
Introduction to 
Optimization!

Robert Stengel!
 Robotics and Intelligent Systems, 

MAE 345, Princeton University, 2017

Optimization problems and criteria
Cost functions

Static optimality conditions
Examples of static optimization

Copyright 2017 by Robert Stengel.  All rights reserved.  For educational use only.
http://www.princeton.edu/~stengel/MAE345.html

1

Typical Optimization 
Problems

•! Minimize the probable error in an estimate of the 
dynamic state of a system

•! Maximize the probability of making a correct decision
•! Minimize the time or energy required to achieve an 

objective
•! Minimize the regulation error in a controlled system

•!Estimation!
•!Control!
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Optimization Implies Choice
•! Choice of best strategy
•! Choice of best design parameters
•! Choice of best control history
•! Choice of best estimate
•! Optimization provided by selection 

of the best control variable
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Criteria for Optimization
•! Names for criteria

–! Figure of merit
–! Performance index
–! Utility function
–! Value function
–! Fitness function
–! Cost function, J

•! Optimal cost function = J*
•! Optimal control = u*

•! Different criteria lead to different 
optimal solutions

•! Types of Optimality Criteria
–! Absolute
–! Regulatory
–! Feasible
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Minimize Absolute Criteria
Achieve a specific objective, such as 
minimizing the required time, fuel, or 

financial cost to perform a task

What is the control variable?
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Optimal System 
Regulation

Design controller to minimize tracking error, "x, in 
presence of random disturbances
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Passive
Damper

Active 
Control



Feasible Control Logic
Find feedback control structure that guarantees 

stability (i.e., that prevents divergence)

Double Inverted Pendulum
http://www.youtube.com/watch?v=8HDDzKxNMEY

Single Inverted Pendulum
http://www.youtube.com/watch?v=mi-tek7HvZs
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Desirable 
Characteristics of a 

Cost Function
•! Scalar
•! Clearly defined (preferably unique) 

maximum or minimum
–! Local
–! Global

•! Preferably positive-definite (i.e., always a 
positive number)
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Static vs. Dynamic 
Optimization

•! Static
–! Optimal state, x*, and control, u*, are fixed, i.e., they do not 

change over time:  J* = J(x*, u*)
•! Functional minimization (or maximization)
•! Parameter optimization

•! Dynamic
–! Optimal state and control vary over time: J* = J[x*(t), u*(t)]

•! Optimal trajectory
•! Optimal feedback strategy

•! Optimized cost function, J*, is a scalar, real number in 
both cases
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Deterministic 
vs. Stochastic 
Optimization

•! Deterministic
–! System model, parameters, initial conditions, and 

disturbances are known without error
–! Optimal control operates on the system with certainty  

•! J* = J(x*, u*)
•! Stochastic

–! Uncertainty in system model, parameters, initial conditions, 
disturbances, and resulting cost function

–! Optimal control minimizes the expected value of the cost: 
•! Optimal cost = E{J[x*, u*]}

•! Cost function is a scalar, real number in both cases
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Cost Function with 
a Single Control 

Parameter
•!Tradeoff between two types of cost: 

Minimum-cost cruising speed
–! Fuel cost proportional to velocity-squared
–! Cost of time inversely proportional to velocity

•!Control parameter: Velocity
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Tradeoff Between Time- and 
Fuel-Based Costs

•! Nominal 
Tradeoff

•! Fuel Cost 
Doubled

•! Time Cost 
Doubled
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Cost Functions 
with Two Control 

Parameters

•! Minimum •! Maximum

3-D plot of equal-cost 
contours (iso-contours)

2-D plot of equal-cost 
contours (iso-contours)
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Real-World Topography

Local vs. global 
maxima/minima

Robustness of 
estimates
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Stay on the trail

Equality constraint may 
allow control dimension to 

be reduced

c u1,u2( ) = 0! u2 = fcn u1( )
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Cost Functions with 
Equality Constraints

J u1,u2( ) = J u1, fcn u1( )!" #$ = J ' u1( )

Cost Functions with 
Inequality Constraints

Person: Stay 
outside the fence

Horse: Stay 
inside the fence
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Necessary Condition for 
Static Optimality

Single control

dJ
du u=u*

= 0

i.e., the slope is zero at the optimum point
Example:

J = u ! 4( )2

dJ
du

= 2 u ! 4( )
= 0 when u*= 4
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Necessary Condition 
for Static Optimality

Multiple controls

i.e., all slopes are concurrently zero at the optimum point
Example:

!J
!u u=u*

=
!J
!u1

!J
!u2

... !J
!um

"

#
$
$

%

&
'
'
u=u*

= 0

J = u1 ! 4( )2 + u2 ! 8( )2

dJ du1 = 2 u1 ! 4( ) = 0 when u1*= 4

dJ du2 = 2 u2 ! 8( ) = 0 when u2*= 8

" J
"u u=u*

=
" J
"u1

" J
"u2

#

$
%
%

&

'
(
(
u=u*= 4
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$
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&

'
(

= 0 0#$ &'

Gradient
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… But the Slope can be Zero for 
More than One Reason

Minimum

Either Inflection Point

Maximum
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Sufficient Condition 
for Static Optimum

•!Single control

d 2J
du2 u=u*

> 0

i.e., curvature is positive at optimum
Example:

J = u ! 4( )2

dJ
du

= 2 u ! 4( )
d 2J
du2

= 2 > 0

Minimum
Satisfy necessary condition plus

d 2J
du2 u=u*

< 0

i.e., curvature is negative at optimum 
Example:

J = ! u ! 4( )2

dJ
du

= !2 u ! 4( )
d 2J
du2

= !2 < 0

Maximum
Satisfy necessary condition plus
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Sufficient Condition 
for Static Minimum

! 2 J
!u2 u=u*

=

! 2 J
!u1

2
! 2 J

!u1!u2
... ! 2 J

!u1!um
! 2 J

!u2 !u1
! 2 J
!u2

2 ... ! 2 J
!u2 !um

... ... ... ...
! 2 J

!um !u1
! 2 J

!u2 !um
... ! 2 J

!um
2

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
u=u*

> 0

•! Satisfy necessary condition
–! plus

Hessian matrix

•! … what does it mean for a matrix to be greater than zero ?

! J
!u u=u*

= ! J
!u1

! J
!u2

... ! J
!um

"

#
$
$

%

&
'
'
u=u*

= 0

Multiple controls
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! 2J
!u2 ! Q > 0  if Its Quadratic Form, xTQx,

 is Greater than Zero

 

xTQx !  Quadratic form
Q :Defining matrix of the quadratic form

1! n( ) n ! n( ) n !1( )"# $% = 1!1( )"# $%

•! dim(Q) = n x n
•! Q is symmetric
•! xTQx is a scalar
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Q =
q11 q12 q13
q21 q22 q23
q31 q32 q33

!

"

#
#
#

$

%

&
&
&

q11 > 0,
q11 q12
q21 q22

> 0,
q11 q12 q13
q21 q22 q23
q31 q32 q33

> 0

•! Q is positive-definite if
–! All leading principal minor determinants are positive
–! All eigenvalues are real and positive

•! 3 x 3 example

det sI!Q( ) = s ! "1( ) s ! "2( ) s ! "3( )
"1,"2,"3 # 0

Quadratic Form of Q is Positive* if 
Q is Positive Definite

* except at 
x = 0 23

!J u*( ) = !uT " J
"u u=u*

= 0

!2J u*( ) = 1
2
!uT " 2 J

"u2 u=u*

#

$
%

&

'
(!u ) 0

Minimized Cost 
Function, J*

•! First variation is 
zero at the 
minimum

•! Second variation is 
positive at the 
minimum

J u *+!u( ) " J u *( ) + !J u *( ) + !2J u *( ) + ...

•! Gradient is zero at the minimum
•! Hessian matrix is positive-definite at the minimum
•! Expand the cost in a Taylor series
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•! Prior example

!J
!u u=u*

=
!J
!u1

!J
!u2

... !J
!um

"

#
$
$

%

&
'
'
u=u*

= 0

! 2J
!u2 u=u*

=

! 2J
!u1

2

! 2J
!u1!u2

... ! 2J
!u1!um

! 2J
!u2!u1

! 2J
!u2

2 ... ! 2J
!u2!um

... ... ... ...
! 2J

!um!u1

! 2J
!u2!um

... ! 2J
!um

2

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
u=u*

>
< 0

One maximum

R = u1
2 + u2

2

How Many Maxima/Minima does the 
Mexican Hat  Have?
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Wolfram Alpha
maximize(sinc(sqrt(x^2+y^2)))

 
z = sinc R( ) ! sinR

R

Static Cost Functions with 
Equality Constraints

•! Minimize J(u ), subject to c(u ) = 0
–! dim(c) = [n x 1]
–! dim(u ) = [(m + n) x 1]
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1.# Use constraint to 
reduce control 
dimension

2.# Augment the cost 
function to recognize 
the constraint

JA u '( ) = J u '( ) + !!Tc u '( )

Example : min J
u1,u2

subject to

c u '( ) = c u1,u2( ) = 0! u2 = fcn u1( )

 

u'=
u1
u2

! 

" 
# 

$ 

% 
& 

Two Approaches to 
Static Optimization 

with a Constraint

!!,  an unknown constant
!!  has the same dimension as the constraint

dim !!( ) = dim c( ) = n "1
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J u '( ) = J u1,u2( ) = J u1, fcn u1( )!" #$ = J ' u1( )

Solution: 
First Approach

Cost function

Constraint

 

J = u1
2 ! 2u1u2 + 3u2

2 ! 40

c = u2 ! u1 ! 2 = 0
"u2 = u1 + 2
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Solution Example: 
Reduced Control 

Dimension

J = u1
2 ! 2u1u2 + 3u2

2 ! 40

= u1
2 ! 2u1 u1 + 2( ) + 3 u1 + 2( )2 ! 40

= 2u1
2 + 8u1 ! 28

" J
"u1

= 4u1 + 8 = 0; u1 = !2

Cost function and gradient 
with substitution

Optimal solution

u1*= !2
u2*= 0
J*= !36
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Solution:
Second Approach

•! Partition u into a state, x, and a control, u, 
such that
–! dim(x) = dim[c(x)] = [n x 1]
–! dim(u) = [m x 1]

•! Add constraint to the cost function, weighted 
by Lagrange multiplier, $ 
•! dim($) = [n x 1]

•! c is required to be zero when JA is a minimum
 

u'=
x
u
! 

" 
# 
$ 

% 
& 

 

c u'( ) = c
x
u
! 

" 
# 
$ 

% 
& = 0JA u '( ) = J u '( ) + !!Tc u '( )

JA x,u( ) = J x,u( ) + !!Tc x,u( )

30



Solution: Adjoin 
Constraint with 

Lagrange Multiplier

!JA
!x

=
!J
!x

+ ""T !c
!x

= 0

Gradient with respect to x, u, and ! is zero at 
the optimum point

!JA
!u

=
!J
!u

+ ""T !c
!u

= 0

!JA
!""

= c = 0
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n equations

m equations

n equations

Simultaneous Solutions 
for State and Control
•! (2n + m) values must be found (x, $, u)
•! Use first equation to find form of optimizing Lagrange 

multiplier (n scalar equations)
•! Second and third equations provide (n + m) scalar 

equations that specify the state and control

!! *T = " # J
#x

#c
#x

$
%&

'
()
"1

!!*= " #c
#x

$
%&

'
()
"1*

+
,

-

.
/

T
# J
#x

$
%&

'
()
T

! J
!u

+ "" *T !c
!u

= 0

! J
!u

# ! J
!x

!c
!x

$
%&

'
()
#1 !c
!u

= 0

c x,u( ) = 0
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Solution Example: 
Second Approach

Cost function

Constraint
J = u2 ! 2xu + 3x2 ! 40

c = x ! u ! 2 = 0

!J
!x

= "2u + 6x

!J
!u

= 2u " 2x

!c
!x

= 1

!c
!u

= "1

Partial derivatives
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Solution Example: 
Second Approach

!* = 2u " 6x

2u ! 2x( ) + 2u ! 6x( ) !1( )
" x = 0

x*= 0
u*= !2
J*= !36

•! Optimal solution

•! From first 
equation

•! From second 
equation

•! From 
constraint u = !2

34



Next Time:!
Numerical Optimization!
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