

At the End of the Course, you should be able to:

- <u>Understand</u> aircraft configuration aerodynamics, performance, stability, and control
- <u>Estimate</u> an aircraft's aerodynamic characteristics from geometric and inertial properties
- Analyze linear and nonlinear dynamic systems
- <u>Recognize</u> airplane modes of motion and their significance
- <u>Compute</u> <u>aircraft motions</u>
- Appreciate historical development of aviation

Syllabus, First Half

- Introduction, Math Preliminaries
- Point Mass Dynamics
- Aerodynamics of Airplane Configurations
 - Forces & Moments
 - 2-D & 3-D
 - Low- & High-Speed
- Cruising Flight Performance
 - Power & Thrust
 - Flight Envelope
- Gliding, Climbing, and Turning Performance
- Nonlinear, 6-DOF Equations of Motion
- Aircraft Control Devices and Systems

Details, reading, homework assignments, and references at http://blackboard.princeton.edu/

3

Syllabus, Second Half

- Linearized Equations of Motion
- Longitudinal Dynamics
- Lateral-Directional Dynamics
- Analysis of Linear Systems
 - Time Response
 - Transfer Functions and Frequency Response
 - Root Locus Analysis
- Flying Qualities Criteria
- Maneuvering at High Angles and Rates
- Aeroelasticity and Fuel Slosh
- Special Problems

You're interested in MAE 331 because ...?

5

Details

- Lecture: 3-4:20, J-201, Tue & Thu, E-Quad
- Precept: 7:30-8:20, J-201, Mon
- Engineering, science, & math
- Case studies, historical context
- ~8 homework assignments
- Office hours: 1:30-2:30, MW, D-202, or any time my door is open. e-mail ahead, if possible
- Assistant in Instruction: Office hours: TBD

Details

- Lecture slides
 - -pdfs from <u>all</u> 2016 lectures are available <u>now</u> at http://www.stengel.mycpanel.princeton.edu/MAE331.html
 - -pdf for current (2018) lecture on Blackboard morning of class or day before
 - GRADING
 - Assignments: 50%
 - Term Paper: 30%
 - Class participation: 10%
 - Quick Quiz (10, 5 min): 10%

See: http://cte.virginia.edu/resources/grading-class-participation-2/

7

Text and References

- Science, Engineering, and Math:
 - Flight Dynamics, RFS, Princeton University Press, 2004
- Case Studies, Historical Context
 - Airplane Stability and Control, Abzug and Larrabee, Cambridge University Press, 2002
- Technical Report PDFs on Blackboard
- <u>Virtual reference book</u>

Flight Dynamics Book and Computer Code

- Programs accessible from the Flight Dynamics web page
 - http://www.princeton.edu/~stengel/FlightDynamics.html
- ... or directly
- · ERRATA for the book are listed there
- 6-degree-of-freedom nonlinear simulation of a business jet aircraft (MATLAB)
 - http://www.princeton.edu/~stengel/FDcodeB.html
- Linear system analysis (MATLAB)
 - http://www.princeton.edu/~stengel/FDcodeC.html
- Paper airplane simulation (MATLAB)
 - http://www.princeton.edu/~stengel/PaperPlane.html
- Performance analysis of a business jet aircraft (Excel)
 - http://www.princeton.edu/~stengel/Example261.xls

9

Quick Quizzes First 5 Minutes of 10 Classes

- One question about the lectures and reading assignments from the previous week
- Largely qualitative but may require simple calculations
- Be sure to bring a pencil, paper, and calculator to class

Homework Assignments

- Groups of 2 or 3 students for all assignments
- Team members for each assignment will be
 - different
 - chosen using a spreadsheet and random number generator (TBD)
- Each member of each team will receive the same grade as the others
- Identify who did what on each assignment
- Submit via http://blackboard.princeton.edu/

11

Flight Tests Using Balsa Glider and Cockpit Flight Simulator

- In your Cessna 172:
- Takeoff from Princeton Airport
- Fly over Carnegie Lake
- Land at Princeton Airport

Assignment #1

- Document the physical characteristics and flight behavior of a balsa glider
 - Everything that you know about the <u>physical</u> <u>characteristics</u>
 - Everything that you know about the <u>flight</u> <u>characteristics</u>
- 2- or 3-person team, joint write-up
- Team assignments on http://blackboard.princeton.edu/

13

Luke Nash's Biplane Glider Flight #1 (MAE 331, 2008)

Stability and Control Case Studies

17

Reading Assignments

- Do Flight Dynamics reading before class
- Case Studies/Historical Context:

Airplane Stability and Control

- 10-minute synopses by groups of 3 students
 - · Principal subject/scope of chapter
 - Technical ideas needed to understand chapter
 - · When did the events occur?
 - 3 main "takeaway points" or conclusions
 - 3 most surprising or remarkable facts

Goals for Airplane Design

- Shape of airplane determined by purpose
- Safety, handling, performance, functioning, and comfort
- Agility vs. sedateness
- Control surfaces adequate to produce needed moments (i.e., torques)
- <u>Tradeoffs</u>, *e.g.*, center of mass location
 - too far forward increases unpowered control-stick forces
 - too far aft degrades static stability

19

Introduction to Flight Dynamics

Flight of a Paper Airplane **Example 1.3-1, Flight Dynamics Equations of** motion integrated numerically to estimate the flight path **Red:** Equilibrium flight path **Black: Initial flight** path angle = 0 0 **Blue: plus** increased initial airspeed -2 **Green: loop** 20 Range, m

Assignment #2

- Compute the trajectory of a balsa glider
- Simulate using equations of motion
- Compare to the <u>actual flight</u> of the glider (HW #1)
- Similar to the flight of a paper airplane

31

Gliding Flight Lift Force Drag Force z_i = -h

Math Preliminaries

Notation for Scalars and Vectors

• Scalar: usually lower case: a, b, c, ..., x, y, z

$$a = 12;$$
 $b = 7;$ $c = a + b = 19;$ $x = a + b^2 = 12 + 49 = 61$

- Vector: usually bold or with underbar: x or x
 - · Ordered set
 - · Column of scalars
 - Dimension = $n \times 1$

$$\begin{vmatrix} \mathbf{a} = \begin{bmatrix} 2 \\ -7 \\ 16 \end{bmatrix}; \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad \mathbf{y} = \begin{bmatrix} a \\ b \\ c \\ d \end{vmatrix}$$

Matrices and Transpose

- Matrix: usually bold capital or capital: F or F
 - Dimension = $(m \times n)$

$$\mathbf{x} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}; \quad \mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \\ l & m & n \end{bmatrix}$$

Transpose: interchange rows and columns

$$\boxed{\mathbf{x}^T = \left[\begin{array}{ccc} x_1 & x_2 & x_3 \end{array} \right]}$$

$$\mathbf{A}^T = \left[\begin{array}{cccc} a & d & g & l \\ b & e & h & m \\ c & f & k & n \end{array} \right]$$

37

Multiplication

- · Operands must be conformable
- Multiplication of vector by scalar is associative, commutative, and distributive

$$a\mathbf{x} = \mathbf{x}a = \begin{bmatrix} ax_1 \\ ax_2 \\ ax_3 \end{bmatrix} \qquad a(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y})a = (a\mathbf{x} + a\mathbf{y})$$

$$\frac{\dim(\mathbf{x}) = \dim(\mathbf{y})}{\dim(\mathbf{y})}$$

$$a\mathbf{x}^T = \begin{bmatrix} ax_1 & ax_2 & ax_3 \end{bmatrix}$$

Addition

 Conformable vectors and matrices are added term by term

$$\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix} \quad ; \quad \mathbf{z} = \begin{bmatrix} c \\ d \end{bmatrix}$$

$$\mathbf{x} + \mathbf{z} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}$$

39

Inner Product

Inner (dot) product of vectors produces scalar result

$$\begin{bmatrix} \mathbf{x}^T \mathbf{x} = \mathbf{x} \bullet \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= (x_1^2 + x_2^2 + x_3^2)$$

 Length (or magnitude) of vector is square root of dot product

Vector Transformation

- Matrix-vector product transforms one vector into another
- Matrix-matrix product produces a new matrix

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & 6 \\ 3 & -5 & 7 \\ 4 & 1 & 8 \\ -9 & -6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

 $(n \times 1) = (n \times m)(m \times 1)$

$$= \begin{bmatrix} (2x_1 + 4x_2 + 6x_3) \\ (3x_1 - 5x_2 + 7x_3) \\ (4x_1 + x_2 + 8x_3) \\ (-9x_1 - 6x_2 - 3x_3) \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Derivatives and Integrals of Vectors

Derivatives and integrals of vectors are vectors of derivatives and integrals

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} dx_1 / dt \\ dt \\ dx_2 / dt \\ dx_3 / dt \end{bmatrix}$$

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \frac{dx_3}{dt} \end{bmatrix} \qquad \int \mathbf{x} \, dt = \begin{bmatrix} \int x_1 \, dt \\ \int x_2 \, dt \\ \int x_3 \, dt \end{bmatrix}$$

Matrix Identity and Inverse

 Identity matrix: no change when it multiplies a conformable vector or matrix

$$\mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{y} = \mathbf{I}\mathbf{y}$$

 A non-singular square matrix multiplied by its inverse forms an identity matrix

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

44

Mathematical Models of Dynamic Systems are Differential Equations

Continuous-time dynamic process: Vector Ordinary Differential Equation

$$\dot{\mathbf{x}}(t) \triangleq \frac{d\mathbf{x}(t)}{dt} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

Output Transformation

$$\mathbf{y}(t) = \mathbf{h}[\mathbf{x}(t), \mathbf{u}(t)]$$

Measurement with Error

$$\mathbf{z}(t) = \mathbf{y}(t) + \mathbf{n}(t)$$

 $\dim(\mathbf{x}) = (n \times 1)$ $\dim(\mathbf{f}) = (n \times 1)$ $\dim(\mathbf{u}) = (m \times 1)$ $\dim(\mathbf{w}) = (s \times 1)$ $\dim(\mathbf{p}) = (l \times 1)$

 $\dim(\mathbf{y}) = (r \times 1)$ $\dim(\mathbf{h}) = (r \times 1)$

 $\dim(\mathbf{z}) = (r \times 1)$ $\dim(\mathbf{n}) = (r \times 1)$

45

Next Time:

Point-Mass Dynamics
Aerodynamic/Thrust Forces

Supplemental Material

47

Helpful Resources

- Web pages
 - -http://blackboard.princeton.edu/
 - http://www.stengel.mycpanel.princeton.edu/MAE331.html http://www.stengel.mycpanel.princeton.edu/FlightDynamics.html
- Princeton University Engineering Library (paper and on-line)
 - -<u>http://lib-terminal.princeton.edu/ejournals/by_title_zd.asp</u>
 - -http://sfx.princeton.edu:9003/sfx_pul/az
- NACA/NASA pubs
 - -http://ntrs.nasa.gov/search.jsp

MAE 331 Course Learning Objectives (Accreditation Board for Engineering and Technology)

Course Learning Objectives	ABET Criterion 3
Understanding of the dynamics and control of aircraft.	a
Ability to estimate aerodynamic coefficients and stability derivatives from	a, c
aircraft geometry and flight envelope.	
Facility in analyzing mathematical descriptions of the rigid-body motions	a
of flying vehicles.	
Ability to estimate the performance, stability, and control characteristics of	b
aircraft.	
Development of appreciation for flight-testing methods and results.	b, k
Ability to apply systems-engineering approach to the analysis, design, and	b, c
testing of aircraft.	
Demonstration of ability to work in multidisciplinary teams.	d
Demonstration of computational problem-solving, through thorough	e, k
knowledge, application, and development of analytical software.	
Appreciation of the historical context within which airplanes have evolved	f, h, i, j
to present-day configurations.	
Competence in presenting ideas.	g