
1

Gliding, Climbing, and Turning 
Flight Performance

Robert Stengel, Aircraft Flight Dynamics, 
MAE 331, 2018

Copyright 2018 by Robert Stengel.  All rights reserved.  For educational use only.
http://www.princeton.edu/~stengel/MAE331.html

http://www.princeton.edu/~stengel/FlightDynamics.html

• Conditions for gliding flight
• Parameters for maximizing climb angle and rate
• Review the V-n diagram
• Energy height and specific excess power
• Alternative expressions for steady turning flight
• The Herbst maneuver

Learning Objectives

Reading:
Flight Dynamics

Aerodynamic Coefficients, 130-141
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Review Questions
§ How does air density decrease with altitude?
§ What are the different definitions of airspeed?
§ What is a “lift-drag polar”?
§ Power and thrust: How do they vary with 

altitude?
§ What factors define the “flight envelope”?
§ What were some features of the first 

commercial transport aircraft?
§ What are the important parameters of the 

“Breguet Range Equation”?
§ What is a “step climb”, and why is it important?
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Gliding Flight
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Equilibrium Gliding Flight
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1
2
ρV 2S = −W sinγ

CL
1
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ρV 2S =W cosγ

!h =V sinγ
!r =V cosγ
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Gliding Flight
• Thrust = 0
• Flight path angle < 0 in gliding flight
• Altitude is decreasing
• Airspeed ~ constant
• Air density ~ constant 
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Gliding flight path angle 

Corresponding airspeed 
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Maximum Steady Gliding Range

• Glide range is maximum when γ is least 
negative, i.e., most positive

• This occurs at (L/D)max 6
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Maximum Steady 
Gliding Range

• Glide range is maximum when γ is least 
negative, i.e., most positive

• This occurs at (L/D)max
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tanγ =
!h
!r
= negative constant =

h − ho( )
r − ro( )

Δr = Δh
tanγ

= −Δh
− tanγ

= maximum when L
D

= maximum

Sink Rate, m/s 
Lift and drag define γ and V in gliding equilibrium

 

h =V sinγ

= −
2W cosγ
CLρS

D
W
$

%
&

'

(
)= −

2W cosγ
CLρS

L
W
$

%
&

'

(
)
D
L

$

%
&

'

(
)

= −
2W cosγ
CLρS

cosγ 1
L D
$

%
&

'

(
)

Sink rate = altitude rate, dh/dt (negative)
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• Minimum sink rate provides maximum endurance
• Minimize sink rate by setting ∂(dh/dt)/∂CL = 0 (cos γ ~1)

Conditions for Minimum 
Steady Sink Rate

 

h = − 2W cosγ
CLρS

cosγ CD

CL

$

%
&

'

(
)

= −
2W cos3γ

ρS
CD

CL
3/2

$

%
&

'

(
) ≈ −

2
ρ
W
S

$

%
&

'

(
)
CD

CL
3/2

$

%
&

'

(
)

CLME
=

3CDo

ε
and CDME

= 4CDo
9

L/D and VME for Minimum 
Sink Rate
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L/D for Minimum Sink Rate
• For L/D < L/Dmax, there are 

two solutions
• Which one produces smaller 

sink rate?

L
D( )

ME
≈ 0.86 L

D( )
max

VME ≈ 0.76VL Dmax
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HL-
10

M2-F1

M2-F2

M2-F3

X-24A

X-24B

Historical Factoids
Lifting-Body Reentry Vehicles
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Climbing Flight

13

Rate of climb, dh/dt = Specific Excess Power 

Climbing Flight

 

!V = 0 =
T − D −W sinγ( )

m

sinγ =
T − D( )
W

; γ = sin−1 T − D( )
W  

!γ = 0 =
L −W cosγ( )

mV
L =W cosγ

 

!h =V sinγ =V
T − D( )
W

=
Pthrust − Pdrag( )

W

Specific Excess Power (SEP) = Excess Power
Unit Weight

≡
Pthrust − Pdrag( )

W

• Flight path angle • Required lift
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Note significance of thrust-to-weight ratio and wing loading

Steady Rate of Climb
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Necessary condition for a maximum with 
respect to airspeed

Condition for Maximum 
Steady Rate of Climb
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Maximum Steady 
Rate of Climb:

Propeller-Driven Aircraft
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Maximum Steady 
Rate of Climb:

Jet-Driven Aircraft
Condition for a maximum at constant thrust and cos2γ ~ 1

Airspeed for maximum rate of climb at maximum thrust, Tmax

 

∂ h
∂V

= 0

0 = ax2 + bx + c and V = + x

−
3CDo

ρ
2 W S( )V

4 + T
W

⎛
⎝⎜

⎞
⎠⎟V

2 +
2ε W S( )

ρ
= 0

18

−
3CDo

ρ
2 W S( ) V

2( )2 + T
W

⎛
⎝⎜

⎞
⎠⎟ V

2( ) + 2ε W S( )
ρ

= 0

Quadratic in V2



10

Optimal Climbing Flight

19

What is the Fastest Way to Climb 
from One Flight Condition to 

Another?

20
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• Specific Energy 
• = (Potential + Kinetic 

Energy) per Unit Weight
• = Energy Height

Energy Height

Can trade altitude for airspeed with no change 
in energy height if thrust and drag are zero 21

≡ Energy Height, Eh , ft or m
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Contours of Constant 
Specific Excess Power

• Specific Excess Power is a function of altitude and airspeed
• SEP is maximized at each altitude, h, when

d SEP(h)[ ]
dV

= 0

23

max
wrt V

SEP(h)[ ]

Subsonic Minimum-Time Energy Climb
Objective: Minimize time to climb to desired 

altitude and airspeed

24

• Minimum-Time Strategy:
• Zoom climb/dive to intercept SEPmax(h) contour
• Climb at SEPmax(h)
• Zoom climb/dive to intercept target SEPmax(h) contour

Bryson, Desai, Hoffman, 1969
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Subsonic Minimum-Fuel Energy Climb
Objective: Minimize fuel to climb to desired 

altitude and airspeed

25

• Minimum-Fuel Strategy:
• Zoom climb/dive to intercept [SEP (h)/(dm/dt)] max contour
• Climb at [SEP (h)/(dm/dt)] max

• Zoom climb/dive to intercept target[SEP (h)/(dm/dt)] max contour

Bryson, Desai, Hoffman, 1969

Supersonic Minimum-Time 
Energy Climb

Objective: Minimize time to climb to desired 
altitude and airspeed

26

• Minimum-Time Strategy:
• Intercept subsonic SEPmax(h) contour
• Climb at SEPmax(h) to intercept matching zoom climb/dive  contour
• Zoom climb/dive to intercept supersonic SEPmax(h) contour
• Climb at SEPmax(h) to intercept target SEPmax(h) contour
• Zoom climb/dive to intercept target SEPmax(h) contour

Bryson, Desai, Hoffman, 1969



14

Checklist
q Energy height?
q Contours?
q Subsonic minimum-time climb?
q Supersonic minimum-time climb?
q Minimum-fuel climb?
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SpaceShipOne
Ansari X Prize, December 17, 2003

Brian Binnie, *78
Pilot, Astronaut
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SpaceShipOne Altitude vs. Range
MAE 331 Assignment #4, 2010
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SpaceShipOne State Histories

30
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SpaceShipOne Dynamic Pressure 
and Mach Number Histories

31

The Maneuvering Envelope

32
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• Maneuvering envelope: limits 
on normal load factor and 
allowable equivalent airspeed
– Structural factors
– Maximum and minimum 

achievable lift coefficients
– Maximum and minimum 

airspeeds
– Protection against 

overstressing due to gusts
– Corner Velocity: Intersection 

of maximum lift coefficient 
and maximum load factor

Typical Maneuvering Envelope: 
V-n Diagram

• Typical positive load factor limits
– Transport: > 2.5
– Utility: > 4.4
– Aerobatic: > 6.3
– Fighter: > 9

• Typical negative load factor limits
– Transport: < –1
– Others: < –1 to –3
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Maneuvering Envelopes (V-n Diagrams)
for Three Fighters of the Korean War Era

Republic F-84

North American F-86

Lockheed F-94

34
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Turning Flight

35

• Vertical force equilibrium

Level Turning Flight

L cosµ =W
• Load factor

n = LW = L mg = secµ,"g"s

• Thrust required to maintain level flight

µ :Bank Angle

• Level flight = constant altitude
• Sideslip angle = 0

36
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Bank angle

Maximum Bank Angle in 
Steady Level Flight

Bank angle is limited by 

€ 

µ :Bank Angle

CLmax
or Tmax or nmax

37
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Turning rate

Turning Rate and Radius in 
Level Flight

Turning rate is 
limited by 

CLmax
or Tmax or nmax

Turning radius 

 
Rturn =

V
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V 2
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Maximum Turn Rates

“Wind-up 
turns”

39

• Corner velocity

Corner Velocity Turn

• Turning radius Rturn =
V 2 cos2 γ

g nmax
2 − cos2 γ

Vcorner =
2nmaxW
CLmas

ρS

• For steady climbing 
or diving flight sinγ = Tmax − D

W

40



21

Corner Velocity Turn

• Time to complete a 
full circle 

t2π =
V cosγ

g nmax
2 − cos2 γ

• Altitude gain/loss Δh2π = t2πV sinγ

• Turning rate 
 

ξ =
g nmax

2 − cos2 γ( )
V cosγ
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Checklist
q V-n diagram?
q Maneuvering envelope?
q Level turning flight?
q Limiting factors?
q Wind-up turn?
q Corner velocity?

42
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Herbst Maneuver
• Minimum-time reversal of direction
• Kinetic-/potential-energy exchange
• Yaw maneuver at low airspeed
• X-31 performing the maneuver
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Next Time:
Aircraft Equations of Motion

Reading:
Flight Dynamics,

Section 3.1, 3.2, pp. 155-161
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What use are the equations of motion?
How is the angular orientation of the airplane described?

What is a cross-product-equivalent matrix?
What is angular momentum?

How are the inertial properties of the airplane described?
How is the rate of change of angular momentum calculated?

Learning Objectives
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Supplemental Material
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Gliding Flight of the 
P-51 Mustang

 

Loaded Weight = 9,200 lb (3,465 kg)
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Maximum Range Glide

 

Loaded Weight = 9,200 lb (3,465 kg)
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Maximum Endurance Glide
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