Gliding, Climbing, and Turning Flight Performance

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Learning Objectives

- Conditions for gliding flight
- Parameters for maximizing climb angle and rate
- Review the V-n diagram
- Energy height and specific excess power
- Alternative expressions for steady turning flight
- The Herbst maneuver

Review Questions

- How does air density decrease with altitude?
- What are the different definitions of airspeed?
- What is a "lift-drag polar"?
- Power and thrust: How do they vary with altitude?
- What factors define the "flight envelope"?
- What were some features of the first commercial transport aircraft?
- What are the important parameters of the "Breguet Range Equation"?
- What is a "step climb", and why is it important?

Gliding Flight

Equilibrium Gliding Flight

$$
\begin{aligned}
C_{D} \frac{1}{2} \rho V^{2} S & =-W \sin \gamma \\
C_{L} \frac{1}{2} \rho V^{2} S & =W \cos \gamma \\
\dot{h} & =V \sin \gamma \\
\dot{r} & =V \cos \gamma
\end{aligned}
$$

Gliding Flight

- Thrust = 0
- Flight path angle <0 in gliding flight
- Altitude is decreasing
- Airspeed ~ constant
- Air density ~ constant

Gliding flight path angle

$$
\tan \gamma=-\frac{D}{L}=-\frac{C_{D}}{C_{L}}=\frac{\dot{h}}{\dot{r}}=\frac{d h}{d r} ; \quad \gamma=-\tan ^{-1}\left(\frac{D}{L}\right)=-\cot ^{-1}\left(\frac{L}{D}\right)
$$

Corresponding airspeed

$$
V_{\text {glide }}=\sqrt{\frac{2 W}{\rho S \sqrt{C_{D}^{2}+C_{L}^{2}}}}
$$

Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at (L/D) max

Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at ($L / D)_{\text {max }}$

$$
\gamma_{\max }=-\tan ^{-1}\left(\frac{D}{L}\right)_{\text {min }}=-\cot ^{-1}\left(\frac{L}{D}\right)_{\max }
$$

$$
\tan \gamma=\frac{\dot{h}}{\dot{r}}=\text { negative constant }=\frac{\left(h-h_{o}\right)}{\left(r-r_{o}\right)}
$$

$$
\Delta r=\frac{\Delta h}{\tan \gamma}=\frac{-\Delta h}{-\tan \gamma}=\text { maximum when } \frac{L}{D}=\text { maximum }
$$

Sink Rate, m/s

Lift and drag define γ and V in gliding equilibrium

D	$=C_{D} \frac{1}{2} \rho V^{2} S=-W \sin \gamma$		
$\sin \gamma$	$=-\frac{D}{W}$	\quad	$L=C_{L} \frac{1}{2} \rho V^{2} S=W \cos \gamma$
:---			
V	\quad	$\frac{2 W \cos \gamma}{C_{L} \rho S}$	
:---			

Sink rate = altitude rate, $d h / d t$ (negative)

$$
\begin{aligned}
\dot{h} & =V \sin \gamma \\
& =-\sqrt{\frac{2 W \cos \gamma}{C_{L} \rho S}}\left(\frac{D}{W}\right)=-\sqrt{\frac{2 W \cos \gamma}{C_{L} \rho S}}\left(\frac{L}{W}\right)\left(\frac{D}{L}\right) \\
& =-\sqrt{\frac{2 W \cos \gamma}{C_{L} \rho S}} \cos \gamma\left(\frac{1}{L / D}\right)
\end{aligned}
$$

Conditions for Minimum Steady Sink Rate

- Minimum sink rate provides maximum endurance
- Minimize sink rate by setting $\partial(d h / d t) / \partial C_{L}=0(\cos \gamma \sim 1)$

$$
\begin{aligned}
& \dot{h}=-\sqrt{\frac{2 W \cos \gamma}{C_{L} \rho S}} \cos \gamma\left(\frac{C_{D}}{C_{L}}\right) \\
&=-\sqrt{\frac{2 W \cos ^{3} \gamma}{\rho S}}\left(\frac{C_{D}}{C_{L}^{3 / 2}}\right) \approx-\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right)}\left(\frac{C_{D}}{C_{L}^{3 / 2}}\right) \\
& C_{L_{M E}}=\sqrt{\frac{3 C_{D_{o}}}{\varepsilon}} \quad \text { and } \quad C_{D_{M E}}=4 C_{D_{o}}
\end{aligned}
$$

L / D and $V_{M E}$ for Minimum Sink Rate

$$
(L / D)_{M E}=\frac{1}{4} \sqrt{\frac{3}{\varepsilon C_{D_{o}}}}=\frac{\sqrt{3}}{2}(L / D)_{\max } \approx 0.86(L / D)_{\max }
$$

$$
V_{M E}=\sqrt{\frac{2 W}{\rho S \sqrt{C_{D_{M E}}^{2} C_{L_{M E}}^{2}}}} \approx \sqrt{\frac{2(W / S)}{\rho} \sqrt{\frac{\varepsilon}{3 C_{D_{o}}}}} \approx 0.76 V_{L / D_{\max }}
$$

L/D for Minimum Sink Rate

- For $L / D<L / D_{\max }$, there are two solutions
- Which one produces smaller sink rate?

$$
\begin{gathered}
(L / D)_{M E} \approx 0.86(L / D)_{\max } \\
V_{M E} \approx 0.76 V_{L / D_{\max }}
\end{gathered}
$$

Climbing Flight

- Flight path angle
$\dot{V}=0=\frac{(T-D-W \sin \gamma)}{m}$
$\sin \gamma=\frac{(T-D)}{W} ; \quad \gamma=\sin ^{-1} \frac{(T-D)}{W}$

Climbing Flight

- Required lift

$$
\begin{gathered}
\dot{\gamma}=0=\frac{(L-W \cos \gamma)}{m V} \\
L=W \cos \gamma
\end{gathered}
$$

Rate of climb, $d h / d t=$ Specific Excess Power

$$
\begin{gathered}
\dot{h}=V \sin \gamma=V \frac{(T-D)}{W}=\frac{\left(P_{\text {thrust }}-P_{\text {drag }}\right)}{W} \\
\text { Specific Excess Power }(\text { SEP })=\frac{\text { Excess Power }}{\text { Unit Weight }} \equiv \frac{\left(P_{\text {thrust }}-P_{\text {drag }}\right)}{W}
\end{gathered}
$$

Steady Rate of Climb

Climb rate
$\dot{h}=V \sin \gamma=V\left[\left(\frac{T}{W}\right)-\frac{\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right) \bar{q}}{(W / S)}\right]$

$$
\begin{gathered}
L=C_{L} \bar{q} S=W \cos \gamma \\
C_{L}=\left(\frac{W}{S}\right) \frac{\cos \gamma}{\bar{q}} \\
V=\sqrt{2\left(\frac{W}{S}\right) \frac{\cos \gamma}{C_{L} \rho}}
\end{gathered}
$$

Note significance of thrust-to-weight ratio and wing loading

$$
\begin{aligned}
\dot{h} & =V\left[\left(\frac{T}{W}\right)-\frac{C_{D_{o}} \bar{q}}{(W / S)}-\frac{\varepsilon(W / S) \cos ^{2} \gamma}{\bar{q}}\right] \\
& =V\left(\frac{T(h)}{W}\right)-\frac{C_{D_{o}} \rho(h) V^{3}}{2(W / S)}-\frac{2 \varepsilon(W / S) \cos ^{2} \gamma}{\rho(h) V}
\end{aligned}
$$

Condition for Maximum Steady Rate of Climb

Necessary condition for a maximum with respect to airspeed

$$
\frac{\partial \dot{h}}{\partial V}=0=\left[\left(\frac{T}{W}\right)+V\left(\frac{\partial T / \partial V}{W}\right)\right]-\frac{3 C_{D_{0}} \rho V^{2}}{2(W / S)}+\frac{2 \varepsilon(W / S) \cos ^{2} \gamma}{\rho V^{2}}
$$

Maximum Steady Rate of Climb: Propeller-Driven Aircraft

True Airspeed

- At constant power

$$
\frac{\partial P_{\text {thrust }}}{\partial V}=0=\left[\left(\frac{T}{W}\right)+V\left(\frac{\partial T / \partial V}{W}\right)\right]
$$

- With $\cos ^{2} \gamma \sim 1$, optimality condition reduces to

$$
\frac{\partial \dot{h}}{\partial V}=0=-\frac{3 C_{D_{o}} \rho V^{2}}{2(W / S)}+\frac{2 \varepsilon(W / S)}{\rho V^{2}}
$$

- Airspeed for maximum rate of climb at maximum power, $P_{\max }$

$$
V^{4}=\left(\frac{4}{3}\right) \frac{\varepsilon(W / S)^{2}}{C_{D_{o}} \rho^{2}} ; \quad V=\sqrt{2 \frac{(W / S)}{\rho} \sqrt{\frac{\varepsilon}{3 C_{D_{o}}}}}=V_{M E}
$$

Power

Maximum Steady Rate of Climb: Jet-Driven Aircraft

True Airspeed
Condition for a maximum at constant thrust and $\cos ^{2} \gamma \sim 1$

$$
\begin{aligned}
& \frac{\partial \dot{h}}{\partial V}=0 \begin{array}{|c}
-\frac{3 C_{D_{o}} \rho}{2(W / S)} V^{4}+\left(\frac{T}{W}\right) V^{2}+\frac{2 \varepsilon(W / S)}{\rho}=0 \\
-\frac{3 C_{D_{o}} \rho}{2(W / S)}\left(V^{2}\right)^{2}+\left(\frac{T}{W}\right)\left(V^{2}\right)+\frac{2 \varepsilon(W / S)}{\rho}=0
\end{array}
\end{aligned}
$$

Quadratic in V^{2}
Airspeed for maximum rate of climb at maximum thrust, $T_{\text {max }}$

$$
0=a x^{2}+b x+c \text { and } \quad V=+\sqrt{x}
$$

Optimal Climbing Flight

What is the Fastest Way to Climb from One Flight Condition to Another?

Energy Height

- Specific Energy
- = (Potential + Kinetic Energy) per Unit Weight
- = Energy Height

$$
\begin{aligned}
\text { Specific Energy } & \equiv \frac{\text { Total Energy }}{\text { Unit Weight }} \\
& =\frac{m g h+m V^{2} / 2}{m g}=h+\frac{V^{2}}{2 g}
\end{aligned}
$$

\equiv Energy Height, E_{h}, ft or m

Can trade altitude for airspeed with no change in energy height if thrust and drag are zero

Specific Excess Power

Rate of change of Specific Energy

$$
\begin{gathered}
\frac{d E_{h}}{d t}=\frac{d}{d t}\left(h+\frac{V^{2}}{2 g}\right)=\frac{d h}{d t}+\left(\frac{V}{g}\right) \frac{d V}{d t} \\
=V \sin \gamma+\left(\frac{V}{g}\right)\left(\frac{T-D-m g \sin \gamma}{m}\right)=V \frac{(T-D)}{W} \\
\end{gathered}
$$

$$
\begin{aligned}
& =\text { Specific Excess Power }(S E P) \\
& =\frac{\text { Excess Power }}{\text { Unit Weight }} \equiv \frac{\left(P_{\text {thrust }}-P_{\text {drag }}\right)}{W}
\end{aligned}
$$

$$
=V \frac{\left(C_{T}-C_{D}\right) \frac{1}{2} \rho(h) V^{2} S}{W}
$$

Contours of Constant Specific Excess Power

- Specific Excess Power is a function of altitude and airspeed
- SEP is maximized at each altitude, h, when

Subsonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

- Minimum-Time Strategy:
- Zoom climb/dive to intercept $S E P_{\max }(h)$ contour
- Climb at $S E P_{\max }(h)$
- Zoom climb/dive to intercept target ${S E P P_{\max }(h) \text { contour }}_{\text {- }}$

Subsonic Minimum-Fuel Energy Climb

Objective: Minimize fuel to climb to desired altitude and airspeed

- Minimum-Fuel Strategy:
- Zoom climb/dive to intercept $[S E P(h) /(d m / d t)]_{\max }$ contour
- Climb at [SEP(h)/(dm/dt)] max
- Zoom climb/dive to intercept target[SEP $(h) /(d m / d t)]$ max contour

Supersonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

- Minimum-Time Strategy:
- Intercept subsonic $S E P_{\max }(h)$ contour
- Climb at $S E P_{\text {max }}(h)$ to intercept matching zoom climb/dive contour
- Zoom climb/dive to intercept supersonic $S E P_{\max }(h)$ contour
- Climb at $S E P_{\max }(h)$ to intercept target $S E P_{\max }(h)$ contour
- Zoom climb/dive to intercept target $S E P_{\max }(h)$ contour

Bryson, Desai, Hoffman, 1969

Checklist

Energy height?
Contours?
\square Subsonic minimum-time climb?
\square Supersonic minimum-time climb?
\square Minimum-fuel climb?

$$
\frac{d E_{h}}{d m_{\text {fuel }}}=\frac{d E_{h}}{d t} \frac{d t}{d m_{\text {fuel }}}=\frac{1}{\dot{m}_{\text {fuel }}}\left[\frac{d h}{d t}+\left(\frac{V}{g}\right) \frac{d V}{d t}\right]
$$

SpaceShipOne
 Ansari X Prize, December 17, 2003

SpaceShipOne Altitude vs. Range MAE 331 Assignment \#4, 2010

SpaceShipOne State Histories

SpaceShipOne Dynamic Pressure

 and Mach Number Histories

The Maneuvering Envelope

Typical Maneuvering Envelope: V-n Diagram

- Maneuvering envelope: limits on normal load factor and allowable equivalent airspeed
- Structural factors
- Maximum and minimum achievable lift coefficients
- Maximum and minimum airspeeds
- Protection against overstressing due to gusts
- Corner Velocity: Intersection of maximum lift coefficient and maximum load factor

- Typical positive load factor limits Transport: > 2.5
- Utility: > 4.4
- Aerobatic: >6.3

Fighter: > 9

- Typical negative load factor limits Transport: <-1
Others: <-1 to -3

Maneuvering Envelopes (V-n Diagrams) for Three Fighters of the Korean War Era

Turning Flight

Level Turning Flight

- Level flight = constant altitude
- Sideslip angle = 0
- Vertical force equilibrium

$$
L \cos \mu=W
$$

- Load factor

$$
n=L / W=L / m g=\sec \mu, " g " s
$$

- Thrust required to maintain level flight

$$
\begin{aligned}
T_{\text {req }} & =\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right) \frac{1}{2} \rho V^{2} S=D_{o}+\frac{2 \varepsilon}{\rho V^{2} S}\left(\frac{W}{\cos \mu}\right)^{2} \\
& =D_{o}+\frac{2 \varepsilon}{\rho V^{2} S}(n W)^{2}
\end{aligned}
$$

Maximum Bank Angle in Steady Level Flight Bank angle

$$
\begin{aligned}
\cos \mu & =\frac{W}{C_{L} \bar{q} S} \\
& =\frac{1}{n} \\
& =W \sqrt{\frac{2 \varepsilon}{\left(T_{\text {req }}-D_{o}\right) \rho V^{2} S}}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\cos ^{-1}\left(\frac{W}{C_{L} \bar{q} S}\right) \\
& =\cos ^{-1}\left(\frac{1}{n}\right) \\
& =\cos ^{-1}\left[W \sqrt{\frac{2 \varepsilon}{\left(T_{\text {req }}-D_{o}\right) \rho V^{2} S}}\right]
\end{aligned}
$$

Bank angle is limited by

$$
C_{L_{\max }} \text { or } T_{\max } \text { or } n_{\max }
$$

Turning Rate and Radius in Level Flight

Turning rate
$\dot{\xi}=\frac{C_{L} \bar{q} S \sin \mu}{m V}$
$=\frac{W \tan \mu}{m V}$
$=\frac{g \tan \mu}{V}$
$=\frac{\sqrt{L^{2}-W^{2}}}{m V}$
$=\frac{W \sqrt{n^{2}-1}}{m V}$
$=\frac{\sqrt{\left(T_{\text {req }}-D_{o}\right) \rho V^{2} S / 2 \varepsilon-W^{2}}}{m V}$

Turning rate is limited by
$C_{L_{\text {max }}}$ or $T_{\text {max }}$ or $n_{\text {max }}$
Turning radius

$$
R_{\text {uurn }}=\frac{V}{\xi}=\frac{V^{2}}{g \sqrt{n^{2}-1}}
$$

Equivalent airspeed

Corner Velocity Turn

- Corner velocity

$$
V_{\text {corner }}=\sqrt{\frac{2 n_{\max } W}{C_{L_{\text {mas }}} \rho S}}
$$

- For steady climbing or diving flight

$$
\sin \gamma=\frac{T_{\max }-D}{W}
$$

- Turning radius

$$
R_{\text {turn }}=\frac{V^{2} \cos ^{2} \gamma}{g \sqrt{n_{\max }^{2} \cos ^{2} \gamma}}
$$

- Turning rate

Corner Velocity Turn

$$
\dot{\xi}=\sqrt{\frac{g\left(n_{\max }^{2} \cos ^{2} \gamma\right)}{V \cos \gamma}}
$$

- Time to complete a full circle

$$
t_{2 \pi}=\frac{V \cos \gamma}{g \sqrt{n_{\max }^{2} \cos ^{2} \gamma}}
$$

- Altitude gain/loss

$$
\Delta h_{2 \pi}=t_{2 \pi} V \sin \gamma
$$

Checklist

V V-n diagram?
Maneuvering envelope?
\square Level turning flight?
Limiting factors?
Wind-up turn?
Corner velocity?

Herbst Maneuver

- Minimum-time reversal of direction
- Kinetic-/potential-energy exchange
- Yaw maneuver at low airspeed
- X-31 performing the maneuver

Next Time: Aircraft Equations of Motion

Reading:
Flight Dynamics,
Section 3.1, 3.2, pp. 155-161

Learning Objectives
What use are the equations of motion?
How is the angular orientation of the airplane described?
What is a cross-product-equivalent matrix?
What is angular momentum?
How are the inertial properties of the airplane described?
How is the rate of change of angular momentum calculated?

Supplemental Material

Gliding Flight of the P-51 Mustang

Maximum Range Glide

Loaded Weight $=9,200 \mathrm{lb}(3,465 \mathrm{~kg})$
$(L / D)_{\max }=\frac{1}{2 \sqrt{\varepsilon C_{D_{o}}}}=16.31$
$\gamma_{M R}=-\cot ^{-1}\left(\frac{L}{D}\right)_{\max }=-\cot ^{-1}(16.3)=-3.5^{\circ}$
$\left(C_{D}\right)_{L / D_{\max }}=2 C_{D_{o}}=0.0326$
$\left(C_{L}\right)_{L / D_{\max }}=\sqrt{\frac{C_{D_{o}}}{\varepsilon}}=0.531$
$V_{L / D_{\max }}=\frac{76.49}{\sqrt{\rho}} \mathrm{~m} / \mathrm{s}$
$\dot{h}_{L / D_{\max }}=V \sin \gamma=-\frac{4.68}{\sqrt{\rho}} \mathrm{~m} / \mathrm{s}$
$R_{h_{o}=10 \mathrm{~km}}=(16.31)(10)=163.1 \mathrm{~km}$

Maximum Endurance Glide
Loaded Weight $=9,200 \mathrm{lb}(3,465 \mathrm{~kg})$

$$
S=21.83 \mathrm{~m}^{2}
$$

$$
C_{D_{M E}}=4 C_{D_{o}}=4(0.0163)=0.0652
$$

$$
C_{L_{M E}}=\sqrt{\frac{3 C_{D_{o}}}{\varepsilon}}=\sqrt{\frac{3(0.0163)}{0.0576}}=0.921
$$

$$
(L / D)_{M E}=14.13
$$

$$
\dot{h}_{M E}=-\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right)}\left(\frac{C_{D_{M E}}}{C_{L_{M E}} 3 / 2}\right)=-\frac{4.11}{\sqrt{\rho}} \mathrm{~m} / \mathrm{s}
$$

$$
\gamma_{M E}=-4.05^{\circ}
$$

$V_{M E}=\frac{58.12}{\sqrt{\rho}} \mathrm{~m} / \mathrm{s}$

