Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Learning Objectives

- Definitions of airspeed
- Performance parameters
- Steady cruising flight conditions Altitude
- Breguet range equations
- Optimize cruising flight for minimum thrust and power
- Flight envelope

The Flight Envelope

Flight Envelope Determined by Available Thrust

- All altitudes and airspeeds at which an aircraft can fly
- in steady, level flight

True Airspeed

Additional Factors Define the Flight Envelope

True Airspeed

Boeing 787 Flight Envelope

 (HW \#5, 2008)

Lockheed U-2 "Coffin Corner"

Stall buffeting and Mach buffeting are limiting factors Narrow corridor for safe flight

Historical Factoids

Air Commerce Act of 1926

- Airlines formed to carry mail and passengers:
- Northwest (1926)
- Eastern (1927), bankruptcy
- Pan Am (1927), bankruptcy
- Boeing Air Transport (1927), became United (1931)
- Delta (1928), consolidated with Northwest, 2010
- American (1930)
- TWA (1930), acquired by American
- Continental (1934), consolidated with United, 2010

Commercial Aircraft of the 1930s

Streamlining, engine cowlings

Comfort and Elegance by the End of the Decade

Boeing 307, $1^{\text {st }}$ pressurized cabin (1936), flight engineer, B-17 precursor, large dorsal fin (exterior and interior)

Sleeping bunks on transcontinental planes (e.g., DC-3) Full-size dining rooms on flying boats

Optimal Cruising Flight

Maximum Lift-to-Drag Ratio

$$
\begin{gathered}
\text { Lift-to-drag ratio } \\
L L / D=C_{L} / C_{D}=\frac{C_{L}}{C_{D_{o}}+\varepsilon C_{L}^{2}}
\end{gathered}
$$

Satisfy necessary condition for a maximum

$$
\frac{\partial\left(C_{L} / C_{D}\right)}{\partial C_{L}}=\frac{1}{C_{D_{o}}+\varepsilon C_{L}^{2}}-\frac{2 \varepsilon C_{L}^{2}}{\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)^{2}}=0
$$

Lift coefficient for maximum L / D and minimum thrust are the same

$$
\left(C_{L}\right)_{L / D_{\max }}=\sqrt{\frac{C_{D_{o}}}{\varepsilon}}=C_{L_{M T}}
$$

Airspeed, Drag Coefficient, and Lift-to-Drag Ratio for $L / D_{\text {max }}$

$V_{L / D_{\max }}=V_{M T}=\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_{o}}}}}$
Drag
Coefficient
$\left(C_{D}\right)_{L / D_{\max }}=C_{D_{o}}+C_{D_{o}}=2 C_{D_{o}}$

Maximum
LD

$$
(L / D)_{\max }=\frac{\sqrt{C_{D_{o}} / \varepsilon}}{2 C_{D_{o}}}=\frac{1}{2 \sqrt{\varepsilon C_{D_{o}}}}
$$

Maximum L/D depends only on induced drag factor and zero-lift drag coefficient
Induced drag factor and zero-lift drag coefficient are functions of Mach number

Cruising Range and Specific Fuel Consumption

- Thrust $=$ Drag $0=\left(C_{T}-C_{D}\right) \frac{1}{2} \rho V^{2} S / m$
- Lift $=$ Weight $0=\left(C_{L} \frac{1}{2} \rho V^{2} S-m g\right) / m V$
- Level flight

$\dot{h}=0$
$\dot{r}=V$

- Thrust specific fuel consumption, $T S F C=c_{T}$
- Fuel mass burned per sec per unit of thrust

$$
c_{T}: \frac{\mathrm{kg} / \mathrm{s}}{\mathrm{kN}} \quad \dot{m}_{f}=-c_{T} T
$$

- Power specific fuel consumption, $P S F C=c_{P}$
- Fuel mass burned per sec per unit of power

$$
c_{P}: \frac{\mathrm{kg} / \mathrm{s}}{\mathrm{~kW}} \quad \dot{m}_{f}=-c_{P} P
$$

Breguet Range Equation for Jet Aircraft

Rate of change of range with respect to weight of fuel burned

$$
\frac{d r}{d m}=\frac{d r / d t}{d m / d t}=\frac{\dot{r}}{\dot{m}}=\frac{V}{\left(-c_{T} T\right)}=-\frac{V}{c_{T} D}=-\left(\frac{L}{D}\right) \frac{V}{c_{T} m g}
$$

$$
d r=-\left(\frac{L}{D}\right) \frac{V}{c_{T} m g} d m
$$

Range traveled

$$
\text { Range }=R=\int_{0}^{R} d r=-\int_{W_{i}}^{W_{f}}\left(\frac{L}{D}\right)\left(\frac{V}{c_{T} g}\right) \frac{d m}{m}
$$

B-727
B-727 Maximum Range of a Jet Aircraft Flying at Constant Altitude

At constant altitude and SFC

$V_{\text {cruise }}(t)=\sqrt{2 W(t) / C_{L} \rho\left(h_{\text {fixed }}\right) S}$

$$
\begin{aligned}
\text { Range } & =-\int_{W_{i}}^{W_{f}}\left(\frac{C_{L}}{C_{D}}\right)\left(\frac{1}{c_{T} g}\right) \sqrt{\frac{2}{C_{L} \rho S}} \frac{d m}{m^{1 / 2}} \\
& =\left(\frac{\sqrt{C_{L}}}{C_{D}}\right)\left(\frac{2}{c_{T} g}\right) \sqrt{\frac{2}{\rho S}}\left(m_{i}^{1 / 2}-m_{f}^{1 / 2}\right)
\end{aligned}
$$

Range is maximized when

$$
\left(\frac{\sqrt{C_{L}}}{C_{D}}\right)=\text { maximum }
$$

Breguet Range Equation for Jet Aircraft at Constant Airspeed

For constant true airspeed, $\quad V=V_{\text {cruise }}$, and $S F C$

$$
\begin{aligned}
R & =-\left.\left(\frac{L}{D}\right)\left(\frac{V_{\text {cruise }}}{c_{T} g}\right) \ln (m)\right|_{m_{i}} ^{m_{f}} \\
& =\left(\frac{L}{D}\right)\left(\frac{V_{\text {cruise }}}{}\right) \ln \left(\frac{m_{i}}{m}\right)=\left(V_{\text {cruise }} \frac{C_{L}}{C_{D}}\right)\left(\frac{1}{c_{T} g}\right) \ln \left(\frac{m_{i}}{m_{f}}\right)
\end{aligned}
$$

- $V_{\text {cruise }}\left(C_{L} / C_{D}\right)$ as large as possible
- M-> $M_{\text {crit }}$
- $\quad \rho$ as small as possible
- h as high as possible

Maximize Jet Aircraft Range Using Optimal Cruise-Climb

$$
\frac{\left(\frac{\partial R}{\partial C_{L}} \propto \frac{\partial\left(V_{\text {cruise }} C_{L} / C_{D}\right)}{\partial C_{L}}=\frac{\partial\left[V_{\text {cruise }} C_{L} /\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)\right]}{\partial C_{L}}=0\right.}{V_{\text {cruise }}=\sqrt{2 W / C_{L} \rho S}}
$$

Assume $\sqrt{2 W(t) / \rho(h) S}=$ constant
i.e., airplane climbs at constant $\boldsymbol{T A S}$ as fuel is burned

Maximize Jet Aircraft Range Using Optimal Cruise-Climb

$$
\frac{\partial\left[V_{\text {cruise }} C_{L} /\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)\right]}{\partial C_{L}}=\sqrt{\frac{2 W}{\rho S}} \frac{\partial\left[C_{L}^{1 / 2} /\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)\right]}{\partial C_{L}}=0
$$

Optimal values: (see Supplemental Material)
$C_{L_{M R}}=\sqrt{\frac{C_{D_{o}}}{3 \varepsilon}}:$ Lift Coefficient for Maximum Range

$$
C_{D_{M R}}=C_{D_{o}}+\frac{C_{D_{o}}}{3}=\frac{4}{3} C_{D_{o}}
$$

$$
\begin{aligned}
& V_{\text {cruise-climb }}=\sqrt{2 W(t) / C_{L_{M R}} \rho(h) S}=a(h) M_{\text {cruise-climb }} \\
& a(h): \text { Speed of sound; } \quad M_{\text {cruise-climb }}: \text { Mach number }
\end{aligned}
$$

Step-Climb Approximates Optimal Cruise-Climb

- Cruise-climb usually violates air traffic control rules
- Constant-altitude cruise does not
- Compromise: Step climb from one allowed altitude to the next as fuel is burned

Historícal Factoíd

- Louis Breguet (1880-1955), aviation pioneer
- Gyroplane (1905), flew vertically in 1907
- Breguet Type 1 (1909), fixed-wing aircraft
- Formed Compagnie des messageries aériennes (1919), predecessor of Air France
- Breguet Aviation: built numerous aircraft until after World War II; teamed with BAC in SEPECAT (1966)

- Merged with Dassault in 1971

Next Time:
 Gliding, Climbing, and Turning Flight

Supplemental Materíal

Seaplanes Became the First TransOceanic Air Transports

- PanAm led the way
- $1^{\text {st }}$ scheduled TransPacific flights(1935)
- $1^{\text {st }}$ scheduled TransAtlantic flights(1938)
- $1^{\text {st }}$ scheduled non-stop Trans-Atlantic flights (VS-44, 1939)
- Boeing B-314, Vought-Sikorsky VS-44, Shorts Solent
- Superseded by more efficient landplanes (lighter, less drag)

http://www.youtube.com/watch?v=x8SkeE1h_-A

Maximize Jet Aircraft Range Using Optimal Cruise-Climb

$$
\frac{\partial\left[V_{\text {cruise }} C_{L} /\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)\right]}{\partial C_{L}}=\sqrt{\frac{2 w}{\rho S}} \frac{\partial\left[C_{L}^{1 / 2} /\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)\right]}{\partial C_{L}}=0
$$

$$
\begin{gathered}
\sqrt{\frac{2 w}{\rho S}}=\text { Constant; let } C_{L}^{1 / 2}=x, \quad C_{L}=x^{2} \\
\frac{\partial}{\partial x}\left[\frac{x}{\left(C_{D_{o}}+\varepsilon x^{4}\right)}\right]=\frac{\left(C_{D_{o}}+\varepsilon x^{4}\right)-x\left(4 \varepsilon x^{3}\right)}{\left(C_{D_{o}}+\varepsilon x^{4}\right)^{2}}=\frac{\left(C_{D_{o}}-3 \varepsilon x^{4}\right)}{\left(C_{D_{o}}+\varepsilon x^{4}\right)^{2}}
\end{gathered}
$$

> Optimal values:
> $C_{L_{M R}}=\sqrt{\frac{C_{D_{o}}}{3 \varepsilon}}: C_{D_{M R}}=C_{D_{o}}+\frac{C_{D_{o}}}{3}=\frac{4}{3} C_{D_{o}}$

Breguet Range Equation for Propeller-Driven Aircraft

Rate of change of range with respect to weight of fuel burned
$\frac{d r}{d w}=\frac{\dot{r}}{\dot{w}}=\frac{V}{\left(-c_{P} P\right)}=-\frac{V}{c_{P} T V}=-\frac{V}{c_{P} D V}=-\left(\frac{L}{D}\right) \frac{1}{c_{P} W}$
Range traveled

$$
\text { Range }=R=\int_{0}^{R} d r=-\int_{W_{i}}^{W_{f}}\left(\frac{L}{D}\right)\left(\frac{1}{c_{P}}\right) \frac{d w}{w}
$$

Breguet Range Equation for Propeller-Driven Aircraft

For constant true airspeed, $V=V_{\text {cruise }}$

$$
\begin{aligned}
R & =-\left.\left(\frac{L}{D}\right)\left(\frac{1}{c_{P}}\right) \ln (w)\right|_{W_{i}} ^{W_{f}} \\
& =\left(\frac{C_{L}}{C_{D}}\right)\left(\frac{1}{c_{P}}\right) \ln \left(\frac{W_{i}}{W_{f}}\right)
\end{aligned}
$$

Range is maximized when

$$
\left(\frac{C_{L}}{C_{D}}\right)=\text { maximum }=(L / D)_{\max }
$$

Power $\underbrace{\substack{\text { Back Side of } \\ \text { the Power } \\ \text { Curve } \\ v_{\text {min }} \text { (prop) }}}_{\substack{\text { Required } \\ \text { Power }}}$
True Airspeed
Power = constant

$$
\begin{gathered}
P_{\text {avail }}=T_{\text {avail }} V \\
V^{4}-\frac{P_{\text {avail }} V}{C_{D_{o}} \rho S}+\frac{4 \varepsilon W^{2}}{C_{D_{o}}(\rho S)^{2}}=0
\end{gathered}
$$

Solutions for V cannot be put in quadratic form; solution is more difficult, e.g., Ferrari's method

$$
a V^{4}+(0) V^{3}+(0) V^{2}+d V+e=0
$$

Best bet: roots in MATLAB

P-51 Mustang Minimum-Thrust Example

Wing Span	$=37 \mathrm{ft}(9.83 \mathrm{~m})$
Wing Area	$=235 \mathrm{ft}^{2}\left(21.83 \mathrm{~m}^{2}\right)$
Loaded Weight	$=9,200 \mathrm{lb}(3,465 \mathrm{~kg})$
$C_{D_{o}}$	$=0.0163$
ε	$=0.0576$
W / S	$=39.3 \mathrm{lb} / \mathrm{ft}^{2}\left(1555.7 \mathrm{~N} / \mathrm{m}^{2}\right)$

Airspeed for minimum thrust
$V_{M T}=\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right) \sqrt{\frac{\varepsilon}{C_{D_{o}}}}}=\sqrt{\frac{2}{\rho}(1555.7) \sqrt{\frac{0.947}{0.0163}}}=\frac{76.49}{\sqrt{\rho}} \mathrm{~m} / \mathrm{s}$

Altitude, m	Air Density, $\mathrm{kg} / \mathrm{m}^{\wedge} 3$	$\mathrm{v}_{\mathrm{MT}}, \mathrm{m} / \mathrm{s}$
0	1.23	69.11
2,500	0.96	78.20
5,000	0.74	89.15
10,000	0.41	118.87

P-51 Mustang

 Maximum L/D Example$\left(C_{D}\right)_{L / D_{\max }}=2 C_{D_{o}}=0.0326$
$\left(C_{L}\right)_{L / D_{\max }}=\sqrt{\frac{C_{D_{o}}}{\varepsilon}}=C_{L_{M T}}=0.531$

Wing Span $=37$ ft (9.83 m)
Wing Area $=235 \mathrm{ft}\left(21.83 \mathrm{~m}^{2}\right)$
Loaded Weight $=9,200 \mathrm{lb}(3,465 \mathrm{~kg})$
$C_{D_{o}}=0.0163$
$\varepsilon=0.0576$
$W / S=1555.7 \mathrm{~N} / \mathrm{m}^{2}$

$(L / D)_{\max }=\frac{1}{2 \sqrt{\varepsilon C_{D_{o}}}}=16.31$		
$V_{L / D_{\max }}$	$T=\frac{76.49}{\sqrt{\rho}}$	m / s
Altitude, m	Air Density, $\mathrm{kg} / \mathrm{m}^{\wedge} 3$	$\mathrm{V}_{\mathrm{MT}}, \mathrm{m} / \mathrm{s}$
0	1.23	69.11
2,500	0.96	78.20
5,000	0.74	89.15
10,000	0.41	118.87

P-51 Mustang Maximum Range (Internal Tanks only)

$$
\begin{aligned}
W & =C_{L_{\text {Lum }}} \overline{\bar{q}} \\
C_{L_{\text {Limin }}} & \frac{1}{\bar{q}}(W / S) \\
& =\frac{2}{\rho V^{2}}(W / S)=\left(\frac{2 e^{\beta h}}{\rho_{0} V^{2}}\right)(W / S)
\end{aligned}
$$

$$
\begin{aligned}
R & =\left(\frac{C_{L}}{C_{D}}\right)_{\max }\left(\frac{1}{c_{P}}\right) \ln \left(\frac{W_{i}}{W_{f}}\right) \\
& =(16.31)\left(\frac{1}{0.0017}\right) \ln \left(\frac{3,465+600}{3,465}\right) \\
& =1,530 \mathrm{~km}((825 \mathrm{~nm})
\end{aligned}
$$

