## Power and Thrust for Cruising Flight Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html 1 #### U.S. Standard Atmosphere, 1976 http://en.wikipedia.org/wiki/U.S.\_Standard\_Atmosphere #### **Definitions of Airspeed** Airspeed is speed of aircraft measured with respect to air mass Airspeed = Inertial speed if wind speed = 0 Indicated Airspeed (IAS) $$IAS = \sqrt{2(p_{stagnation} - p_{ambient})/\rho_{SL}} = \sqrt{\frac{2(p_{total} - p_{static})}{\rho_{SL}}}$$ $$\triangleq \sqrt{\frac{2q_c}{\rho_{SL}}}, \text{ with } q_c \triangleq \text{impact pressure}$$ · Calibrated Airspeed (CAS)\* CAS = IAS corrected for instrument and position errors $= \sqrt{\frac{2(q_c)_{corr\#1}}{2}}$ \* Kayton & Fried, 1969; NASA TN-D-822, 1961 #### **Definitions of Airspeed** Airspeed is speed of aircraft measured with respect to air mass Airspeed = Inertial speed if wind speed = 0 **Equivalent Airspeed (EAS)\*** EAS = CAS corrected for compressibility effects = $$\sqrt{\frac{2(q_c)_{corr#2}}{\rho_{SL}}}$$ **True Airspeed (TAS)\*** **Mach number** $$V \triangleq TAS = EAS\sqrt{\frac{\rho_{SL}}{\rho(z)}} = IAS_{corrected}\sqrt{\frac{\rho_{SL}}{\rho(z)}}$$ $$M = \frac{TAS}{a}$$ \* Kayton & Fried, 1969; NASA TN-D-822, 1961 5 Flight in the Vertical Plane ## **Longitudinal Point-Mass Equations of Motion** - Assume thrust is aligned with the velocity vector (small-angle approximation for α) - Mass = constant $$\dot{V} = \frac{\left(C_T \cos \alpha - C_D\right) \frac{1}{2} \rho V^2 S - mg \sin \gamma}{m} \approx \frac{\left(C_T - C_D\right) \frac{1}{2} \rho V^2 S - mg \sin \gamma}{m}$$ $$\dot{\gamma} = \frac{\left(C_T \sin \alpha + C_L\right) \frac{1}{2} \rho V^2 S - mg \cos \gamma}{mV} \approx \frac{C_L \frac{1}{2} \rho V^2 S - mg \cos \gamma}{mV}$$ $$\dot{h} = -\dot{z} = -v_z = V \sin \gamma$$ $$\dot{r} = \dot{x} = v_x = V \cos \gamma$$ $$V = velocity = \text{Earth-relative airspeed}$$ $$= \text{True airspeed with zero wind}$$ $$\gamma = flight path angle$$ $$h = height (altitude)$$ $$r = range$$ #### **Conditions for Steady, Level Flight** - Flight path angle = 0 - Altitude = constant - Airspeed = constant - Dynamic pressure = constant $$0 = \frac{\left(C_T - C_D\right) \frac{1}{2} \rho V^2 S}{m}$$ $$0 = \frac{C_L \frac{1}{2} \rho V^2 S - mg}{mV}$$ $$\dot{h} = 0$$ $$\dot{r} = V$$ • Thrust = Drag • Lift = Weight 9 #### **Power and Thrust** #### **Propeller** Power = $P = T \times V = C_T \frac{1}{2} \rho V^3 S \approx \text{independent of airspeed}$ #### **Turbojet** Thrust = $T = C_T \frac{1}{2} \rho V^2 S \approx \text{independent of airspeed}$ #### **Throttle Effect** $$T = T_{\text{max}} \delta T = \left[ C_{T_{\text{max}}} \overline{q} S \right] \delta T, \quad 0 \le \delta T \le 1$$ ## **Typical Effects of Altitude and Velocity on Power and Thrust** - Propeller [Air-breathing engine] Power Thrust True Airspeed True Airspeed - Turbofan - [In between] - Turbojet - Power Thrust True Airspeed True Airspeed - Battery - [Independent of altitude and airspeed] 11 #### Models for Altitude Effect on Turbofan Thrust From Flight Dynamics, pp.117-118 Thrust = $$C_T(V, \delta T) \frac{1}{2} \rho(h) V^2 S$$ = $\left[ \left( k_o + k_1 V^n \right) \frac{1}{2} \rho(h) V^2 S \right] \delta T$ , N $k_o$ = Static thrust coefficient at sea level $k_1$ = Velocity sensitivity of thrust coefficient n = Exponent of velocity sensitivity [ = -2 for turbojet] $$\rho(h) = \rho_{SL} e^{-\beta h}, \quad \rho_{SL} = 1.225 \, kg / m^3, \quad \beta = (1/9,042) m^{-1}$$ ## Thrust of a Propeller-Driven Aircraft With constant *rpm*, variable-pitch propeller $$T = \eta_P \eta_I \frac{P_{engine}}{V} = \eta_{net} \frac{P_{engine}}{V}$$ $$\begin{split} \eta_P &= propeller\ efficiency \\ \eta_I &= ideal\ propulsive\ efficiency \\ &= TV/T\left(V + \Delta V_{inflow}\right) = V/\left(V + \Delta V_{freestream}/2\right) \\ \eta_{net_{max}} &\approx 0.85 - 0.9 \end{split}$$ Efficiencies decrease with airspeed Engine power decreases with altitude Proportional to air density, w/o supercharger 13 ## Reciprocating-Engine Power and Specific Fuel Consumption (SFC) $$\frac{P(h)}{P_{SL}} = 1.132 \frac{\rho(h)}{\rho_{SL}} - 0.132$$ SFC ∞ Independent of Altitude - · Engine power decreases with altitude - Proportional to air density, w/o supercharger - Supercharger increases inlet manifold pressure, increasing power and extending maximum altitude Anderson (Torenbeek) ## Specific Energy and Energy Density of Fuel and Batteries (typical) - Specific energy = energy/unit mass - Energy density = energy/unit volume | Energy Storage | Specific Energy, | <b>Energy Density</b> , | |----------------------------|------------------|-------------------------| | Material | MJ/kg | MJ/L | | Lithium-lon<br>Battery | 0.4-0.9 | 0.9-2.6 | | Jet Engine Fuel (Kerosene) | 43 | 37 | | Gasoline | 46 | 34 | | Methane (Liquified) | 56 | 22 | | Hydrogen (Liquified) | 142 | 9 | Fuel cell energy conversion efficiency: 40-60% Solar cell power conversion efficiency: 30-45% Solar irradiance: 1 kW/m² ## Engine/Motor Power, Thrust, and Efficiency (typical) | Engine/Motor<br>Type | Power/Mass, kW/kg | Thermal Efficiency | Propulsive<br>Efficiency | |----------------------------|-------------------|--------------------|-----------------------------------| | Supercharged Radial Engine | 1.8 | 25-50% | ~Propeller<br>Efficiency | | Turboshaft<br>Engine | 5 | 40-60% | ~Propeller<br>Efficiency | | Brushless DC<br>Motor | 1-2 | - | ~Propeller<br>Efficiency | | | Thrust/Weight, - | | | | <b>Turbojet Engine</b> | 10 | 40-60% | ~1 - IV <sub>exhaust</sub> - VI/V | | <b>Turbofan Engine</b> | 4-5 | 40-60% | ~1 - IV <sub>exhaust</sub> - VI/V | 19 #### **Zunum ZA-10 Hybrid-Electric Aircraft** - 12-passenger commuter aircraft (2023) - Safran Ardiden 3Z turbine engine, 500kW (~ 650 shp) - Lithium-ion batteries (TBD) - Boeing and Jet Blue funding - · Goal: 610-nm (700-sm) range - Turbo Commander test aircraft (2019) - Comment #### **Performance Parameters** **Lift-to-Drag Ratio** $$L/D = C_L/C_D$$ **Load Factor** $$n = L/_{W} = L/_{mg}, "g"s$$ Thrust-to-Weight Ratio $$T/W = T/mg$$ , " $g$ " $s$ **Wing Loading** $$W/S$$ , $N/m^2$ or $lb/ft^2$ 21 #### Historical Factoid Aircraft Flight Distance Records http://en.wikipedia.org/wiki/Flight\_distance\_record Aircraft Flight Endurance Records http://en.wikipedia.org/wiki/Flight\_endurance\_record #### Steady, Level Flight 23 #### Trimmed Lift Coefficient, CL - Trimmed lift coefficient, C<sub>L</sub> - Proportional to weight and wing loading factor - Decreases with V<sup>2</sup> - At constant true airspeed, increases with altitude $$W = C_{L_{trim}} \left( \frac{1}{2} \rho V^2 \right) S = C_{L_{trim}} \overline{q} S$$ $$C_{L_{trim}} = \frac{1}{\overline{q}} (W/S) = \frac{2}{\rho V^2} (W/S) = \left(\frac{2 e^{\beta h}}{\rho_0 V^2}\right) (W/S)$$ $\beta = 1/9,042$ m, inverse scale height of air density #### Trimmed Angle of Attack, $\alpha$ - Trimmed angle of attack, $\alpha$ - Constant if dynamic pressure and weight are constant - If dynamic pressure decreases, angle of attack must increase $$\alpha_{trim} = \frac{2W/\rho V^2 S - C_{L_o}}{C_{L_\alpha}} = \frac{\frac{1}{\overline{q}}(W/S) - C_{L_o}}{C_{L_\alpha}}$$ #### **Thrust Required for Steady, Level Flight** #### **Trimmed thrust** Parasitic Drag Induced Drag $$T_{trim} = D_{cruise} = C_{D_o} \left( \frac{1}{2} \rho V^2 S \right) + \varepsilon \frac{2W^2}{\rho V^2 S}$$ #### **Minimum required thrust conditions** $$\frac{\partial T_{trim}}{\partial V} = C_{D_o} (\rho V S) - \frac{4\varepsilon W^2}{\rho V^3 S} = 0$$ Necessary Condition: Slope = 0 27 #### Necessary and Sufficient Conditions for Minimum Required Thrust Necessary Condition = Zero Slope $$C_{D_o}(\rho VS) = \frac{4\varepsilon W^2}{\rho V^3 S}$$ Sufficient Condition for a Minimum = Positive Curvature when slope = 0 $$\frac{\partial^2 T_{trim}}{\partial V^2} = C_{D_o}(\rho S) + \frac{12\varepsilon W^2}{\rho V^4 S} > 0$$ (+) (+) #### Airspeed for Minimum Thrust in Steady, Level Flight #### Satisfy necessary condition $$V^4 = \left(\frac{4\varepsilon}{C_{D_o}\rho^2}\right) (W/S)^2$$ #### Fourth-order equation for velocity Choose the positive root $$V_{MT} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_o}}}}$$ 29 ## Lift, Drag, and Thrust Coefficients in Minimum-Thrust Cruising Flight #### Lift coefficient $$C_{L_{MT}} = \frac{2}{\rho V_{MT}^2} \left(\frac{W}{S}\right)$$ $$= \sqrt{\frac{C_{D_o}}{\varepsilon}} = (C_L)_{(L/D)_{\text{max}}}$$ #### Drag and thrust coefficients $$C_{D_{MT}} = C_{D_o} + \varepsilon C_{L_{MT}}^2 = C_{D_o} + \varepsilon \frac{C_{D_o}}{\varepsilon}$$ $$= 2C_{D_o} \equiv C_{T_{MT}}$$ ## Power Required for Steady, Level Flight #### **Trimmed power** Parasitic Drag Induced Drag $$P_{trim} = T_{trim}V = D_{cruise}V = \left[C_{D_o}\left(\frac{1}{2}\rho V^2 S\right) + \frac{2\varepsilon W^2}{\rho V^2 S}\right]^{V}$$ #### Minimum required power conditions $$\frac{\partial P_{trim}}{\partial V} = C_{D_o} \frac{3}{2} (\rho V^2 S) - \frac{2\varepsilon W^2}{\rho V^2 S} = 0$$ 33 #### Airspeed for Minimum Power in Steady, Level Flight Satisfy necessary condition $$C_{D_o} \frac{3}{2} (\rho V^2 S) = \frac{2\varepsilon W^2}{\rho V^2 S}$$ - Fourth-order equation for velocity - Choose the positive root - Corresponding lift and drag coefficients $$V_{MP} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{3C_{D_o}}}}$$ $$C_{L_{MP}} = \sqrt{\frac{3C_{D_o}}{\varepsilon}}$$ $$C_{D_{MP}} = 4C_{D_o}$$ ## Achievable Airspeeds for Jet in Cruising Flight Thrust = constant $$T_{avail} = C_D \overline{q} S = C_{D_o} \left( \frac{1}{2} \rho V^2 S \right) + \frac{2\varepsilon W^2}{\rho V^2 S}$$ $$\left| C_{D_o} \left( \frac{1}{2} \rho V^4 S \right) - T_{avail} V^2 + \frac{2\varepsilon W^2}{\rho S} = 0 \right|$$ $$V^{4} - \frac{2T_{avail}}{C_{D_{o}}\rho S}V^{2} + \frac{4\varepsilon W^{2}}{C_{D_{o}}(\rho S)^{2}} = 0$$ 4<sup>th</sup>-order algebraic equation for *V* 35 ## Achievable Airspeeds for Jet in Cruising Flight Solutions for $V^2$ can be put in quadratic form and solved easily $$V^2 \triangleq x; \quad V = \pm \sqrt{x}$$ $$V^{4} - \frac{2T_{avail}}{C_{D_{o}}\rho S}V^{2} + \frac{4\varepsilon W^{2}}{C_{D_{o}}(\rho S)^{2}} = 0$$ $$x^{2} + bx + c = 0$$ $$x = -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - c} = V^2$$ ## **Thrust Required and Thrust Available for a Typical Bizjet** Available thrust *decreases* with altitude Stall limitation at low speed Mach number effect on lift and drag *increases* thrust required at high speed Typical Simplified Jet Thrust Model $$T_{\text{max}}(h) = T_{\text{max}}(SL) \left[ \frac{\rho(SL)e^{-\beta h}}{\rho(SL)} \right]^{x}$$ $$= T_{\text{max}}(SL) \left[ e^{-\beta h} \right]^{x} = T_{\text{max}}(SL)e^{-x\beta h}$$ Empirical correction to force thrust to zero at a given altitude, h<sub>max</sub>. c is a convergence factor. $$T_{\text{max}}(h) = T_{\text{max}}(SL)e^{-x\beta h} \left[1 - e^{-(h - h_{\text{max}})/c}\right]$$ 37 ## **Thrust Required and Thrust Available for a Typical Bizjet** #### Next Time: Cruising Flight Envelope 39 ### Supplemental Material #### Models for Altitude Effect on Turbofan Thrust From AeroModelMach.m in FLIGHT.m, Flight Dynamics, http://www.princeton.edu/~stengel/AeroModelMach.m [airDens,airPres,temp,soundSpeed] = Atmos(-x(6)); Thrust = u(4) \* StaticThrust \* (airDens / 1.225)^0.7 \* (1 - exp((-x(6) - 17000)/2000)); Atmos(-x(6)): 1976 U.S. Standard Atmosphere function -x(6) = h = Altitude, m airDens = $\rho = \text{Air density at altitude } h, \text{kg/m}^3$ $u(4) = \delta T = \text{Throttle setting, } (0,1)$ Empirical fit to match known characteristics of powerplant for generic business jet (airDens / 1.225)^0.7 \* (1 - exp((-x(6) - 17000)/2000)) #### P-51 Mustang Minimum-Thrust Example Wing Span = 37 ft (9.83 m) Wing Area = 235 ft<sup>2</sup> (21.83 m<sup>2</sup>) Loaded Weight = 9,200 lb (3,465 kg) $C_{D_o} = 0.0163$ $\varepsilon = 0.0576$ $W/S = 39.3 lb/ft^2 (1555.7 N/m^2)$ #### Airspeed for minimum thrust $$V_{MT} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_o}}}} = \sqrt{\frac{2}{\rho} \left(1555.7\right) \sqrt{\frac{0.947}{0.0163}}} = \frac{76.49}{\sqrt{\rho}} \, m \, / \, s$$ | | Air Densit | /. | | |-------------|------------|----------|--| | Altitude, m | kg/m^3 | VMT, m/s | | | 0 | 1.23 | 69.11 | | | 2,500 | 0.96 | 78.20 | | | 5,000 | 0.74 | 89.15 | | | 10,000 | 0.41 | 118.87 | | 45 # North Antenna of Ball Markon (1984) And the Antenna of Ball Markon (1984) Calmonium #### Wing Span = 37 ft (9.83 m) Wing Area = 235 ft (21.83 $m^2$ ) Loaded Weight = 9,200 lb (3,465 kg) $C_{D_o} = 0.0163$ $\varepsilon = 0.0576$ $W/S = 1555.7 N/m^2$ # P-51 Mustang Maximum L/D Example $$(C_D)_{L/D_{\text{max}}} = 2C_{D_o} = 0.0326$$ $$(C_L)_{L/D_{\text{max}}} = \sqrt{\frac{C_{D_o}}{\varepsilon}} = C_{L_{MT}} = 0.531$$ $$\left(L/D\right)_{\text{max}} = \frac{1}{2\sqrt{\varepsilon C_{D_o}}} = 16.31$$ $$V_{L/D_{\text{max}}} = V_{MT} = \frac{76.49}{\sqrt{\rho}} \, m \, / \, s$$ | Altitude, m | Air Densit | y, | |-------------|------------|----------| | | kg/m^3 | VMT, m/s | | 0 | 1.23 | 69.11 | | 2,500 | 0.96 | 78.20 | | 5,000 | 0.74 | 89.15 | | 10,000 | 0.41 | 118.87 |