Point-Mass Dynamics and Aerodynamic/Thrust Forces

Robert Stengel, Aircraft Flight Dynamics,

MAE 331, 2018
Learning Objectives

- Properties of atmosphere
- Frames of reference
- Velocity and momentum
- Newton's laws of motion
- Airplane axes
- Lift and drag
- Simplified equations for longitudinal motion
- Powerplants and thrust
Reading:
Flight Dynamics
Introduction, $1-27$
The Earth's Atmosphere, 29-34
Kinematic Equations, 38-53
Forces and Moments, 59-65
Introduction to Thrust, 103-107

Copyright 2018 by Robert Stengel. All rights reserved. For educational use only.

The Atmosphere

Air Density, Dynamic Pressure, and Mach Number

$\rho=$ Air density, function of height
$=\rho_{\text {sealevel }} e^{-\beta h}=\rho_{\text {sealevel }} e^{\beta z}$
$\rho_{\text {sealevel }}=1.225 \mathrm{~kg} / \mathrm{m}^{3} ; \quad \beta=1 / 9,042 \mathrm{~m}$
$V_{\text {air }}=\left[v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right]_{\text {air }}^{1 / 2}=\left[\mathbf{v}^{T} \mathbf{v}\right]_{\text {air }}^{1 / 2}=$ Airspeed
Dynamic pressure $=\bar{q}=\frac{1}{2} \rho(h) V_{\text {air }}^{2} \triangleq$ "qbar"
Mach number $=\frac{V_{\text {air }}}{a(h)} ; \quad a=$ speed of sound, m / s

Contours of Constant Dynamic Pressure, \bar{q}

- In steady, cruising flight,

$$
\text { Weight }=\text { Lift }=C_{L} \frac{1}{2} \rho V_{\text {air }}^{2} S=C_{L} \bar{q} S
$$

True airspeed must increase as altitude increases to maintain constant dynamic pressure

Wind: Motion of the Atmosphere

Zero wind at Earth's surface = Rotating air mass
Wind measured with respect to Earth's rotating surface
Wind Velocity Profiles vary over Time

Airspeed = Airplane's speed with respect to air mass
Earth-relative velocity $=$ Wind velocity \pm True airspeed [vector]

Historícal Factoids

- Henri Pitot: Pitot tube (1732)

- Benjamin Robins: Whirling arm "wind tunnel" (1742)

NASA SP-440, Wind Tunnels of NASA

Sir George Cayley

- Sketched "modern" airplane configuration (1799)
- Hand-launched glider (1804)

(4)
- Applied aerodynamics (1809-1810)
- Triplane glider carrying 10-yr-old boy (1849)
- Monoplane glider carrying coachman (1853)
- Cayley's coachman had a steering oar with cruciform blades

Equations of Motion for a Particle (Point Mass)

Newtonian Frame of Reference

- Newtonian (Inertial) Reference Frame
- Unaccelerated Cartesian frame: origin referenced to inertial (non-moving) frame
- Right-hand rule
- Origin can translate at constant linear velocity
- Frame cannot rotate with respect to inertial origin
- Position: 3 dimensions
- What is a non-moving frame?

Translation changes the position of an object

Velocity and Momentum

- Velocity of a particle

$$
\mathbf{v}=\frac{d \mathbf{x}}{d t}=\dot{\mathbf{x}}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]
$$

- Linear momentum of a particle
$\mathbf{p}=m \mathbf{v}=m\left[\begin{array}{c}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]$
where $\quad m=$ mass of particle

$m=$ mass of particle

Inertial Velocity Expressed in Polar Coordinates

Projected on a Sphere

γ : Vertical Flight Path Angle, rad or deg
ξ : Horizontal Flight Path Angle (Heading Angle), rad or deg

Newton' s Laws of Motion: Dynamics of a Particle

- First Law: If no force acts on a particle,
- it remains at rest or
- continues to move in a straight line at constant velocity, as observed in an inertial reference frame
- Momentum is conserved

$$
\frac{d}{d t}(m \mathbf{v})=0 \quad ;\left.\quad m \mathbf{v}\right|_{t_{1}}=\left.m \mathbf{v}\right|_{t_{2}}
$$

Newton' s Laws of Motion: Dynamics of a Particle

- Second Law: Particle of fixed mass acted upon by a force
- changes velocity with acceleration proportional to and in direction of force, as observed in inertial frame
- Mass is ratio of force to acceleration of particle:

$$
\begin{aligned}
& \mathbf{F}=m \mathbf{a} \\
& \frac{d}{d t}(m \mathbf{v})=m \frac{d \mathbf{v}}{d t}=\mathbf{F} ; \mathbf{F}=\left[\begin{array}{l}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right] \\
& \therefore \frac{d \mathbf{v}}{d t}=\frac{1}{m} \mathbf{F}=\frac{1}{m} \mathbf{\mathbf { l } _ { 3 }} \mathbf{F}=\left[\begin{array}{ccc}
1 / m & 0 & 0 \\
0 & 1 / m & 0 \\
0 & 0 & 1 / m
\end{array}\right]\left[\begin{array}{c}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right]
\end{aligned}
$$

Newton' s Laws of Motion:
 Dynamics of a Particle

- Third Law
- For every action, there is an equal and opposite reaction

Force on Rocket = Force on Exhaust Gasses

Equations of Motion for a Particle: Position and Velocity

Rate of change
of position

$$
\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]_{I}=\mathbf{v}=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right]_{I}
$$

Integration for Velocity with Constant Force

$\frac{d \mathbf{v}(t)}{d t}=\dot{\mathbf{v}}(t)=\frac{1}{m} \mathbf{F}=\left[\begin{array}{c}f_{x} / m \\ f_{y} / m \\ f_{z} / m\end{array}\right]=\left[\begin{array}{c}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]$

Integral
$\mathbf{v}(T)=\int_{0}^{T} \frac{d \mathbf{v}(t)}{d t} d t+\mathbf{v}(0)=\int_{0}^{T} \frac{1}{m} \mathbf{F} d t+\mathbf{v}(0)=\int_{0}^{T} \mathbf{a} d t+\mathbf{v}(0)$
$\left.\left[\begin{array}{c}v_{x}(T) \\ v_{y}(T) \\ v_{z}(T)\end{array}\right]=\int_{0}^{T}\left[\begin{array}{c}f_{x} / m \\ f_{y} / m \\ f_{z} / m\end{array}\right] d t+\left[\begin{array}{c}v_{x}(0) \\ v_{y}(0) \\ v_{z}(0)\end{array}\right]=\int_{0}^{T}\left[\begin{array}{c}a_{x} \\ a_{y} \\ a_{z}\end{array}\right] d t+\left[\begin{array}{c}v_{x}(0) \\ v_{y}(0) \\ v_{z}(0)\end{array}\right] \right\rvert\,$

Integration for Position with Varying Velocity

$\frac{d i f f e r e n t i a l ~ e q u a t i o n ~}{r}$
$d t$

Integral
$\mathbf{r}(T)=\int_{0}^{T} \frac{d \mathbf{r}(t)}{d t} d t+\mathbf{r}(0)=\int_{0}^{T} \mathbf{v}(t) d t+\mathbf{r}(0)$
$\left[\begin{array}{c}x(T) \\ y(T) \\ z(T)\end{array}\right]=\int_{0}^{T}\left[\begin{array}{c}v_{x}(t) \\ v_{y}(t) \\ v_{z}(t)\end{array}\right] d t+\left[\begin{array}{l}x(0) \\ y(0) \\ z(0)\end{array}\right]$

Gravitational Force:
 Flat-Earth Approximation

- Approximation
- Flat earth reference assumed to be inertial frame, e.g.,
- North, East, Down
- Range, Crossrange, Altitude (-)
- g is gravitational acceleration
- $\quad \mathbf{m g}$ is gravitational force
- Independent of position
- z measured down

$$
\left(\mathbf{F}_{\text {gravity }}\right)_{I}=\left(\mathbf{F}_{\text {gravity }}\right)_{E}=m \mathbf{g}_{E}=m\left[\begin{array}{c}
0 \\
0 \\
g_{o}
\end{array}\right]_{E}
$$

$$
g_{o} \simeq 9.807 \mathrm{~m} / \mathrm{s}^{2} \text { at earth's surface }
$$

Flight Path Dynamics, Constant Gravity, No Aerodynamics

Flight Path with Constant Gravity and No Aerodynamics

Aerodynamic Force on an Airplane

Referenced to the Earth, not the aircraft (e.g., North, East, Down)

Aligned with the aircraft axes (e.g., Nose, Wing Tip, Down)

Aligned with and perpendicular to the velocity vector (Forward, Sideward, Down)

Non-Dimensional Aerodynamic Coefficients

Body-Axis Frame	Wind-Axis Frame
$\left[\begin{array}{c}C_{X} \\ C_{Y} \\ C_{Z}\end{array}\right]_{B}=\left[\begin{array}{c}\text { axial force coefficient } \\ \text { side force coefficient } \\ \text { normal force coefficient }\end{array}\right]$	

C_{Y}

C_{L}\end{array}\right]=\left[$$
\begin{array}{c}\text { drag coefficient } \\
\text { side force coefficient } \\
\text { lift coefficient }\end{array}
$$\right]\)

- Functions of flight condition, control settings, and disturbances, e.g., $C_{L}=C_{L}(\delta, M, \delta E)$
- Non-dimensional coefficients allow application of sub-scale model wind tunnel data to full-scale airplane

Longitudinal Variables

$$
\gamma=\theta-\alpha \quad \text { (with wingtips level) }
$$

$u(t)$: axial velocity

$$
\begin{gathered}
1 \\
\downarrow_{z_{i}}
\end{gathered}
$$

- along vehicle centerline
$w(t)$: normal velocity
$V(t)$: velocity magnitude
$\alpha(t)$: angle of attack
$\gamma(t)$: flight path angle
$\theta(t)$: pitch angle
- perpendicular to centerline
- along net direction of flight
- angle between centerline and direction of flight
- angle between direction of flight and local horizontal
- angle between centerline and local horizontal

Lateral-Directional Variables

Lift and Drag are Referenced to Velocity Vector

Lift $=C_{L} \frac{1}{2} \rho V_{\text {air }}^{2} S \approx\left[C_{L_{0}}+\frac{\partial C_{L}}{\partial \alpha} \alpha\right] \frac{1}{2} \rho V_{\text {air }}^{2} S$

- Lift components sum to produce total lift
- Perpendicular to velocity vector
- Pressure differential between upper and lower surfaces
$\operatorname{Drag}=C_{D} \frac{1}{2} \rho V_{a i r}^{2} S \approx\left[C_{D_{0}}+\varepsilon C_{L}^{2}\right] \frac{1}{2} \rho V_{a i r}^{2} S$
- Drag components sum to produce total drag
- Parallel and opposed to velocity vector
- Skin friction, pressure differentials

2-D Aerodynamic Lift

Lift $=C_{L} \frac{1}{2} \rho V_{\text {air }}^{2} S \approx\left(C_{L_{\text {wing }}}+C_{L_{\text {fuselage }}}+C_{L_{\text {tail }}}\right) \frac{1}{2} \rho V_{\text {air }}^{2} S \approx\left[C_{L_{0}}+\frac{\partial C_{L}}{\partial \alpha} \alpha\right] \bar{q} S$

- Upper/lower speed difference proportional to angle of attack
- Stagnation points at leading and trailing edges
- Kutta condition: Aft stagnation point at sharp trailing edge

Streamlines
Instantaneous tangent to velocity vector

Streaklines
Locus of particles passing through points Dye injected at fixed points

3-D Lift

Aerodynamic Drag

$\operatorname{Drag}=C_{D} \frac{1}{2} \rho V_{\text {air }}^{2} S \approx\left(C_{D_{p}}+C_{D_{w}}+C_{D_{i}}\right) \frac{1}{2} \rho V_{\text {air }}^{2} S \approx\left[C_{D_{0}}+\varepsilon C_{L}^{2}\right] \bar{q} S$

- Drag components
- Parasite drag (friction, interference, base pressure differential)
- Wave drag (shock-induced pressure differential)
- Induced drag (drag due to lift generation)
- In steady, subsonic flight
- Parasite (form) drag increases as V^{2}
- Induced drag(due to lift) proportional to $1 / V^{2}$
- Total drag minimized at one particular airspeed

2-D Equations of Motion with Aerodynamics and Thrust

2-D Equations of Motion for a Point Mass

- Motions restricted to vertical plane
- Inertial frame, wind = 0
- z positive down, flat-earth assumption
- Point-mass location coincides with aircraft's center of mass

Transform Velocity from Cartesian to Polar Coordinates

Inertial axes -> wind axes and back \downarrow_{z}
$\left[\begin{array}{c}\dot{x} \\ \dot{z}\end{array}\right]=\left[\begin{array}{c}v_{x} \\ v_{z}\end{array}\right]=\left[\begin{array}{c}V \cos \gamma \\ -V \sin \gamma\end{array}\right] \Rightarrow\left[\begin{array}{c}V \\ \gamma\end{array}\right]=\left[\begin{array}{c}\sqrt{\dot{x}^{2}+\dot{z}^{2}} \\ -\sin ^{-1}\left(\frac{\dot{z}}{V}\right)\end{array}\right]=\left[\begin{array}{c}\sqrt{v_{x}^{2}+v_{z}^{2}} \\ -\sin ^{-1}\left(\frac{v_{z}}{V}\right)\end{array}\right]$
Rates of change of velocity and flight path angle

$$
\left[\begin{array}{c}
\dot{V} \\
\dot{\gamma}
\end{array}\right]=\left[\begin{array}{c}
\frac{d}{d t} \sqrt{v_{x}^{2}+v_{z}^{2}} \\
-\frac{d}{d t} \sin ^{-1}\left(\frac{v_{z}}{V}\right)
\end{array}\right]
$$

Longitudinal Point-

 Mass Equations of Motion$\dot{x}(t)=v_{x}=V(t) \cos \gamma(t)$
$\dot{z}(t)=v_{z}=-V(t) \sin \gamma(t)$

x : range
$z:-$ height (altitude)

$\dot{V}(t)=\frac{\left(C_{T} \cos \alpha-C_{D}\right) \frac{1}{2} \rho(z) V^{2}(t) S-m g_{o} \sin \gamma(t)}{m}$
$\dot{\gamma}(t)=\frac{\left(C_{T} \sin \alpha+C_{L}\right) \frac{1}{2} \rho(z) V^{2}(t) S-m g_{o} \cos \gamma(t)}{m V(t)}$

Steady, Level (i.e., Cruising) Flight

In steady, level flight with $\cos a \sim 1, \sin a \sim 0$ Thrust $=$ Drag, Lift $=$ Weight

$$
\begin{aligned}
V_{\text {cruise }} & =\dot{x}(t)=v_{x} \\
0 & =\dot{z}(t)=v_{z}
\end{aligned}
$$

$$
0=\frac{\left(C_{T}-C_{D}\right) \frac{1}{2} \rho(z) V_{\text {cruise }}^{2} S}{m}
$$

$$
0=\frac{C_{L} \frac{1}{2} \rho(z) V_{\text {cruise }}^{2} S-m g(z)}{m V_{\text {cruise }}}
$$

Introduction to Aeronautical Propulsion

Internal Combustion Reciprocating Engine

Linear motion of pistons converted to rotary motion to drive propeller

Turbojet Engines (1930s)

Thrust produced directly by exhaust gas

Centrifugal-flow Turbojet (Whittle, UK)

Birth of the Jet Airplane

Turbojet + Afterburner (1950s)

Turboprop Engines (1940s)

Exhaust gas drives propeller to produce thrust

High Bypass Ratio Turbofan

Ramjet and Scramjet

Ramjet (1940s)

Scramjet (1950s)

Electric Aircraft

- Solar cells/batteries
- Fuel cells
- Batteries

Hybrid-Electric Aircraft

Thrust and Specific Impulse

Thrust and Thrust Coefficient

$$
\text { Thrust } \equiv C_{T} \frac{1}{2} \rho V^{2} S
$$

- Non-dimensional thrust coefficient, C_{T}
- C_{T} is a function of power/throttle setting, fuel flow rate, blade angle, Mach number, ...
- Reference area, S, may be
- aircraft wing area,

- propeller disk area, or
- jet exhaust area

Sensitivity of Thrust to Airspeed

$$
\text { Nominal Thrust }=T_{N} \equiv C_{T_{N}} \frac{1}{2} \rho V_{N}^{2} S
$$

$$
(.)_{N}=\text { Nominal }(\text { or reference }) \text { value }
$$

Turbojet thrust is ~independent of airspeed over wide range

Power

Assuming thrust is aligned with airspeed vector
Power $=P=$ Thrust \times Velocity $\equiv C_{T} \frac{1}{2} \rho V^{3} S$
Propeller-driven power is ~independent of
(subsonic) airspeed over a wide range
(reciprocating or turbine engine, with constant RPM or variable-pitch prop)

Next Time:
 Low-Speed Aerodynamics

Reading:
Flight Dynamics
Aerodynamic Coefficients, 65-84

Supplementary Material

MATLAB Scripts for Flat-Earth Trajectory, No Aerodynamics

Analytical Solution
Numerical Solution
Calling Routine

Early Reciprocating Engines

- Rotary Engine:
- Air-cooled
- Crankshaft fixed
- Cylinders turn with propeller
- On/off control: No throttle

- V-8 Engine:
- Water-cooled
- Crankshaft turns with propeller

Reciprocating Engines

Turbo-compound Reciprocating Engine

- Exhaust gas drives the turbo-compressor
- Napier Nomad II shown (1949)

Turbofan Engine (1960s)

- Dual or triple rotation rates

Jet Engine Nacelles

Propeller-Driven Aircraft of the 1950s

Reciprocating Engines

Turboprop Engines

Pulsejet

Jet Transports of the 2000s

