

Introduction to
 Optimization

Robert Stengel
Robotics and Intelligent Systems, MAE 345, Princeton University, 2017

Optimization problems and criteria
Cost functions Static optimality conditions Examples of static optimization

Typical Optimization Problems

- Minimize the probable error in an estimate of the dynamic state of a system
- Maximize the probability of making a correct decision
- Minimize the time or energy required to achieve an objective
- Minimize the regulation error in a controlled system

Estimation Control

Optimization Implies Choice

- Choice of best strategy
- Choice of best design parameters
- Choice of best control history
- Choice of best estimate
- Optimization provided by selection of the best control variable

Criteria for Optimization

- Names for criteria
- Figure of merit
- Performance index
- Utility function
- Value function
- Fitness function
- Cost function, J

- Optimal cost function $=J^{*}$
- Optimal control = u*
- Different criteria lead to different optimal solutions
- Types of Optimality Criteria
- Absolute
- Regulatory
- Feasible

Minimize Absolute Criteria

Achieve a specific objective, such as minimizing the required time, fuel, or financial cost to perform a task

What is the control variable?

Optimal System Regulation

Design controller to minimize tracking error, Δx, in presence of random disturbances
Passive Plain sailing
Damper

Feasible Control Logic

Find feedback control structure that guarantees
stability (i.e., that prevents divergence)

Desirable Characteristics of a Cost Function

- Scalar
- Clearly defined (preferably unique) maximum or minimum
- Local
- Global
- Preferably positive-definite (i.e., always a positive number)

Static vs. Dynamic Optimization

- Static
- Optimal state, \mathbf{x}^{*}, and control, \mathbf{u}^{*}, are fixed, i.e., they do not change over time: $J^{*}=J\left(x^{*}, u^{*}\right)$
- Functional minimization (or maximization)
- Parameter optimization
- Dynamic
- Optimal state and control vary over time: $\left.J^{*}=\int \mathrm{x}^{*}(t), \mathrm{u}^{*}(t)\right]$
- Optimal trajectory
- Optimal feedback strategy
- Optimized cost function, J^{*}, is a scalar, real number in both cases

Deterministic vs. Stochastic Optimization

- Deterministic
- System model, parameters, initial conditions, and disturbances are known without error
- Optimal control operates on the system with certainty
- $J^{*}=J\left(\mathbf{x}^{*}, \mathbf{u}^{*}\right)$

- Stochastic

- Uncertainty in system model, parameters, initial conditions, disturbances, and resulting cost function
- Optimal control minimizes the expected value of the cost:
- Optimal cost = E\{J $\left.\left.\mathrm{x}^{*}, \mathrm{u}^{\star}\right]\right\}$
- Cost function is a scalar, real number in both cases

Cost Function with a Single Control Parameter

- Tradeoff between two types of cost: Minimum-cost cruising speed
- Fuel cost proportional to velocity-squared
- Cost of time inversely proportional to velocity
- Control parameter: Velocity

Tradeoff Between Time- and Fuel-Based Costs

Cost Functions with Two Control Parameters

> 3-D plot of equal-cost contours (iso-contours)

2-D plot of equal-cost contours (iso-contours)

13

Person: Stay outside the fence

Horse: Stay inside the fence

Necessary Condition for Static Optimality

Single control

$$
\left.\frac{d J}{d u}\right|_{u=u^{*}}=0
$$

i.e., the slope is zero at the optimum point

Example:

$$
\begin{aligned}
J & =(u-4)^{2} \\
\frac{d J}{d u} & =2(u-4) \\
& =0 \quad \text { when } u^{*}=4
\end{aligned}
$$

Necessary Condition for Static Optimality

Multiple controls

$$
\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}^{*}}=\left.\left[\begin{array}{llll}
\frac{\partial J}{\partial u_{1}} & \frac{\partial J}{\partial u_{2}} & \cdots & \frac{\partial J}{\partial u_{m}}
\end{array}\right]\right|_{\mathbf{u}=\mathbf{u}^{*}}=\mathbf{0} \quad \text { Gradient }
$$

i.e., all slopes are concurrently zero at the optimum point Example:

$$
\begin{aligned}
J & =\left(u_{1}-4\right)^{2}+\left(u_{2}-8\right)^{2} \\
d J / d u_{1} & =2\left(u_{1}-4\right)=0 \quad \text { when } u_{1}^{*}=4 \\
d J / d u_{2} & =2\left(u_{2}-8\right)=0 \quad \text { when } u_{2}^{*}=8 \\
\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{u=u^{*}} & =\left[\begin{array}{ll}
\frac{\partial J}{\partial u_{1}} & \frac{\partial J}{\partial u_{2}}
\end{array}\right]_{u=u^{*}=\left[\begin{array}{l}
4 \\
8
\end{array}\right]}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
\end{aligned}
$$

... But the Slope can be Zero for More than One Reason

Either

Maximum

Inflection Point

Sufficient Condition for Static Optimum

- Single control

Minimum
Satisfy necessary condition plus
$\left|\frac{d^{2} J}{d u^{2}}\right|_{u=u^{*}}>0$

Maximum
Satisfy necessary condition plus

$$
\left.\frac{d^{2} J}{d u^{2}}\right|_{u=u^{*}}<0
$$

i.e., curvature is positive at optimum i.e., curvature is negative at optimum

Example:

$$
\begin{aligned}
J & =(u-4)^{2} \\
\frac{d J}{d u} & =2(u-4) \\
\frac{d^{2} J}{d u^{2}} & =2>0
\end{aligned}
$$

Example:

$$
\begin{aligned}
J & =-(u-4)^{2} \\
\frac{d J}{d u} & =-2(u-4) \\
\frac{d^{2} J}{d u^{2}} & =-2<0
\end{aligned}
$$

Sufficient Condition for Static Minimum Multiple controls

| - Satisfy necessary condition | | |
| :---: | :--- | :--- | :--- |
| $-\quad$ plus | $\left.\frac{\partial J}{\partial \mathbf{u}}\right\|_{u=u^{*}}$ | $=\left[\begin{array}{llll}\frac{\partial J}{\partial u_{1}} & \frac{\partial J}{\partial u_{2}} & \cdots & \frac{\partial J}{\partial u_{m}}\end{array}\right]_{u=u^{*}}=\mathbf{0}$ |

$$
\left[\begin{array}{c}\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{u=u^{*}}\end{array}=\left[\begin{array}{cccc}\frac{\partial^{2} J}{\partial u_{1}{ }^{2}} & \frac{\partial^{2} J}{\partial u_{1} \partial u_{2}} & \cdots & \frac{\partial^{2} J}{\partial u_{1} \partial u_{m}} \\ \frac{\partial^{2} J}{\partial u_{2} \partial u_{1}} & \frac{\partial^{2} J}{\partial u_{2}{ }^{2}} & \cdots & \frac{\partial^{2} J}{\partial u_{2} \partial u_{m}} \\ \cdots & \cdots & \cdots & \ldots \\ \frac{\partial^{2} J}{\partial u_{m} \partial u_{1}} & \frac{\partial^{2} J}{\partial u_{2} \partial u_{m}} & \cdots & \frac{\partial^{2} J}{\partial u_{m}{ }^{2}}\end{array}\right]_{u=u^{*}}>\mathbf{0}\right.
$$

Hessian matrix

- ... what does it mean for a matrix to be "greater than zero"?

$\frac{\partial^{2} J}{\partial \mathbf{u}^{2}} \triangleq \mathbf{Q}>\mathbf{0}$ if Its Quadratic Form, $\mathbf{x}^{T} \mathbf{Q x}$, is Greater than Zero

$$
\mathbf{x}^{T} \mathbf{Q x} \triangleq \text { Quadratic form }
$$

Q:Defining matrix of the quadratic form

$$
[(1 \times n)(n \times n)(n \times 1)]=[(1 \times 1)]
$$

- $\operatorname{dim}(Q)=n \times n$
- Q is symmetric
- $\mathbf{x}^{\top} \mathbf{Q x}$ is a scalar

Quadratic Form of Q is Positive* if Q is Positive Definite

- Q is positive-definite if
- All leading principal minor determinants are positive
- All eigenvalues are real and positive
- 3×3 example

$$
\begin{aligned}
& \mathbf{Q}=\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right] \\
& q_{11}>0,\left|\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right|>0,\left|\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right|>0
\end{aligned}
$$

* except at

$$
\begin{gather*}
\operatorname{det}(s \mathbf{I}-\mathbf{Q})=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right) \tag{23}\\
\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0
\end{gather*}
$$

Minimized Cost Function, J*

- Gradient is zero at the minimum
- Hessian matrix is positive-definite at the minimum
- Expand the cost in a Taylor series

$$
J(\mathbf{u} *+\Delta \mathbf{u}) \approx J\left(\mathbf{u}^{*}\right)+\Delta J\left(\mathbf{u}^{*}\right)+\Delta^{2} J\left(\mathbf{u}^{*}\right)+\ldots
$$

$$
\begin{aligned}
& \Delta J\left(\mathbf{u}^{*}\right)=\left.\Delta \mathbf{u}^{T} \frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}^{*}}=0 \\
& \Delta^{2} J\left(\mathbf{u}^{*}\right)=\frac{1}{2} \Delta \mathbf{u}^{T}\left[\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}^{*}}\right] \Delta \mathbf{u} \geq 0
\end{aligned}
$$

- First variation is zero at the minimum
- Second variation is positive at the minimum

How Many Maxima/Minima does the "Mexican Hat" Have?

$$
\begin{aligned}
& z=\operatorname{sinc}(R) \triangleq \frac{\sin R}{R} \\
& \left|\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}^{*}}=\left.\left[\begin{array}{llll}
\frac{\partial J}{\partial u_{1}} & \frac{\partial J}{\partial u_{2}} & \cdots & \frac{\partial J}{\partial u_{m}}
\end{array}\right]\right|_{\mathbf{u}=\mathbf{u}^{*}}=\mathbf{0}
\end{aligned}
$$

> Wolfram Alpha
> maximize(sinc(sqrt($\left.\left.x^{\wedge} 2+y^{\wedge} 2\right)\right)$)

Static Cost Functions with Equality Constraints

- Minimize $J\left(u^{\prime}\right)$, subject to $\mathbf{c}\left(\mathbf{u}^{\prime}\right)=0$
$-\operatorname{dim}(c)=[n \times 1]$
$-\operatorname{dim}\left(u^{\prime}\right)=[(m+n) \times 1]$

Two Approaches to Static Optimization with a Constraint

1. Use constraint to reduce control dimension
2. Augment the cost function to recognize $J\left(\mathbf{u}^{\prime}\right)=J\left(u_{1}, u_{2}\right)=J\left[u_{1}, f c n\left(u_{1}\right)\right]=J^{\prime}\left(u_{1}\right)$ the constraint
$J_{A}\left(\mathbf{u}^{\prime}\right)=J\left(\mathbf{u}^{\prime}\right)+\lambda^{T} \mathbf{c}\left(\mathbf{u}^{\prime}\right) \quad \lambda$ has the same dimension as the constraint

$$
\operatorname{dim}(\lambda)=\operatorname{dim}(c)=n \times 1
$$

Solution:

First Approach

Cost function

$$
J=u_{1}^{2}-2 u_{1} u_{2}+3 u_{2}^{2}-40
$$

Constraint

$$
\begin{gathered}
c=u_{2}-u_{1}-2=0 \\
\therefore u_{2}=u_{1}+2
\end{gathered}
$$

Solution Example: Reduced Control Dimension

Cost function and gradient with substitution

$$
\begin{aligned}
J & =u_{1}^{2}-2 u_{1} u_{2}+3 u_{2}^{2}-40 \\
& =u_{1}^{2}-2 u_{1}\left(u_{1}+2\right)+3\left(u_{1}+2\right)^{2}-40 \\
& =2 u_{1}^{2}+8 u_{1}-28 \\
\frac{\partial J}{\partial u_{1}} & =4 u_{1}+8=0 ; \quad u_{1}=-2
\end{aligned}
$$

Optimal solution

$$
\begin{aligned}
u_{1} * & =-2 \\
u_{2} * & =0 \\
J^{*} & =-36
\end{aligned}
$$

Solution: Second Approach

- Partition u 'into a state, x, and a control, u, such that
$-\operatorname{dim}(x)=\operatorname{dim}[c(x)]=[n \times 1]$
$\mathbf{u}^{\prime}=\begin{aligned} & \mathbf{x} \\ & \mathbf{u}\end{aligned}$
$-\operatorname{dim}(\mathrm{u})=[m \times 1]$
- Add constraint to the cost function, weighted by Lagrange multiplier, $\boldsymbol{\lambda}$
- $\operatorname{dim}(\lambda)=[n \times 1]$
- c is required to be zero when J_{A} is a minimum

$$
\begin{aligned}
J_{A}\left(\mathbf{u}^{\prime}\right) & =J\left(\mathbf{u}^{\prime}\right)+\lambda^{T} \mathbf{c}\left(\mathbf{u}^{\prime}\right) \\
J_{A}(\mathbf{x}, \mathbf{u}) & =J(\mathbf{x}, \mathbf{u})+\lambda^{T} \mathbf{c}(\mathbf{x}, \mathbf{u})
\end{aligned} \quad \mathbf{c}\left(\mathbf{u}^{\prime}\right)=\mathbf{c}\binom{\mathbf{x}}{\mathbf{u}}=\mathbf{0}
$$

Solution: Adjoin Constraint with Lagrange Multiplier

Gradient with respect to x, u, and λ is zero at the optimum point

Simultaneous Solutions for State and Control

- $(2 n+m)$ values must be found (x, λ, u)

- Use first equation to find form of optimizing Lagrange multiplier (n scalar equations)
- Second and third equations provide ($n+m$) scalar equations that specify the state and control

$$
\begin{aligned}
& \lambda *^{T}=-\frac{\partial J}{\partial \mathbf{x}}\left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}}\right)^{-1} \\
& \lambda *=-\left[\left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}}\right)^{-1}\right]^{T}\left(\frac{\partial J}{\partial \mathbf{x}}\right)^{T}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{\partial J}{\partial \mathbf{u}}+\lambda *^{T} \frac{\partial \mathbf{c}}{\partial \mathbf{u}}=\mathbf{0} \\
\frac{\partial J}{\partial \mathbf{u}}-\frac{\partial J}{\partial \mathbf{x}}\left(\frac{\partial \mathbf{c}}{\partial \mathbf{x}}\right)^{-1} \frac{\partial \mathbf{c}}{\partial \mathbf{u}}=\mathbf{0}
\end{array}
$$

$$
\mathbf{c}(\mathbf{x}, \mathbf{u})=\mathbf{0}
$$

Solution Example: Second Approach

Cost function

$$
J=u^{2}-2 x u+3 x^{2}-40
$$

Constraint

$$
c=x-u-2=0
$$

Partial derivatives
$\frac{\partial J}{\partial x}=-2 u+6 x$

$\frac{\partial J}{\partial u}=2 u-2 x$$\quad$| $\frac{\partial c}{\partial x}=1$ |
| :--- |
| $\frac{\partial c}{\partial u}=-1$ |

Solution Example: Second Approach

- From first

$$
\lambda^{*}=2 u-6 x
$$

$$
\begin{gathered}
(2 u-2 x)+(2 u-6 x)(-1) \\
\therefore x=0
\end{gathered}
$$

- From constraint

$$
u=-2
$$

- Optimal solution

$$
\begin{aligned}
& x^{*}=0 \\
& u^{*}=-2 \\
& J^{*}=-36
\end{aligned}
$$

Next Time: Numerical Optimization

