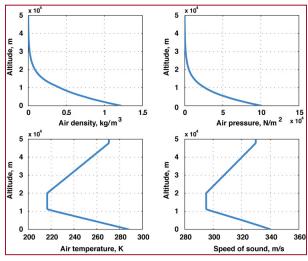
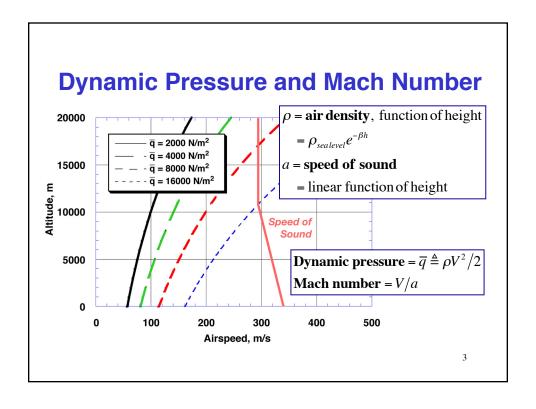

## Power and Thrust for Cruising Flight


Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018




Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html

1

#### U.S. Standard Atmosphere, 1976



http://en.wikipedia.org/wiki/U.S.\_Standard\_Atmosphere



#### **Definitions of Airspeed**

Airspeed is speed of aircraft measured with respect to air mass

Airspeed = Inertial speed if wind speed = 0

Indicated Airspeed (IAS)

$$IAS = \sqrt{2(p_{stagnation} - p_{ambient})/\rho_{SL}} = \sqrt{\frac{2(p_{total} - p_{static})}{\rho_{SL}}}$$

$$\triangleq \sqrt{\frac{2q_c}{\rho_{SL}}}, \text{ with } q_c \triangleq \text{impact pressure}$$

· Calibrated Airspeed (CAS)\*

CAS = IAS corrected for instrument and position errors  $= \sqrt{\frac{2(q_c)_{corr\#1}}{2}}$ 

\* Kayton & Fried, 1969; NASA TN-D-822, 1961

#### **Definitions of Airspeed**

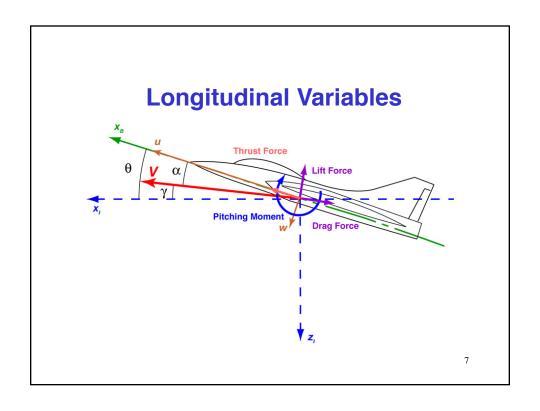
Airspeed is speed of aircraft measured with respect to air mass
Airspeed = Inertial speed if wind speed = 0

**Equivalent Airspeed (EAS)\*** 

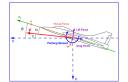
EAS = CAS corrected for compressibility effects = 
$$\sqrt{\frac{2(q_c)_{corr#2}}{\rho_{SL}}}$$

**True Airspeed (TAS)\*** 

**Mach number** 


$$V \triangleq TAS = EAS\sqrt{\frac{\rho_{SL}}{\rho(z)}} = IAS_{corrected}\sqrt{\frac{\rho_{SL}}{\rho(z)}}$$

$$M = \frac{TAS}{a}$$


\* Kayton & Fried, 1969; NASA TN-D-822, 1961

5

Flight in the Vertical Plane



## **Longitudinal Point-Mass Equations of Motion**



- Assume thrust is aligned with the velocity vector (small-angle approximation for α)
- Mass = constant

$$\dot{V} = \frac{\left(C_T \cos \alpha - C_D\right) \frac{1}{2} \rho V^2 S - mg \sin \gamma}{m} \approx \frac{\left(C_T - C_D\right) \frac{1}{2} \rho V^2 S - mg \sin \gamma}{m}$$

$$\dot{\gamma} = \frac{\left(C_T \sin \alpha + C_L\right) \frac{1}{2} \rho V^2 S - mg \cos \gamma}{mV} \approx \frac{C_L \frac{1}{2} \rho V^2 S - mg \cos \gamma}{mV}$$

$$\dot{h} = -\dot{z} = -v_z = V \sin \gamma$$

$$\dot{r} = \dot{x} = v_x = V \cos \gamma$$

$$V = velocity = \text{Earth-relative airspeed}$$

$$= \text{True airspeed with zero wind}$$

$$\gamma = flight path angle$$

$$h = height (altitude)$$

$$r = range$$

#### **Conditions for Steady, Level Flight**



- Flight path angle = 0
- Altitude = constant
- Airspeed = constant
- Dynamic pressure = constant

$$0 = \frac{\left(C_T - C_D\right) \frac{1}{2} \rho V^2 S}{m}$$

$$0 = \frac{C_L \frac{1}{2} \rho V^2 S - mg}{mV}$$

$$\dot{h} = 0$$

$$\dot{r} = V$$
• Thrust = Drag
• Lift = Weight

9

#### **Power and Thrust**

#### **Propeller**

Power =  $P = T \times V = C_T \frac{1}{2} \rho V^3 S \approx \text{independent of airspeed}$ 

#### **Turbojet**

Thrust =  $T = C_T \frac{1}{2} \rho V^2 S \approx \text{independent of airspeed}$ 

#### **Throttle Effect**

$$T = T_{\text{max}} \delta T = \left[ C_{T_{\text{max}}} \overline{q} S \right] \delta T, \quad 0 \le \delta T \le 1$$

## **Typical Effects of Altitude and Velocity on Power and Thrust**

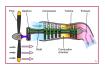
- Propeller [Air-breathing engine] Power Thrust True Airspeed True Airspeed
- Turbofan
- [In between]

- Turbojet
- Power Thrust True Airspeed True Airspeed
- Battery
- [Independent of altitude and airspeed]

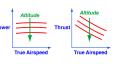
11

#### Models for Altitude Effect on Turbofan Thrust

From Flight Dynamics, pp.117-118


Thrust = 
$$C_T(V, \delta T) \frac{1}{2} \rho(h) V^2 S$$
  
=  $\left[ \left( k_o + k_1 V^n \right) \frac{1}{2} \rho(h) V^2 S \right] \delta T$ , N

 $k_o$  = Static thrust coefficient at sea level


 $k_1$  = Velocity sensitivity of thrust coefficient

n = Exponent of velocity sensitivity [ = -2 for turbojet]

$$\rho(h) = \rho_{SL} e^{-\beta h}, \quad \rho_{SL} = 1.225 \, kg / m^3, \quad \beta = (1/9,042) m^{-1}$$



## Thrust of a Propeller-Driven Aircraft



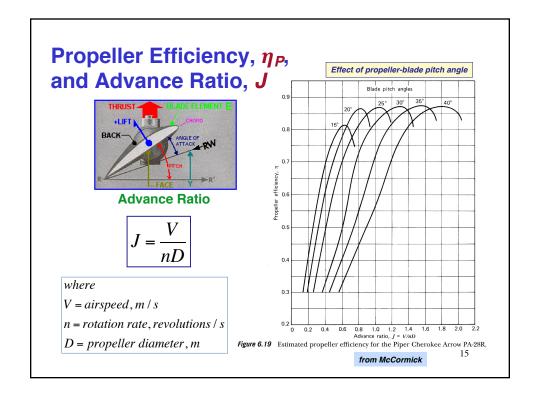
With constant *rpm*, variable-pitch propeller

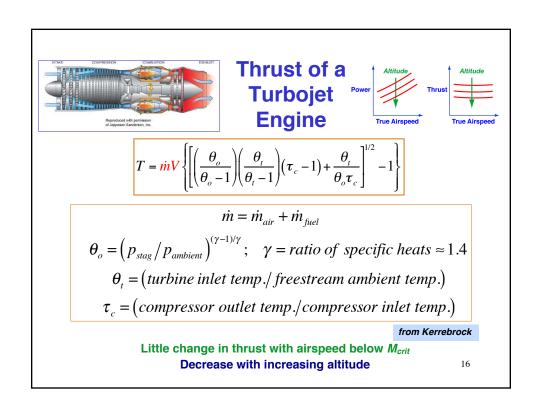
$$T = \eta_P \eta_I \frac{P_{engine}}{V} = \eta_{net} \frac{P_{engine}}{V}$$

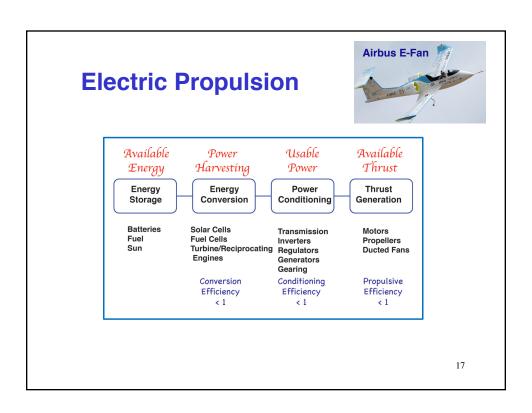
$$\begin{split} \eta_P &= propeller\ efficiency \\ \eta_I &= ideal\ propulsive\ efficiency \\ &= TV/T\left(V + \Delta V_{inflow}\right) = V/\left(V + \Delta V_{freestream}/2\right) \\ \eta_{net_{max}} &\approx 0.85 - 0.9 \end{split}$$

Efficiencies decrease with airspeed Engine power decreases with altitude Proportional to air density, w/o supercharger

13


## Reciprocating-Engine Power and Specific Fuel Consumption (SFC)


$$\frac{P(h)}{P_{SL}} = 1.132 \frac{\rho(h)}{\rho_{SL}} - 0.132$$


SFC ∞ Independent of Altitude

- · Engine power decreases with altitude
  - Proportional to air density, w/o supercharger
  - Supercharger increases inlet manifold pressure, increasing power and extending maximum altitude

Anderson (Torenbeek)







## Specific Energy and Energy Density of Fuel and Batteries (typical)

- Specific energy = energy/unit mass
- Energy density = energy/unit volume

| Energy Storage             | Specific Energy, | <b>Energy Density</b> , |
|----------------------------|------------------|-------------------------|
| Material                   | MJ/kg            | MJ/L                    |
| Lithium-lon<br>Battery     | 0.4-0.9          | 0.9-2.6                 |
| Jet Engine Fuel (Kerosene) | 43               | 37                      |
| Gasoline                   | 46               | 34                      |
| Methane (Liquified)        | 56               | 22                      |
| Hydrogen (Liquified)       | 142              | 9                       |

Fuel cell energy conversion efficiency: 40-60%

Solar cell power conversion efficiency: 30-45% Solar irradiance: 1 kW/m²

## Engine/Motor Power, Thrust, and Efficiency (typical)

| Engine/Motor<br>Type       | Power/Mass, kW/kg | Thermal Efficiency | Propulsive<br>Efficiency          |
|----------------------------|-------------------|--------------------|-----------------------------------|
| Supercharged Radial Engine | 1.8               | 25-50%             | ~Propeller<br>Efficiency          |
| Turboshaft<br>Engine       | 5                 | 40-60%             | ~Propeller<br>Efficiency          |
| Brushless DC<br>Motor      | 1-2               | -                  | ~Propeller<br>Efficiency          |
|                            | Thrust/Weight, -  |                    |                                   |
| <b>Turbojet Engine</b>     | 10                | 40-60%             | ~1 - IV <sub>exhaust</sub> - VI/V |
| <b>Turbofan Engine</b>     | 4-5               | 40-60%             | ~1 - IV <sub>exhaust</sub> - VI/V |

19

#### **Zunum ZA-10 Hybrid-Electric Aircraft**



- 12-passenger commuter aircraft (2023)
- Safran Ardiden 3Z turbine engine, 500kW (~ 650 shp)
- Lithium-ion batteries (TBD)
- Boeing and Jet Blue funding
- · Goal: 610-nm (700-sm) range
- Turbo Commander test aircraft (2019)

- Comment

#### **Performance Parameters**

**Lift-to-Drag Ratio** 

$$L/D = C_L/C_D$$

**Load Factor** 

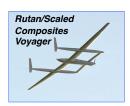
$$n = L/_{W} = L/_{mg}, "g"s$$

Thrust-to-Weight Ratio 
$$T/W = T/mg$$
, " $g$ " $s$ 

**Wing Loading** 

$$W/S$$
,  $N/m^2$  or  $lb/ft^2$ 

21


#### Historical Factoid

Aircraft Flight Distance Records

http://en.wikipedia.org/wiki/Flight\_distance\_record

Aircraft Flight Endurance Records

http://en.wikipedia.org/wiki/Flight\_endurance\_record







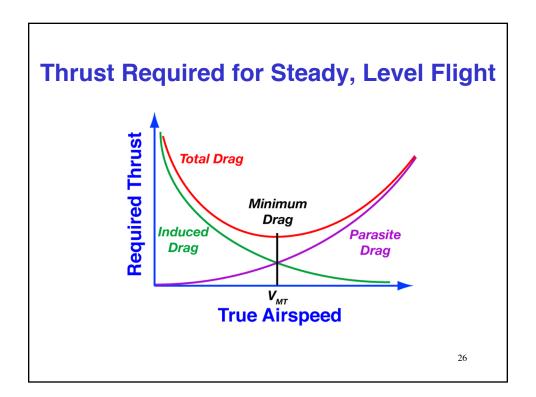
#### Steady, Level Flight

23

#### Trimmed Lift Coefficient, CL

- Trimmed lift coefficient, C<sub>L</sub>
  - Proportional to weight and wing loading factor
  - Decreases with V<sup>2</sup>
  - At constant true airspeed, increases with altitude

$$W = C_{L_{trim}} \left( \frac{1}{2} \rho V^2 \right) S = C_{L_{trim}} \overline{q} S$$


$$C_{L_{trim}} = \frac{1}{\overline{q}} (W/S) = \frac{2}{\rho V^2} (W/S) = \left(\frac{2 e^{\beta h}}{\rho_0 V^2}\right) (W/S)$$

 $\beta = 1/9,042$  m, inverse scale height of air density

#### Trimmed Angle of Attack, $\alpha$

- Trimmed angle of attack,  $\alpha$ 
  - Constant if dynamic pressure and weight are constant
  - If dynamic pressure decreases, angle of attack must increase

$$\alpha_{trim} = \frac{2W/\rho V^2 S - C_{L_o}}{C_{L_\alpha}} = \frac{\frac{1}{\overline{q}}(W/S) - C_{L_o}}{C_{L_\alpha}}$$



#### **Thrust Required for Steady, Level Flight**

#### **Trimmed thrust**

Parasitic Drag

Induced Drag


$$T_{trim} = D_{cruise} = C_{D_o} \left( \frac{1}{2} \rho V^2 S \right) + \varepsilon \frac{2W^2}{\rho V^2 S}$$

#### **Minimum required thrust conditions**

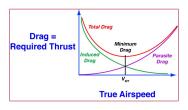
$$\frac{\partial T_{trim}}{\partial V} = C_{D_o} (\rho V S) - \frac{4\varepsilon W^2}{\rho V^3 S} = 0$$

Necessary Condition: Slope = 0

27



#### Necessary and Sufficient Conditions for Minimum Required Thrust


Necessary Condition = Zero Slope

$$C_{D_o}(\rho VS) = \frac{4\varepsilon W^2}{\rho V^3 S}$$

Sufficient Condition for a Minimum = Positive Curvature when slope = 0

$$\frac{\partial^2 T_{trim}}{\partial V^2} = C_{D_o}(\rho S) + \frac{12\varepsilon W^2}{\rho V^4 S} > 0$$
(+) (+)

#### Airspeed for Minimum Thrust in Steady, Level Flight



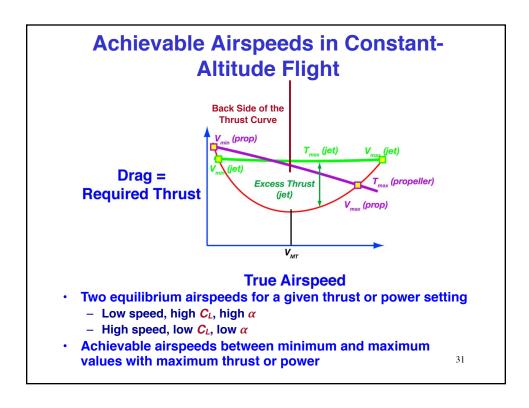
#### Satisfy necessary condition

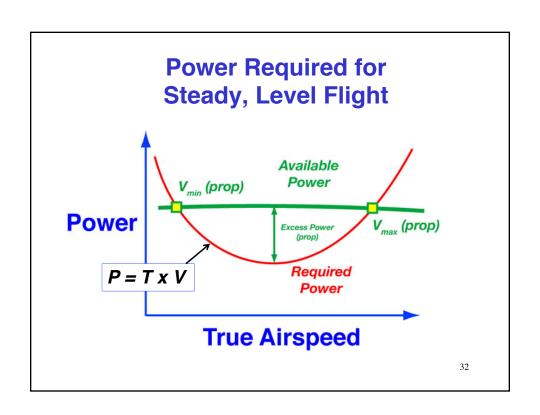
$$V^4 = \left(\frac{4\varepsilon}{C_{D_o}\rho^2}\right) (W/S)^2$$

#### Fourth-order equation for velocity Choose the positive root

$$V_{MT} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_o}}}}$$

29


## Lift, Drag, and Thrust Coefficients in Minimum-Thrust Cruising Flight


#### Lift coefficient

$$C_{L_{MT}} = \frac{2}{\rho V_{MT}^2} \left(\frac{W}{S}\right)$$
$$= \sqrt{\frac{C_{D_o}}{\varepsilon}} = (C_L)_{(L/D)_{\text{max}}}$$

#### Drag and thrust coefficients

$$C_{D_{MT}} = C_{D_o} + \varepsilon C_{L_{MT}}^2 = C_{D_o} + \varepsilon \frac{C_{D_o}}{\varepsilon}$$
$$= 2C_{D_o} \equiv C_{T_{MT}}$$

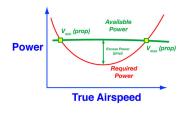




## Power Required for Steady, Level Flight

#### **Trimmed power**

Parasitic Drag


Induced Drag

$$P_{trim} = T_{trim}V = D_{cruise}V = \left[C_{D_o}\left(\frac{1}{2}\rho V^2 S\right) + \frac{2\varepsilon W^2}{\rho V^2 S}\right]^{V}$$

#### Minimum required power conditions

$$\frac{\partial P_{trim}}{\partial V} = C_{D_o} \frac{3}{2} (\rho V^2 S) - \frac{2\varepsilon W^2}{\rho V^2 S} = 0$$

33



#### Airspeed for Minimum Power in Steady, Level Flight

Satisfy necessary condition

$$C_{D_o} \frac{3}{2} (\rho V^2 S) = \frac{2\varepsilon W^2}{\rho V^2 S}$$

- Fourth-order equation for velocity
  - Choose the positive root
- Corresponding lift and drag coefficients

$$V_{MP} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{3C_{D_o}}}}$$

$$C_{L_{MP}} = \sqrt{\frac{3C_{D_o}}{\varepsilon}}$$

$$C_{D_{MP}} = 4C_{D_o}$$

## Achievable Airspeeds for Jet in Cruising Flight

Thrust = constant

$$T_{avail} = C_D \overline{q} S = C_{D_o} \left( \frac{1}{2} \rho V^2 S \right) + \frac{2\varepsilon W^2}{\rho V^2 S}$$

$$\left| C_{D_o} \left( \frac{1}{2} \rho V^4 S \right) - T_{avail} V^2 + \frac{2\varepsilon W^2}{\rho S} = 0 \right|$$

$$V^{4} - \frac{2T_{avail}}{C_{D_{o}}\rho S}V^{2} + \frac{4\varepsilon W^{2}}{C_{D_{o}}(\rho S)^{2}} = 0$$

4<sup>th</sup>-order algebraic equation for *V* 

35

## Achievable Airspeeds for Jet in Cruising Flight

Solutions for  $V^2$  can be put in quadratic form and solved easily

$$V^2 \triangleq x; \quad V = \pm \sqrt{x}$$

$$V^{4} - \frac{2T_{avail}}{C_{D_{o}}\rho S}V^{2} + \frac{4\varepsilon W^{2}}{C_{D_{o}}(\rho S)^{2}} = 0$$
$$x^{2} + bx + c = 0$$

$$x = -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - c} = V^2$$

## **Thrust Required and Thrust Available for a Typical Bizjet**



Available thrust *decreases* with altitude

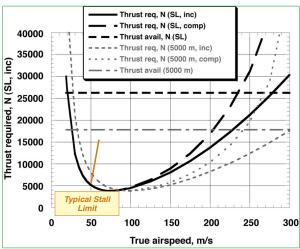
Stall limitation at low speed

Mach number effect on lift and drag *increases* thrust required at high speed

Typical Simplified Jet Thrust Model

$$T_{\text{max}}(h) = T_{\text{max}}(SL) \left[ \frac{\rho(SL)e^{-\beta h}}{\rho(SL)} \right]^{x}$$
$$= T_{\text{max}}(SL) \left[ e^{-\beta h} \right]^{x} = T_{\text{max}}(SL)e^{-x\beta h}$$

Empirical correction to force thrust to zero at a given altitude, h<sub>max</sub>.


c is a convergence factor.

$$T_{\text{max}}(h) = T_{\text{max}}(SL)e^{-x\beta h} \left[1 - e^{-(h - h_{\text{max}})/c}\right]$$

37



## **Thrust Required and Thrust Available for a Typical Bizjet**



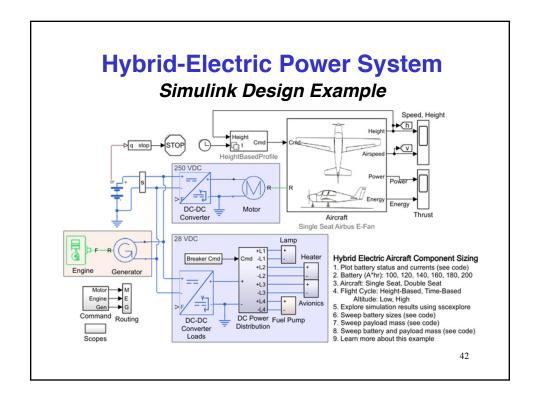
#### Next Time: Cruising Flight Envelope

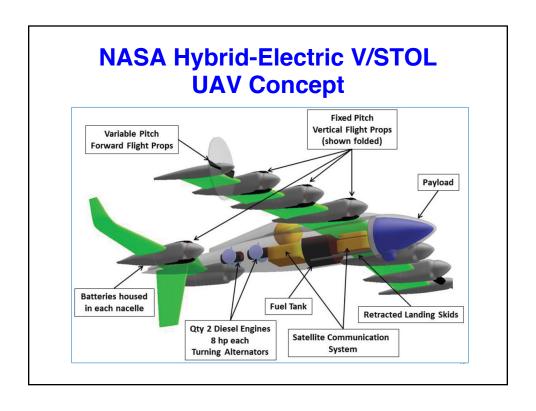
39

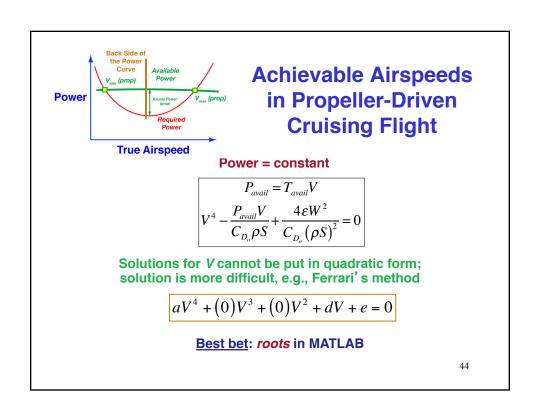
### Supplemental Material

#### Models for Altitude Effect on Turbofan Thrust

From AeroModelMach.m in FLIGHT.m, Flight Dynamics,


http://www.princeton.edu/~stengel/AeroModelMach.m

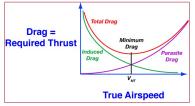

[airDens,airPres,temp,soundSpeed] = Atmos(-x(6)); Thrust = u(4) \* StaticThrust \* (airDens / 1.225)^0.7 \* (1 - exp((-x(6) - 17000)/2000));


Atmos(-x(6)): 1976 U.S. Standard Atmosphere function -x(6) = h = Altitude, m airDens =  $\rho = \text{Air density at altitude } h, \text{kg/m}^3$   $u(4) = \delta T = \text{Throttle setting, } (0,1)$ 

Empirical fit to match known characteristics of powerplant for generic business jet

(airDens / 1.225)^0.7 \* (1 - exp((-x(6) - 17000)/2000))








#### P-51 Mustang Minimum-Thrust Example



Wing Span = 37 ft (9.83 m) Wing Area = 235 ft<sup>2</sup> (21.83 m<sup>2</sup>) Loaded Weight = 9,200 lb (3,465 kg)  $C_{D_o} = 0.0163$   $\varepsilon = 0.0576$  $W/S = 39.3 lb/ft^2 (1555.7 N/m^2)$ 



#### Airspeed for minimum thrust

$$V_{MT} = \sqrt{\frac{2}{\rho} \left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_o}}}} = \sqrt{\frac{2}{\rho} \left(1555.7\right) \sqrt{\frac{0.947}{0.0163}}} = \frac{76.49}{\sqrt{\rho}} \, m \, / \, s$$

|             | Air Densit | /.       |  |
|-------------|------------|----------|--|
| Altitude, m | kg/m^3     | VMT, m/s |  |
| 0           | 1.23       | 69.11    |  |
| 2,500       | 0.96       | 78.20    |  |
| 5,000       | 0.74       | 89.15    |  |
| 10,000      | 0.41       | 118.87   |  |

45

# North Antenna of Ball Markon (1984) And the Antenna of Ball Markon (1984) Calmonium (1984)

#### Wing Span = 37 ft (9.83 m) Wing Area = 235 ft (21.83 $m^2$ ) Loaded Weight = 9,200 lb (3,465 kg) $C_{D_o} = 0.0163$ $\varepsilon = 0.0576$ $W/S = 1555.7 N/m^2$

# P-51 Mustang Maximum L/D Example

$$(C_D)_{L/D_{\text{max}}} = 2C_{D_o} = 0.0326$$

$$(C_L)_{L/D_{\text{max}}} = \sqrt{\frac{C_{D_o}}{\varepsilon}} = C_{L_{MT}} = 0.531$$

$$\left(L/D\right)_{\text{max}} = \frac{1}{2\sqrt{\varepsilon C_{D_o}}} = 16.31$$

$$V_{L/D_{\text{max}}} = V_{MT} = \frac{76.49}{\sqrt{\rho}} \, m \, / \, s$$

| Altitude, m | Air Densit | y,       |
|-------------|------------|----------|
|             | kg/m^3     | VMT, m/s |
| 0           | 1.23       | 69.11    |
| 2,500       | 0.96       | 78.20    |
| 5,000       | 0.74       | 89.15    |
| 10,000      | 0.41       | 118.87   |