain

P
[
‖X‖ > 2

√
d (1 + ε)

]
.
n

d
(1 + ε)−2p

(
1 +

p2

d2

)2p

for all p ≥ d2/3. In particular, (1 + ε)−2p ≤ e−εp for 0 < ε ≤ 1 and 1 + x ≤ ex yield

P
[
‖X‖ > 2

√
d (1 + ε)

]
.
n

d
e−εp+2p3/d2

for all p ≥ d2/3.
We now consider two cases. If ε ≥ 16d−2/3, choose p = b 12d

√
εc ≥ d2/3 to obtain

P
[
‖X‖ > 2

√
d (1 + ε)

]
.
n

d
e−

1
4dε

3/2+ε ≤ en

d
e−

1
4dε

3/2

.

On the other hand, if ε < 16d−2/3 we can estimate

P
[
‖X‖ > 2

√
d (1 + ε)

]
≤ 1 .

n

d
e−

1
4dε

3/2

as σ2 ≤ nσ2
∗ = n implies n

d ≥ 1.
Combining the above bounds and using σ2 ≤ d ≤ σ2 + 1 yields

P
[
‖X‖ > 2

√
σ2 + 1 (1 + ε)

]
.

n

σ2
e−

1
4σ

2ε3/2
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for 0 ≤ ε ≤ 1. This concludes the proof when σ∗ = 1. For general σ∗, it suffices to
apply the above bound to the random matrix X

σ∗
. �

The rest of the proof of Theorem 3.4 is now identical to that of Theorem 2.3.

3.3. Large deviations. To obtain a large deviations estimate, we proceed as in
section 2.3. To this end, we require an analogue of Lemma 2.11 for GOE matrices.

Lemma 3.17. Let Y be as in Theorem 3.3. For all t ≥ 0

E[tr etY ] ≤ e2
√
d t+t2 .

Proof. We clearly have tr etY ≤ etλ1(Y ), where λ1(Y ) denotes the largest eigenvalue
of Y . It is shown in [8, Theorem 2.11] that E[λ1(Y )] ≤ 2

√
d. On the other hand, the

Gaussian log-Sobolev inequality implies by [13, eq. (5.8)] and [8, §2.2] that λ1(Y )

is a
√

2-subgaussian random variable, that is, that

E
[
et{λ1(Y )−E[λ1(Y )]}] ≤ et2

for all t. Combining these facts yields the conclusion. �

The rest of the proof of Theorem 3.5 is now identical to that of Theorem 2.4.

4. The independent case

The aim of this section is to prove the results for the independent entry Model 1.3
that were formulated in the introduction. The main result of this section is the
following, where we recall that σ1, σ2, σ∗ were defined in (1.2).

Theorem 4.1 (Extremum principle). Define X as in Model 1.3. Assume that
σ2
∗ = 1, and that σ2

1 ≤ d1 ∈ N and σ2
2 ≤ d2 ∈ N. Then

E[tr(XX∗)p] ≤ E[tr(Y Y ∗)p]

for all p ∈ N, where Y is the d1×d2 matrix with independent entries Yij ∼ N(0, 1).

Theorem 1.7 and Corollary 1.8 follow immediately from Theorem 4.1. To deduce
Corollary 1.9, note that the block-diagonal matrix Ỹ as illustrated in Figure 1.1
has n

d1
blocks, each of which is an independent copy of Y . Therefore

E[Tr(XX∗)p] ≤ n

d1
E[Tr(Y Y ∗)p] = E[Tr(Ỹ Ỹ ∗)p]

is merely another reformulation of Theorem 4.1.
Theorem 4.1 is proved in section 4.1 below, while Theorems 1.4 and 1.6 will be

proved in sections 4.2 and 4.3, respectively.

4.1. Extremum principle. Let (gij) be independent N(0, 1) random variables.
By repeating the proof of Lemma 3.7 verbatim, we may assume without loss of
generality in the remainder of this section that X is defined as in Model 1.3 with
ξij = gij . Defining Eij := bijeie

∗
j for i ≤ n, j ≤ m, we can then write

X =
∑
i,j

gijEij .

The moments of X are computed as follows.
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Lemma 4.2 (Wick formula). For any p ∈ N, we have

E[tr(XX∗)p] =
∑

π∈P2([2p])

trE(π)

with
E(π) :=

∑
(i,j)∼π

Ei1j1E
∗
i2j2 · · ·Ei2p−1j2p−1

E∗i2pj2p .

Here i ∈ [n]2p, j ∈ [m]2p, and (i, j) ∼ π denotes ik = il, jk = jl for {k, l} ∈ π.

Proof. The proof is identical to that of Lemma 2.5. �

The main steps of the proof in this setting are similar to those in the real sym-
metric case, which we follow with the appropriate modifications. We begin by upper
bounding the trace moments by the maximal diagonal entry.

Lemma 4.3. For any k ∈ N and π ∈ P2([2k]), define

D(π) := max
r

(E(π))rr.

Then
E[tr(XX∗)p] ≤

∑
π∈P2([2p])

D(π).

Moreover, when bij = 1 for all i, j, the matrix E(π) is a multiple of the identity
matrix for every π and thus the above inequality holds with equality.

Proof. The proof is identical to that of Lemma 3.9, where we use that when bij = 1
the distributions of X and OX coincide for every O ∈ O(n). �

We first consider noncrossing pairings.

Lemma 4.4. For any p ∈ N and noncrossing pairing π ∈ NC2([2p]), we have

D(π) ≤ σ2`(π)
1 σ

2(p−`(π))
2

where
`(π) := |{{i, j} ∈ π : i ∧ j is even, i ∨ j is odd}|.

Moreover, equality holds when bij = 1 for all i, j.

Proof. As in the proof of Lemma 2.6, there exists {k, k+ 1} ∈ π. If k is even, then

D(π) = max
r

∑
(i,j)∼π\{{k,k+1}}

(Ei1j1E
∗
i2j2 · · ·Eik−1jk−1

ΣE∗ik+2jk+2
· · ·E∗i2kj2k)rr,

where

Σ =
∑
i,j

E∗ijEij =
∑
j

(∑
i

b2ij

)
eje
∗
j .

As all Eij have nonnegative entries, we readily estimate

D(π) ≤ σ2
1 D(π\{{k, k + 1}})

with equality if bij = 1 for all i, j.
On the other hand, if k is odd, we can repeat the same procedure with

Σ =
∑
i,j

EijE
∗
ij =

∑
i

(∑
j

b2ij

)
eie
∗
i ,
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and we obtain
D(π) ≤ σ2

2 D(π\{{k, k + 1}})
with equality if bij = 1 for all i, j.

As π\{{k, k+ 1}} is again a noncrossing pairing, and as removing a consecutive
pair from π doesn’t change the parity of the indices of the remaining pairs, we can
iterate the above argument to conclude the proof. �

Before we can analyze the effect of a crossing, we must first obtain the appropriate
crossing identities. Let us emphasize that while a noncrossing pairing can only pair
even indices with odd indices, a pairing that contains crossings can also pair even
indices with each other and odd indices with each other. The appropriate crossing
identity depends on the nature of the pairs in the crossing. Here, M ≤e N denotes
entrywise inequality of matrices, i.e., Mij ≤ Nij for all i, j.
Lemma 4.5 (Crossing identities and inequalities). The following hold.
a. For any matrices M1,M2,M3 of the appropriate dimensions∑

i,j,k,l

EijM1EklM2EijM3Ekl =
∑
i,j,k,l

b2ijb
2
kl (M1)jk(M2)li(M3)jk eie

∗
l ,∑

i,j,k,l

EijM1E
∗
klM2EijM3E

∗
kl =

∑
i,j,k,l

b2ijb
2
kl (M1)jl(M2)ki(M3)jl eie

∗
k.

b. For any m× n matrix M∑
i,j

Tr[MEij ]Eij =
∑
i,j

b2ijMji eie
∗
j .

c. Let ε1, . . . , ε4 ∈ {1, ∗}. Then for any nonnegative matrices M1,M2,M3 ≥e 0 of
the appropriate dimensions, we have

∑
i,j,k,l

Eε1ijM1E
ε2
klM2E

ε3
ijM3E

ε4
kl ≤e σ

4
∗


M∗2M

∗
3M1 if ε1 = ε3, ε2 6= ε4,

M3M
∗
1M

∗
2 if ε1 6= ε3, ε2 = ε4,

M3M2M1 if ε1 6= ε3, ε2 6= ε4,

with equality if bij = 1 for all i, j.

Proof. All parts follow immediately from the definition of Eij . �

We now introduce the relevant crossing types in this setting.

Definition 4.6. Let π ∈ P2([2p]), and fix a crossing {i, k}, {j, l} ∈ π such that
i < j < k < l. Then this crossing is said to be of
• type 1 if i, k have opposite parity or j, l have opposite parity.

• type 2 if i, k have the same parity, j, l have the same parity, and there exists a
pair {a, b} ∈ π with a ∈ (i, j) ∪ (k, l) and b 6∈ (i, j) ∪ (k, l);

• type 3 otherwise.

We now consider each crossing type in turn.

Lemma 4.7 (Type 1 crossing). Let p ∈ N, π ∈ P2([2p]), and {a, c}, {b, d} ∈ π with
a < b < c < d be a crossing of type 1. Then there exists a pairing π′ ∈ P2([2p− 4]),
whose definition depends only on π, a, b, c, d, so that

D(π) ≤ σ4
∗D(π′).

Moreover, equality holds when bij = 1 for all i, j.
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Proof. For simplicity, consider the case that a, b, c are odd and d is even; the proof
in the remaining cases is identical. Then Lemma 4.5(c) allows us to estimate

D(π) = max
r

∑
(i,j)∼π\{{a,c},{b,d}}

∑
i,j,k,l

(M0EijM1EklM2EijM3E
∗
klM4)rr

≤ σ4
∗ max

r

∑
(i,j)∼π\{{a,c},{b,d}}

(M0M
∗
2M

∗
3M1M4)rr

withM0 := Ei1j1E
∗
i2j2
· · ·E∗ia−1ja−1

,M1 := E∗ia+1ja+1
Eia+2ja+2 · · ·E∗ib−1jb−1

, etc. We
readily read off the existence of π′ ∈ P2([2p− 4]) so that the right-hand side equals
σ4
∗D(π′). Moreover, Lemma 4.5(c) ensures equality when bij = 1 for all i, j. �

Lemma 4.8 (Type 2 crossing). Let p ∈ N, π ∈ P2([2p]), {a, c}, {b, d}, {e, f} ∈ π
where a < b < c < d, a, c have the same parity, b, d have the same parity, and
e ∈ (a, b) ∪ (c, d), f 6∈ (a, b) ∪ (c, d). Then there exists a pairing π′ ∈ P2([2p − 6]),
whose definition depends only on π, a, b, c, d, e, f , so that

D(π) ≤ σ6
∗D(π′).

Moreover, equality holds when bij = 1 for all i, j.

Proof. Let us first assume that a, b, c, d are all odd. Then the first equation display
of Lemma 4.5(a) enables us to estimate

D(π) ≤ σ4
∗ max

r

∑
(i,j)∼π\{{a,c},{b,d}}

Tr[M∗1M3](M0M
∗
2M4)rr

with equality if bij = 1 for all i, j, whereMk are as in the proof of Lemma 4.7. Now
note that, by assumption, {e, f} pairs a term inside the trace with a term inside
the matrix element on the right-hand side. We can therefore use Lemma 4.5(b) or
its adjoint (depending on the parities of e and f) to estimate the right-hand side
by σ6

∗D(π′) for some π′ ∈ P2([2p − 6]) that depends only on π, a, b, c, d, e, f , with
equality if bij = 1 for all i, j. We omit the details which are completely analogous
to the corresponding argument in the proof of Lemma 3.13.

The other possible parities of a, b, c, d are treated in a completely analogous way:
if a, c are odd and b, d are even we use the second equation display of Lemma 4.5(a)
instead of the first, while the remaining two cases use the adjoint of the first or
second equation display of Lemma 4.5(a), respectively. �

Lemma 4.9 (Type 3 crossing). Let p ∈ N, π ∈ P2([2p]), and let {a, c}, {b, d} ∈ π
with a < b < c < d be a crossing of type 3. Then there exist π1 ∈ P2([b−a+d−c−2])
and π2 ∈ P2([2p− 2− b+ a− d+ c]), which depend only on π, a, b, c, d, so that

D(π) ≤

{
σ2
1σ

2
∗D(π1)D(π2) if d is odd,

σ2
2σ

2
∗D(π1)D(π2) if d is even.

Moreover, equality holds when bij = 1 for all i, j.
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Proof. Let us first assume that a, b, c, d are all odd. Then the first equation display
of Lemma 4.5(a) enables us to estimate

D(π) = max
r

∑
(i,j)∼π\{{a,c},{b,d}}

∑
i,j,k,l

b2ijb
2
kl(M0)ri(M1)jk(M2)li(M3)jk(M4)lr

≤ σ2
∗ max

r

∑
l

( ∑
(iJ ,jJ )∼πJ

(M0M
∗
2 )rl(M4)lr

)(∑
k

b2kl
∑

(iI ,jI)∼πI

(M∗1M3)kk

)

with equality when bij = 1 for all i, j, where Mk are as in the proof of Lemma 4.7
and π\{{a, c}, {b, d}} = πI ∪ πJ as in the proof of Lemma 3.14. The conclusion
now follows readily by the same argument as in the proof of Lemma 3.14.

The other possible parities of a, b, c, d are treated in a completely analogous way,
where we must take care to observe that we gain a factor σ2

1 or σ2
2 depending on

whether b, d are odd or even, respectively. �

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. We first estimate E[tr(XX∗)p] as in Lemma 4.3. We then
repeatedly apply the following to each quantity D(π) in the resulting expression:
• If π contains a crossing, we apply either Lemma 4.7, 4.8, or 4.9 to the smallest

crossing in the lexicographic order, depending on whether that crossing is of type
1, 2, or 3, respectively. In the type 2 case, we choose the smallest pair {e, f} in
the lexicographic order that satisfies the assumption of Lemma 4.8.

• If π is noncrossing, we apply Lemma 4.4.
This algorithm gives rise to an inequality of the form

E[tr(XX∗)p] ≤
∑

k,l≥0:k+l≤p

κ̃p(k, l)σ2k
1 σ2l

2 σ
2p−2k−2l
∗ ,

where the coefficients κ̃p(k, l) ∈ Z+ are independent of the matrix X.
Moreover, as all the inequalities used above become equalities when bij = 1 for

all i, j, we can apply the same algorithm to compute

E[tr(Y Y ∗)p] =
∑

k,l≥0:k+l≤p

κ̃p(k, l)dk1dl2.

The conclusion readily follows from the assumptions σ∗ = 1, σ2
1 ≤ d1, σ2

2 ≤ d2. �

4.2. Small deviations. The difficulty as compared with the self-adjoint models
discussed in the previous sections is to obtain the following moment estimate.

Lemma 4.10. Define Y as in Theorem 4.1, and assume that d1 ≤ d2. Then

E[tr(Y Y ∗)p] .
1

d1

(
d
1/2
1 + d

1/2
2

)2p(
1 +

8p2

d
1/2
1 d

3/2
2

)p
for all p ≥ d1/61 d

1/2
2 .

Proof. The result follows immediately from Theorem 5.2 in section 5 below. �

We can now essentially repeat the proof of Proposition 3.16.
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Proposition 4.11. For X as in Model 1.3 with σ1 ≤ σ2, we have

P
[
‖X‖ >

(√
σ2
1 + σ2

∗ +
√
σ2
2 + σ2

∗
)
(1 + ε)

]
≤ nσ2

∗
Cσ2

1

e
− 1

8

σ
1/2
1 σ

3/2
2

σ2∗
ε3/2

for all 0 ≤ ε ≤ 1, where C is a universal constant.

Proof. Suppose first that σ∗ = 1, and let d1 = dσ2
1e and d2 = dσ2

2e. Using Markov’s
inequality, ‖X‖2p ≤ n tr(XX∗)p, Theorem 4.1, and Lemma 4.10, we obtain

P
[
‖X‖ ≥ (d

1/2
1 + d

1/2
2 )(1 + ε)

]
.

n

d1
e
−εp+ 8p3

d
1/2
1 d

3/2
2

for all p ≥ d1/61 d
1/2
2 , where we used (1 + ε)−2p ≤ e−εp for 0 < ε ≤ 1 and 1 + x ≤ ex.

If ε ≥ 64d
−1/6
1 d

−1/2
2 , we may choose p = b 14d

1/4
1 d

3/4
2

√
εc ≥ d1/61 d

1/2
2 to obtain

P
[
‖X‖ ≥ (d

1/2
1 + d

1/2
2 )(1 + ε)

]
.
en

d1
e−

1
8d

1/4
1 d

3/4
2 ε3/2 .

If ε < 64d
−1/6
1 d

−1/2
2 , the same bound is valid as

P
[
‖X‖ ≥ (d

1/2
1 + d

1/2
2 )(1 + ε)

]
≤ 1 .

n

d1
e−

1
8d

1/4
1 d

3/4
2 ε3/2

using that σ2
1 ≤ nσ2

∗ implies n
d1
≥ 1.

Combining the above bounds readily yields

P
[
‖X‖ ≥

(√
σ2
1 + 1 +

√
σ2
2 + 1

)
(1 + ε)

]
.

n

σ2
1

e−
1
8σ

1/2
1 σ

3/2
2 ε3/2

for 0 ≤ ε ≤ 1. This concludes the proof when σ∗ = 1. For general σ∗, it suffices to
apply the above bound to the random matrix X

σ∗
. �

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Proposition 4.11 yields

P
[
‖X‖ > σ1 + σ2 +

σ2
∗
σ1

+ 3
4σ

4/3
∗ σ

−1/3
1 t

]
≤ nσ2

∗
Cσ2

1

e−
1
64 t

3/2

by setting ε = 1
4 tσ

4/3
∗ σ

−1/3
1 σ−12 , where we used that σ1 ≤ σ2 so that

√
σ2
1 + σ2

∗ +
√
σ2
2 + σ2

∗ ≤ σ1 + σ2 +
σ2
∗
σ1
≤ 3σ2.

The conclusion is immediate for t ≥ 4σ2/3
∗

σ
2/3
1

, and follows for t < 4σ2/3
∗

σ
2/3
1

≤ 4 as then

1 ≤ nσ2
∗

σ2
1

≤ enσ2
∗

σ2
1

e−
1
64 t

3/2

.

This concludes the proof. �
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4.3. Large deviations. We require the following analogue of Lemma 3.17.

Lemma 4.12. Let Y be as in Theorem 4.1. For all t ≥ 0

E
[

tr et(Y Y
∗)1/2

]
≤ e(

√
d1+
√
d2)t+t

2/2.

Proof. We clearly have tr et(Y Y
∗)1/2 ≤ et‖Y ‖. It is shown in [8, Theorem 2.13] that

E‖Y ‖ ≤
√
d1 +

√
d2. The Gaussian log-Sobolev inequality implies by [13, eq. (5.8)]

and [8, §2.2] that ‖Y ‖ is a 1-subgaussian random variable, that is, that

E
[
et{‖Y ‖−E‖Y ‖}

]
≤ et

2/2

for all t. Combining these facts yields the conclusion. �

This yields the following.

Proposition 4.13. For X as in Model 1.3 with n ≤ m, we have

P
[
‖X‖ >

√
σ2
1 + σ2

∗ +
√
σ2
2 + σ2

∗ + σ∗ε
]
≤ 2n e−ε

2/2

for all ε ≥ 0.

Proof. Suppose first that σ∗ = 1, and let d1 = dσ2
1e and d2 = dσ2

2e. Then
1

2
E
[

tr et(XX
∗)1/2

]
≤ E[tr cosh(t(XX∗)1/2)]

≤ E[tr cosh(t(Y Y ∗)1/2)] ≤ E
[

tr et(Y Y
∗)1/2

]
,

by Theorem 4.1, where we used that the Taylor expansion of the hyperbolic cosine
only has terms of even degree. As et‖X‖ ≤ n tr et(XX

∗)1/2 , we obtain

E[et‖X‖] ≤ 2n e(
√
d1+
√
d2)t+t

2/2

using Lemma 4.12. By Markov’s inequality

P
[
‖X‖ >

√
d1 +

√
d2 + ε

]
≤ E[et‖X‖]

e(
√
d1+
√
d2+ε)t

≤ 2n e−εt+t
2/2.

Optimizing over t ≥ 0 yields

P
[
‖X‖ >

√
σ2
1 + 1 +

√
σ2
2 + 1 + ε

]
≤ 2n e−ε

2/2

for all ε ≥ 0. This concludes the proof for σ∗ = 1. For general σ∗, it suffices to
apply the above bound to the random matrix X

σ∗
. �

Theorem 1.6 follows readily.

Proof of Theorem 1.6. The conclusion follows immediately from Proposition 4.13
using that

√
σ2
1 + σ2

∗ +
√
σ2
2 + σ2

∗ ≤ σ1 + σ2 +
σ2
∗

2σ1
+

σ2
∗

2σ2
≤ σ1 + σ2 + σ∗. �

5. Moment estimates for Wishart matrices

The aim of this section is to prove the moment estimate for Wishart matrices
that was used in Lemma 4.10 above. Throughout this section, we fix

n ≤ m, c :=
m

n
≥ 1.

We let Y be an n×m matrix with i.i.d. NR(0, 1) entries, and Z be an n×m matrix
with i.i.d. NC(0, 1) entries. Our main results are as follows.
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Theorem 5.1 (Complex Wishart moments). For p ∈ N, we have

E[tr(ZZ∗)p] . np(
√
c+ 1)2p

(
1 +

2p2

c3/2n2

)p
c3/4

p3/2
.

Theorem 5.2 (Real Wishart moments). For p ∈ N, we have

E[tr(Y Y ∗)p] . np(
√
c+ 1)2p

(
1 +

8p2

c3/2n2

)p(
c3/4

p3/2
+

1

n

)
.

A moment estimate for complex Wishart matrices was previously obtained by
Ledoux in [14, p. 201]. However, the constants in Ledoux’ estimate depend in an
unspecified manner on the aspect ratio c, making it unsuitable for the purposes of
this paper.3 The difficulty in the proofs of Theorems 5.1 and 5.2 is to obtain bounds
that have optimal dependence on c, which requires a more delicate understanding
of the structure of the associated moment recursions.

Remark 5.3. To illustrate the sharpness of Theorems 5.1 and 5.2, let us make
two observations. First, the argument of section 4.2 shows that these moment
estimates yield tail bounds as in Theorem 1.4, which match the exact Tracy-Widom
asymptotics (1.1) with the optimal order of the fluctuations and tail behavior.

On the other hand, if we let n→∞ with p, c fixed, it is classical [18, p. 368] that
both n−pE[tr(Y Y ∗)p] and n−pE[tr(ZZ∗)p] converge to the p-moment χcp of the
Marchenko–Pastur distribution. By using the explicit formula for its generating
function [18, p. 205], the Darboux method [23, Theorem 5.11] yields

χcp = (1 + o(1)) (
√
c+ 1)2p

c1/4(
√
c+ 1)

2
√
π p3/2

as p→∞. The estimates of Theorems 5.1 and 5.2 reproduce the exact asymptotics
of χcp precisely up to a universal constant.

The remainder of this section is organized as follows. In section 5.1, we recall the
recursive formulas of [10, 7] for the moments of complex and real Wishart matrices.
Let us emphasize at the outset that the recursive formula for real Wishart moments
involves complex Wishart moments, so that we must consider the latter even if one
is ultimately only interested in real Wishart matrices. We then prove Theorem 5.1
in section 5.2, and finally prove Theorem 5.2 in section 5.3.

5.1. Moment recursions. In addition to the random matrices Y and Z defined
above, we also introduce an (n− 1)× (m− 1) matrix Z ′ with i.i.d. NC(0, 1) entries.
Throughout the remainder of this section, we define

Ap :=
E[Tr(ZZ∗)p]

np+1
, A′p :=

E[Tr(Z ′Z ′∗)p]

np+1
, Bp :=

E[Tr(Y Y ∗)p]

np+1
,

so that E[tr(ZZ∗)p] = npAp and E[tr(Y Y ∗)p] = npBp.
The proofs of the main results of this section are based on recursive formulas

for Ap, A′p, Bp that we presently recall. The following recursive formula for Ap was
obtained by Haagerup and Thorbjørnsen [10, Theorem 8.2].

3The argument of [14, p. 201] also contains a further issue, that the recursion in eq. (29) of
that paper does not imply the inequality for bp claimed subsequently.
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Theorem 5.4 (Haagerup-Thorbjørnsen). For p ≥ 1

Ap+1 = 2(c+ 1)
2p+ 1

2p+ 4
Ap −

(
(c− 1)2 − p2

n2

)
p− 1

p+ 2
Ap−1,

with the initial conditions A0 = 1 and A1 = c.

A direct consequence is the following.

Corollary 5.5. For p ≥ 1

A′p+1 = 2

(
c+ 1− 2

n

)
2p+ 1

2p+ 4
A′p −

(
(c− 1)2 − p2

n2

)
p− 1

p+ 2
A′p−1,

with A′0 = n−1
n and A′1 = n−1

n (c− 1
n ). Moreover, A′p ≤ Ap for all p.

Proof. The recursion for A′p follows readily from Theorem 5.4. The inequality
A′p ≤ Ap follows from Jensen’s inequality by the convexity of Z 7→ Tr(ZZ∗)p by
conditioning on the (n− 1)× (m− 1) principal submatrix of Z. �

The reason that we consider the modified moments A′p is that they appear in the
following moment recursion for Bp due to Cunden et al. [7, Theorem 3.5] (the values
of B1, B2 stated here are readily obtained by a straightforward computation).

Theorem 5.6 (Cunden et al.). For p ≥ 2

Bp+1 = 2

(
c+ 1− 1

n

)
Bp −

(
(c− 1)2 − 4p(p− 1) + 1

n2

)
Bp−1

+
3

p− 1

[(
c+ 1− p+ 1

n

)
A′p −A′p+1

]
,

with B0 = 1, B1 = c, and B2 = (c+ 1 + 1
n )c.

Finally, we will define in the sequel χp := 4−pCp, where Cp denotes the pth
Catalan number. We recall the well known Catalan recursion

χp+1 =
2p+ 1

2p+ 4
χp, χ0 = 1 (5.1)

for p ≥ 0, as well as the standard estimate χp . p−3/2 by Stirling’s formula.

5.2. Complex Wishart moments. The aim of this section is to bound the com-
plex Wishart moments Ap. To this end, it will be convenient to define

Kp :=
Ap+1

Ap

χp
χp+1

,

so that
Ap = 4cK1K2 · · ·Kp−1χp.

It follows readily from Theorem 5.4 and (5.1) that

Kp = 2(c+ 1)−
(

1− 3

4p2 − 1

)(
(c− 1)2 − p2

n2

)
1

Kp−1
(5.2)

for p ≥ 1. Note that this recursion does not require an initial condition, as the
second term on the right-hand side vanishes for p = 1.

The analysis of this equation depends on the sign of the second term on the right-
hand side. We consider the two cases p < (c− 1)n and p ≥ (c− 1)n separately.
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5.2.1. The case p < (c− 1)n. In this subsection, we fix 1 ≤ p < (c− 1)n and let

λ := c+ 1 +

√
4c+

p2

n2
, λ̄ := c+ 1−

√
4c+

p2

n2
.

Note that 2(c+ 1) = λ+ λ̄ and (c− 1)2− p2

n2 = λλ̄. In particular, the latter implies
that λ̄ > 0 as we assumed that p < (c− 1)n. We can therefore estimate

Kk ≤ λ+ λ̄−
(

1− 3

4k2 − 1

)
λλ̄

Kk−1
(5.3)

for all 1 ≤ k ≤ p using (5.2).
At the core of the proof lie two distinct bounds on Kk for 1 ≤ k ≤ p. The first

bound will be used for large k, while the second bound will be used for small k.

Lemma 5.7. For 1 ≤ k ≤ p, we have

Kk ≤
(

1 +
2
√
c

k2

)
λ.

Proof. First, note that K1 = 2(c + 1) ≤ 2λ ≤ (1 + 2
√
c)λ as c ≥ 1. For k > 1, we

proceed by induction. Assuming we have proved the result for k ← k − 1, we have

Kk ≤ λ+ λ̄−
1− 3

4k2−1

1 + 2
√
c

(k−1)2
λ̄.

using (5.3). To conclude the result, we must therefore show that

2
√
c

(k − 1)2
+

3

4k2 − 1
≤ 2
√
c

k2

(
1 +

2
√
c

(k − 1)2

)
λ

λ̄
.

Subtracting 2
√
c

k2 on both sides and rearranging yields

2
√
c (2k − 1) +

3k2(k − 1)2

4k2 − 1
≤ 2
√
c (k − 1)2

λ− λ̄
λ̄

+ 4c
λ

λ̄
.

But as
λ− λ̄
λ̄
≥ 4√

c
,

λ

λ̄
≥ 1, 4k2 − 1 ≥ 4k(k − 1),

it suffices to prove the quadratic inequality for k − 1

7(k − 1)2 −
(

4
√
c+

3

4

)
(k − 1) + 4c− 2

√
c ≥ 0.

Thus it suffices to check that the quadratic function has nonpositive discriminant,
which is readily verified using that c ≥ 1. �

Lemma 5.8. For 1 ≤ k ≤ p, we have

Kk ≤
(

1 +
3

2k

)
λ.

Proof. Clearly K1 ≤ 2λ ≤ (1 + 3
2 )λ. For k > 1 we proceed again by induction.

Assuming we have proved the result for k ← k − 1, we have

Kk ≤ λ+ λ̄−
1− 3

4k2−1

1 + 3
2(k−1)

λ̄
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using (5.3). We must therefore show that
3

2(k − 1)
+

3

4k2 − 1
≤ 3

2k

(
1 +

3

2(k − 1)

)
λ

λ̄
.

Using that λ ≥ λ̄ and rearranging, it suffices to show that
1

2k(k − 1)
+

1

4k2 − 1
≤ 3

4k(k − 1)
.

This is always true as 4k2 − 1 ≥ 4k(k − 1). �

Combining the above bounds yields the following conclusion.

Proposition 5.9. For 1 ≤ p < (c− 1)n, we have

Ap . (
√
c+ 1)2p

(
1 +

p2

4c3/2n2

)p
c3/4

p3/2
.

Proof. Note that Lemma 5.8 implies

K1 · · ·Kb√cc ≤ λb
√
cc
b
√
cc∏

k=1

(
1 +

3

2k

)
. c3/4λb

√
cc,

while Lemma 5.7 implies

Kb
√
cc+1 · · ·Kp−1 ≤ λp−1−b

√
cc

∞∏
k=b
√
cc+1

(
1 +

2
√
c

k2

)
. λp−1−b

√
cc.

We therefore have
Ap = 4cK1 · · ·Kp−1χp . c

3/4λpχp,

where we used λ ≥ c. It remains to note that

λ− (
√
c+ 1)2 =

√
4c+

p2

n2
−
√

4c ≤ 1

4
√
c

p2

n2
≤ p2

4c3/2n2
(
√
c+ 1)2

and that χp . p−3/2. �

Remark 5.10. It is instructive to note the features of the analysis that were needed
to obtain a sharp bound. In Lemma 5.7, the constant 2 is unimportant but the
correct dependence on c is key. In contrast, the optimal constant 3

2 in Lemma 5.8
is used in a crucial way to obtain the correct exponent c3/4 in the final bound.

5.2.2. The case p ≥ (c − 1)n. This case is much easier and yields a qualitatively
better bound (the latter is however irrelevant for our purposes).

Proposition 5.11. For p ≥ (c− 1)n, we have

Ap . (
√
c+ 1)2p

(
1 +

2p2

c2n2

)p
1

p3/2
.

Proof. The assumption p ≥ (c− 1)n implies

2(c+ 1) = (
√
c+ 1)2 +

(c− 1)2

(
√
c+ 1)2

≤ (
√
c+ 1)2 +

p2

cn2
.

Define Nk := Ak
χk

. Then we can crudely estimate for 1 ≤ k ≤ p

Nk+1 ≤ (
√
c+ 1)2Nk +

p2

cn2
Nk + 1k>1

p2

n2
Nk−1
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using Theorem 5.4 and (5.1). To conclude the proof, it suffices to show this implies

Nk ≤ 4(
√
c+ 1)2k

(
1 +

2p2

c2n2

)k
for all 1 ≤ k ≤ p. The claim is trivial for k = 1 as N1 = 4c, while the claim is
readily verified to hold for k > 1 by induction. �

The proof of Theorem 5.1 is now immediate.

Proof of Theorem 5.1. Combining Propositions 5.9 and 5.11 yields

Ap . (
√
c+ 1)2p

(
1 +

2p2

c3/2n2

)p
c3/4

p3/2

using c ≥ 1. The conclusion follows from the definition of Ap. �

5.3. Real Wishart moments. Taking inspiration from [16], we define

Dp := Bp −A′p.

Then we have the following.

Lemma 5.12. For all p ≥ 1, we have Dp ≥ 0 and

Dp+1 = 2

(
c+ 1− 1

n

)
Dp −

(
(c− 1)2 − 4p(p− 1) + 1

n2

)
Dp−1

− 1

n
A′p +

(3p− 1)(p− 1)

n2
A′p−1,

with the initial conditions D0 = 1
n and D1 = 1

n (c+ 1− 1
n ).

Proof. To show Dp ≥ 0, it suffices by Corollary 5.5 to show that Dp ≥ Bp−Ap ≥ 0,
that is, that E[Tr(ZZ∗)p] ≤ E[Tr(Y Y ∗)p]. This follows from the Wick formula, as
E[Tr(Y Y ∗)p] may be expressed as a sum over all pairings as in Lemma 4.2 while
in the corresponding expression for E[Tr(ZZ∗)p] the sum is taken only over those
pairings that pair even with odd indices (cf. Lemma 2.5).

The recursion follows for p ≥ 2 by applying Corollary 5.5 to A′p+1 on the right-
hand side of the recursion of Theorem 5.6, and a tedious but straightforward sim-
plification of the resulting expression. That the same expression remains valid for
p = 1 can be verified directly using the explicit values for B0, B1, B2, A

′
0, A

′
1, A

′
2

that are given in Theorem 5.6 and Corollary 5.5, respectively. �

We will always use Lemma 5.12 for 1 ≤ k ≤ p in the simplified form

Dk+1 ≤ 2(c+ 1)Dk −
(

(c− 1)2 − 4p2

n2

)
Dk−1 +

5(k − 1)2

n2
Ak−1, (5.4)

where we used that 4k(k−1)+1 ≤ 4p2, (3k−1)(k−1) ≤ 5(k−1)2, and A′k−1 ≤ Ak−1.
As in our analysis of the complex Wishart moments, the following analysis will
depend on the sign of the second term on the right-hand side.
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5.3.1. The case 2p < (c− 1)n. In this subsection, we fix 1 ≤ p < 1
2 (c− 1)n and let

µ := c+ 1 + 2

√
c+

p2

n2
, µ̄ := c+ 1− 2

√
c+

p2

n2
.

Note that 2(c+ 1) = µ+ µ̄ and (c− 1)2 − 4p2

n2 = µµ̄. Thus µ̄ > 0 as 2p < (c− 1)n.

Lemma 5.13. We have

Dp ≤
µp

n
+

p−1∑
l=1

µp−l − µ̄p−l

µ− µ̄
5(l − 1)2

n2
Al−1.

Proof. We can equivalently write (5.4) as

Dk+1 − µDk ≤ µ̄(Dk − µDk−1) +
5(k − 1)2

n2
Ak−1

for 1 ≤ k ≤ p. Iterating this inequality yields

Dk+1 − µDk ≤
k∑
l=1

µ̄k−l
5(l − 1)2

n2
Al−1

for 1 ≤ k ≤ p, where we used that µ̄ > 0 and D1 − µD0 < 0. Iterating again yields

Dk+1 ≤ µkD1 +

k∑
r=1

µk−r
r∑
l=1

µ̄r−l
5(l − 1)2

n2
Al−1

= µkD1 +

k∑
l=1

µk−l+1 − µ̄k−l+1

µ− µ̄
5(l − 1)2

n2
Al−1

for 1 ≤ k ≤ p. The conclusion follows as D1

µ ≤
1
n . �

We can now use Proposition 5.9 to estimate Dp.

Proposition 5.14. For 1 ≤ p < 1
2 (c− 1)n, we have

Dp .
1

n
(
√
c+ 1)2p

(
1 +

p2

c3/2n2

)p
.

Proof. We can estimate as in the proof of Proposition 5.9

µ ≤ (
√
c+ 1)2

(
1 +

p2

c3/2n2

)
Thus the only difficulty is to bound the second term on the right-hand side of the
inequality of Lemma 5.13. To this end, we estimate

p−1∑
l=1

µp−l − µ̄p−l

µ− µ̄
5(l − 1)2

n2
Al−1

. (
√
c+ 1)2(p−1)

(
1 +

p2

c3/2n2

)p−1
c1/4

p−2∑
r=1

(
1 + p2

4c3/2n2

1 + p2

c3/2n2

)r
r1/2

n2

using µ− µ̄ ≥ 4
√
c, the above inequality for µ, and Proposition 5.9. We now split

the sum into parts with r ≤ n2/3
√
c and r > n2/3

√
c. For the first part, we have

bn2/3√cc∑
r=1

(
1 + p2

4c3/2n2

1 + p2

c3/2n2

)r
r1/2

n2
≤ 1

n2

bn2/3√cc∑
r=1

r1/2 .
c3/4

n
.
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For the second part, we have
p−2∑

r=bn2/3
√
cc+1

(
1 + p2

4c3/2n2

1 + p2

c3/2n2

)r
r1/2

n2
≤ c3/4

n

p−2∑
r=bn2/3

√
cc+1

(
1 + p2

4c3/2n2

1 + p2

c3/2n2

)r
r2

c3/2n2

≤ c3/4

n

p2

c3/2n2

∞∑
r=0

(
1 + p2

4c3/2n2

1 + p2

c3/2n2

)r
=

4

3

c3/4

n

(
1 +

p2

c3/2n2

)
.

Combining the above estimates with Lemma 5.13 readily yields the conclusion. �

5.3.2. The case 2p ≥ (c− 1)n. We need the following counterpart of Lemma 5.13.

Lemma 5.15. For p ≥ 1 such that 2p ≥ (c− 1)n, we have

Dp ≤ Cp−1D1 +

p−1∑
l=1

Cp−1−l
5(l − 1)2

n2
Al−1

with

C := (
√
c+ 1)2

(
1 +

8p2

c2n2

)
.

Proof. The assumption 2p ≥ (c− 1)n implies

2(c+ 1) ≤ (
√
c+ 1)2 +

4p2

cn2
≤ (
√
c+ 1)2

(
1 +

4p2

c2n2

)
as in the proof of Proposition 5.11. Thus (5.4) yields

Dk+1 ≤ (
√
c+ 1)2

(
1 +

4p2

c2n2

)
Dk + (

√
c+ 1)2

4p2

cn2
Dk−1 +

5(k − 1)2

n2
Ak−1 (5.5)

for 1 ≤ k ≤ p. We will show by induction that for 1 ≤ k ≤ p

Dk ≤ Ck−1D1 +

k−1∑
l=1

Ck−1−l
5(l − 1)2

n2
Al−1.

The claim is trivial for k = 1, and follows for k = 2 from (5.5) using cD0 ≤ D1. On
the other hand, if the claim has been verified up to k, then (5.5) yields

Dk+1 ≤ (
√
c+ 1)2

[(
1 +

4p2

c2n2

)
C +

4p2

cn2

][
Ck−2D1 +

k−2∑
l=1

Ck−2−l
5(l − 1)2

n2
Al−1

]
+ (
√
c+ 1)2

(
1 +

4p2

c2n2

)
5(k − 2)2

n2
Ak−2 +

5(k − 1)2

n2
Ak−1

≤ C2

[
Ck−2D1 +

k−2∑
l=1

Ck−2−l
5(l − 1)2

n2
Al−1

]
+ C

5(k − 2)2

n2
Ak−2 +

5(k − 1)2

n2
Ak−1

= CkD1 +

k∑
l=1

Ck−l
5(l − 1)2

n2
Al−1,

concluding the proof of the claim for k + 1. The case k = p yields the result. �

We now proceed as in the proof of Proposition 5.14.
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Proposition 5.16. For p ≥ 1
2 (c− 1)n, we have

Dp .
1

n
(
√
c+ 1)2p

(
1 +

8p2

c3/2n2

)p
.

Proof. The conclusion is trivial if p = 0. For p ≥ 1, we obtain

Dp .
Cp

n
+ (
√
c+ 1)2(p−2)

(
1 +

8p2

c3/2n2

)p−2
c3/4

p−2∑
r=1

(
1 + 2p2

c3/2n2

1 + 8p2

c3/2n2

)r
r1/2

n2

using Lemma 5.15, D1

C ≤
1
n , C ≤ (

√
c + 1)2

(
1 + 8p2

c3/2n2

)
, and Theorem 5.1. The

conclusion now follows exactly as in the proof of Proposition 5.14. �

The proof of Theorem 5.2 is now immediate.

Proof of Theorem 5.2. Combining Propositions 5.14 and 5.16 yields

Bp ≤ Dp +Ap . (
√
c+ 1)2p

(
1 +

8p2

c3/2n2

)p(
c3/4

p3/2
+

1

n

)
,

using A′p ≤ Ap and Theorem 5.1. The result follows from the definition of Bp. �
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