Aircraft Control Devices and Systems

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Learning Objectives

- · Control surfaces
- · Control mechanisms
- · Powered control
- · Flight control systems
- · Fly-by-wire control
- Nonlinear dynamics and aero/mechanical instability

Reading:

Flight Dynamics 214-234 Airplane Stability and Control

Sections 5.1 to 5.19

Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAF331.html

Review Questions

- Are the rates of Euler angle change orthogonal?
- What are the consequences of the answer to the previous question?
- What are the components of the airplane's equations of motion?
- What does the MATLAB script FLIGHT.m (FLIGHTver2.m) calculate?
- Why is human-powered flight so difficult?
- What causes aerodynamic damping?

Control Surface Types

5

Elevator

Pitch control

Flap in the wake of the wing

Pitch up moment associated with horizontal tail down force

Principal effect is to change the angle of attack

Downsprings and Bobweights

- · Adjustment of
 - Stick-free pitch trim moment
 - Stick-force sensitivity to airspeed*
- Downspring
 - Mechanical spring with low spring constant
 - Exerts a ~constant trailing-edge down moment on the elevator
- Bobweight
 - Similar effect to that of the downspring
 - Weight on control column that affects feel or basic stability
 - Mechanical stability augmentation (weight is sensitive to aircraft's angular rotation)

* See pp. 541-545, Section 5.5, Flight Dynamics

Ailerons

Roll control

When one aileron goes up, the other goes down

Average hinge moment affects stick force

Principal effect is to change the roll rate

Compensating Ailerons

- Frise aileron
 - Asymmetric contour, with hinge line at or below lower aerodynamic surface
 - Reduces hinge moment
- Cross-coupling effects can be adverse or favorable,
 e.g. yaw rate with roll
 - Up travel of one > down travel of other to control yaw effect

11

Spoilers

- · Spoiler reduces lift, increases drag
 - Speed control
- Hinged flap has high hinge moment
- Differential spoilers
 - Roll control
 - Avoid twist produced by outboard ailerons on long, slender wings
 - free trailing edge for larger high-lift flaps
- Plug-slot spoiler on P-61 Black Widow: low control force

Business Jet Plan View

- · Ailerons insensitive at high-speed cruise
- · Differential spoilers provide more effective roll control

Elevons

- Combined pitch and roll control using symmetric and asymmetric surface deflection
- · Principally used on
 - Delta-wing configurations
 - Swing-wing aircraft

Rudder

Rudder provides yaw control

Turn coordination
Countering adverse yaw
Crosswind correction
Countering yaw due to multi-engine loss

Principal effect is to change sideslip angle

15

Rudder

- · Rolling effect
- Only control surface whose nominal aerodynamic angle is zero
- · Possible nonlinear effect at low deflection angle
- Insensitivity of flap-type rudder at high supersonic speed (Bell X-2)
- Wedge shape, <u>all-moving rudder</u> on North American X-15

V (Butterfly) Tail and Pitch-Yaw Control

17

Northrop N-9M/

Yaw Control of Tailless Configurations

- Typically unstable in pitch and yaw
- Dependent on flight control system for stability
- Split ailerons or differential drag flaps produce yawing moment

All-Moving Control Surfaces

- Particularly effective at supersonic speed (Boeing Bomarc wing tips, North American X-15 horizontal and vertical tails, Grumman F-14 horizontal tail)
- · SB.4's "aero-isoclinic" wing
- Sometimes used for trim only (e.g., Lockheed L-1011 horizontal tail)
- · Hinge moment variations with flight condition

Morphing Wings

- Reduction of drag due to control surface deflection
- Aeroelastic structure
- Distributed actuation

21

Side Force Generators on Princeton's Variable-Response Research Aircraft (*VRA*)

Critical Issues for Control

- Effect of control surface deflections on aircraft motions
 - Generation of control forces and moments on the aircraft
 - Rigid-body dynamics of the aircraft
 - $-\delta E$ is an input for longitudinal motion

Critical Issues for Control

Command and control of the control surfaces

Displacements, forces, and hinge moments of the control mechanisms

Dynamics of control linkages included in model δE is a state for mechanical dynamics

Control Surface Dynamics and Aerodynamics

Aerodynamic and Mechanical Moments on Control Surfaces

- Increasing size and speed of aircraft leads to <u>increased hinge moments</u> and cockpit control forces
- This leads to need for mechanical or aerodynamic reduction of hinge moments
- · Elevator hinge moment

$$H_{elevator} = C_{H_{elevator}} \frac{1}{2} \rho V^2 S \overline{c}$$

27

Control Surface Dynamics

Linear dynamic models of control surface motion

$$\begin{split} &\delta \ddot{E} = \left[\left(C_{H_{\delta E}} \delta \dot{E} + C_{H_{\delta E}} \delta E + C_{H_{\alpha_{\delta E}}} \alpha + C_{H_{C_{\delta E}}} \right) \overline{q} S \overline{c} \right] / I_{\delta E} \\ &\delta \ddot{A} = \left[\left(C_{H_{\delta A}} \delta \dot{A} + C_{H_{\delta A}} \delta A + C_{H_{\beta_{\delta A}}} \beta + C_{H_{C_{\delta A}}} \right) \overline{q} S b \right] / I_{\delta A} \\ &\delta \ddot{R} = \left[\left(C_{H_{\delta R}} \delta \dot{R} + C_{H_{\delta R}} \delta R + C_{H_{\beta_{\delta R}}} \beta + C_{H_{C_{\delta R}}} \right) \overline{q} S b \right] / I_{\delta R} \end{split}$$

 $C_{H_{\delta}}$: aerodynamic/mechanical damping $C_{H_{\delta}}$: aerodynamic/mechanical spring $C_{H_{\alpha}}, C_{H_{\beta}}$: floating tendency $C_{H_{C}}$: pilot or autopilot input

Angle of Attack and Control Surface Deflection

- Horizontal tail with elevator control surface
- V $\bigcirc_{c.p.}$
- Horizontal tail at positive angle of attack
- V Cop.
- Horizontal tail with positive elevator deflection
- V $\Theta_{c,p}$ δE

29

Floating and Restoring Moments on a Control Surface

- · Positive angle of attack produces negative moment on the elevator
- With "stick free", i.e., no opposing command torques, elevator "floats" up due to negative H_δ

Positive elevator deflection produces a negative ("restoring") moment, H_{δ} , on elevator due to aerodynamic or mechanical spring

Horn Balance

- Inertial and aerodynamic effects
- Control surface in front of hinge line
 - Increasing elevator C_{H_a} improves pitch stability, to a point
- · Too much horn area
 - Degrades restoring moment
 - Increases possibility of mechanical instability
 - Increases possibility of destabilizing coupling to shortperiod mode

Overhang or Leading-Edge Balance

- Area in front of the hinge line
- Effect is similar to that of horn balance
- Varying gap and protrusion into airstream with deflection angle

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

Trailing-Edge Bevel Balance

- Bevel may have strong effect on aerodynamic hinge moments
- See discussion in Abzug and Larrabee

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

J 1

Internally Balanced Control Surface

- NACA Report 868
 - Control-surface fin with flexible seal moves within an internal cavity in the main surface
 - Differential pressures reduce control hinge moment

$$C_{H} \approx C_{H_{\alpha}} \alpha + C_{H_{\delta}} \delta + C_{H_{pilot input}}$$

35

Control Tabs

- Trim tab
 - Control surface and tab commanded separately
- Geared tab
 - Tab leverage reduces commanded control surface torque
- Servo tab
 - Tab produces only commanded control surface torque
- Spring tab
 - Command deflects both surface and tab with airspeed-dependent ratio
- Stability tab
 - Tab is separate mechanical system that augments aircraft stability

Nonlinear Control Mechanization Effects

Control Mechanization Complications

- Fabric-covered control surfaces (e.g., DC-3, Spitfire) subject to distortion under air loads, changing stability and control characteristics
- Control cable stretching
- Elasticity of the airframe changes cable/pushrod geometry
- Nonlinear control effects
 - friction
 - breakout forces
 - backlash

39

Mechanical Nonlinearity

- Friction between surfaces
- Dead zone (backlash) due to loose mechanical connection

Rudder Lock

- Rudder deflected to stops at high sideslip; aircraft trims at high β
- · 3 necessary ingredients
 - Low directional stability at high sideslip due to stalling of fin
 - High (positive) hinge momentdue-to-sideslip at high sideslip (e.g., B-26)
 - Negative rudder yawing moment
- Problematical if rudder is unpowered and requires high foot-pedal force ("rudder float" of large WWII aircraft)
- Solutions
 - Increase high-sideslip directional stability by adding a dorsal fin (e.g., B-737-100 (before), B-737-700 (after))
 - Hydraulically powered rudder

Instabilities Due To Control Mechanization

- Aileron buzz (aero-mechanical instability; P-80)
- Rudder snaking (Dutch roll/mechanical coupling; Meteor, He-162)
- Aeroelastic coupling (B-47, Boeing 707 yaw dampers)

43

Yaw Damping

Boeing B-47 Yaw Damper

Yaw rate washout to reduce opposition to steady turns (TBD)

- Yaw rate gyro drives rudder to increase Dutch roll damping
- Comment: "The plane wouldn't need this contraption if it had been designed right in the first place." [WRONG]
- · Most jet aircraft have yaw dampers

45

B-52 Mechanical Yaw Damper

- Combined stable rudder tab, low-friction bearings, small bobweight, and eddy-current damper for B-52
- Advantages
 - Requires no power, sensors, actuators, or computers
 - Simple mechanical components
- Problems
 - Misalignment, need for high precision
 - Friction and wear over time
 - Jamming, galling, and fouling
 - High sensitivity to operating conditions, design difficulty

Flight Control Systems

47

Mechanical and Augmented Control Systems

- Mechanical system
 - Push rods, bellcranks, cables, pulleys
- Power boost
 - Pilot's input augmented by hydraulic servo that lowers manual force
- Fully powered (irreversible) system
 - No direct mechanical path from pilot to controls
 - Mechanical linkages from cockpit controls to servo actuators

Stability Augmentation System (SAS) for Northrop YB-35/49 Flying Wing Bombers

- Northrop B-35/49 flying wing bombers motivated significant SAS development
- Complications
 - Pneumatic/hydraulic logic
 - Primitive electronic analog computation
 - No digital computation
 - Unreliable and inaccurate sensors and actuators ("servo-actuators")
 - Limited math models of system components
 - "Seat-of-the-pants" design and implementation
- Northrop among first to take systematic approach to SAS design

Advanced Control Systems

- · Artificial-feel system
 - Restores control forces to those of an "honest" airplane
 - "q-feel" modifies force gradient
 - Variation with trim stabilizer angle
 - Bobweight responds to gravity and to normal acceleration
- · Fly-by-wire/light system
 - Minimal mechanical runs
 - Command input and feedback signals drive servo actuators
 - Fully powered systems
 - Move from hydraulic to electric power

Next Time: Linearized Equations and Modes of Motion

Reading:

Flight Dynamics 234-242, 255-266, 274-297, 321-325, 329-330

Learning Objectives

Develop linear equations to describe small perturbational motions

Apply to aircraft dynamic equations

51

SUPPLEMENTAL MATERIAL

B-52 Control Compromises to Minimize Required Control Power

- Limited-authority rudder, allowed by
 - Low maneuvering requirement
 - Reduced engine-out requirement (1 of 8 engines)
 - Crosswind landing gear
- Limited-authority elevator, allowed by
 - Low maneuvering requirement
 - Movable stabilator for trim
 - Fuel pumping to shift center of mass
- Small manually controlled "feeler" ailerons with spring tabs
 - Primary roll control from powered spoilers, minimizing wing twist

53

Rudder Snaking Douglas DC-2 **Control-free dynamics** - Nominally symmetric control position **Solutions** Internal friction Trailing-edge bevel Aerodynamic imbalance Flat-sided surfaces Coupling of mechanical motion with Fully powered controls **Dutch roll mode** 0.05 -0.05 0.02 -0.02 -0.04 0.5 -0.5 Sideslip Angle, Yaw Rate. rad/s 54

The Unpowered F4D Rudder

- · Rudder not a problem under normal flight conditions
 - Single-engine, delta-wing aircraft requiring small rudder inputs
- Not a factor for upright spin
 - Rudder was ineffectual, shielded from flow by the large delta wing
- · However, in an inverted spin
 - rudder effectiveness was high
 - floating tendency deflected rudder in a pro-spin direction
 - 300 lb of pedal force to neutralize the rudder
- · Fortunately, the test aircraft had a spin chute

57

Powered Flight Control Systems

- Early powered systems had a single powered channel, with mechanical backup
 - Pilot-initiated reversion to "conventional" manual controls
 - Flying qualities with manual control often unacceptable
- Reversion typically could not be undone
 - Gearing change between control stick and control to produce acceptable pilot load
 - Flying qualities changed during a highstress event
- · Hydraulic system failure was common
 - Redundancy was needed
- · Alternative to eject in military aircraft

Control-Configured Vehicles

- Command/stability augmentation
- · Lateral-directional response
 - Bank without turn
 - Turn without bank
 - Yaw without lateral translation
 - Lateral translation without yaw
 - Velocity-axis roll (i.e., bank)
- Longitudinal response
 - Pitch without heave
 - Heave without pitch
 - Normal load factor
 - Pitch-command/attitude-hold
 - Flight path angle

Direct Lift and Propulsion Control

63

Direct-Lift Control-Approach Power Compensation

- F-8 Crusader
 - Variable-incidence wing, better pilot visibility
 - Flight path control at low approach speeds
 - · requires throttle use
 - could not be accomplished with pitch control alone
 - Engine response time is slow
 - Flight test of direct lift control (DLC), using ailerons as flaps
- Approach power compensation for A-7 Corsair II and direct lift control studied using Princeton's Variable-Response Research Aircraft

Direct-Lift/Drag Control

- Direct-lift control on S-3A Viking
 - Implemented with spoilers
 - Rigged "up" during landing to allow ± lift.
- Speed brakes on T-45A
 Goshawk make up for slow
 spool-up time of jet engine
 - BAE Hawk's speed brake moved to sides for carrier landing
 - Idle speed increased from 55% to 78% to allow more effective modulation via speed brakes

65

United Flight 232, DC-10 Sioux City, IA, 1989

 Uncontained engine failure damaged all three flight control hydraulic systems (http://en.wikipedia.org/wiki/United_Airlines_Flight_232)

United Flight 232, DC-10 Sioux City, IA, 1989 Pilot maneuvered on differential control of engines to make a runway approach

- 101 people died
- 185 survived

Propulsion Controlled Aircraft

Proposed backup attitude control in event of flight control system failure Differential throttling of engines to produce control moments Requires feedback control for satisfactory flying qualities

NASA MD-11 PCA Flight Test

NASA F-15 PCA Flight Test