

5

- Specify <u>desired</u> altitude and airspeed, h_N and V_N
- Guess starting values for the trim parameters, δT_0 , δE_0 , and θ_0
- Calculate starting values of f_1 , f_2 , and f_3

$$f_{1} = \dot{V} = \frac{1}{m} \Big[T(\delta T, \delta E, \theta, h, V) \cos(\alpha + i) - D(\delta T, \delta E, \theta, h, V) \Big]$$

$$f_{2} = \dot{\gamma} = \frac{1}{mV_{N}} \Big[T(\delta T, \delta E, \theta, h, V) \sin(\alpha + i) + L(\delta T, \delta E, \theta, h, V) - mg \Big]$$

$$f_{3} = \dot{q} = M(\delta T, \delta E, \theta, h, V) / I_{yy}$$

• f_1 , f_2 , and $f_3 = 0$ in equilibrium, but not for arbitrary δT_0 , δE_0 , and θ_0 • Define a scalar, positive-definite trim error cost function, e.g.,

$$J(\delta T, \delta E, \theta) = a(f_1^2) + b(f_2^2) + c(f_3^2)$$

Disturbance-effect derivatives portray acceleration sensitivities to disturbance input perturbations

$\mathbf{L}_{Lon} = \begin{bmatrix} \frac{W_{wind} & W_{wind} & W_{wind} \\ \hline M_{V+1} & M_{\alpha+1} \end{bmatrix}$		$\begin{bmatrix} -D_{V_{wind}} \\ L_V / V_N \end{bmatrix}$	$\begin{bmatrix} -D_{\alpha_{wind}} \\ L_{\alpha} / V_{N} \end{bmatrix}$	
	$\mathbf{L}_{Lon} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\frac{L_{V_{wind}} / V_N}{M_{V_{wind}}}$	$\frac{L_{\alpha_{wind}} / v_N}{M_{\alpha_{wind}}}$	

53

