

Numerical Optimization

Robert Stengel

Robotics and Intelligent Systems MAE 345, Princeton University, 2017

- Gradient search
- Gradient-free search
- Grid-based search
- Random search
- Downhill simplex method
- Monte Carlo evaluation
- Simulated annealing
- Genetic algorithms
- Particle swarm optimization

Numerical Optimization

- Previous examples with simple cost function, J, could be evaluated analytically
- What if J is too complicated to find an analytical solution for the minimum?
- ... or J has multiple minima?
- Use numerical optimization to find local and/or global solutions

Two Approaches to Numerical Minimization

1) Slope and curvature of surface
a) Evaluate gradient, $\partial \mathrm{J} / \mathrm{\partial u}$, and search for zero
b) Evaluate Hessian, $\partial^{2} J / \partial u^{2}$, and search for positive value

$$
\begin{aligned}
& \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{o}=\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{0}}=\text { starting guess } \\
& \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n}=\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n-1}+\Delta\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n}=\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{n}} \text { such that }\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n}<\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n-1}
\end{aligned}
$$

2) Evaluate cost, J, and search for smallest value

$$
\begin{array}{|ll|}
\hline J_{o}=J\left(\mathbf{u}_{o}\right)=\text { starting guess } \\
J_{1}=J_{o}+\Delta J_{1}\left(\mathbf{u}_{o}+\Delta \mathbf{u}_{1}\right) \text { such that } & J_{1}<J_{o} \\
J_{2}=J_{1}+\Delta J_{2}\left(\mathbf{u}_{1}+\Delta \mathbf{u}_{2}\right) \text { such that } & J_{2}<J_{1} \\
\hline
\end{array}
$$

Stop when difference between J_{n} and J_{n-1} is negligible

Gradient/Hessian Search to Minimize a Quadratic Function

Cost function, gradient, and Hessian matrix

$$
\begin{aligned}
J & =\frac{1}{2}\left(\mathbf{u}-\mathbf{u}^{*}\right)^{T} \mathbf{R}\left(\mathbf{u}-\mathbf{u}^{*}\right), \quad \mathbf{R}>\mathbf{0} \\
& =\frac{1}{2}\left(\mathbf{u}^{T} \mathbf{R} \mathbf{u}-\mathbf{u}^{T} \mathbf{R} \mathbf{u} *-\mathbf{u}^{*^{T}} \mathbf{R} \mathbf{u}+\mathbf{u}^{*^{T}} \mathbf{R} \mathbf{u} *\right)
\end{aligned}
$$

$$
\begin{array}{|l}
\frac{\partial J}{\partial \mathbf{u}}=\left(\mathbf{u}-\mathbf{u}^{*}\right)^{T} \mathbf{R}=\mathbf{0} \text { when } \mathbf{u}=\mathbf{u} * \\
\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}=\mathbf{R}=\text { symmetric constant }>\mathbf{0}
\end{array}
$$

Guess a starting value of $u, u_{\text {o }}$

$$
\begin{aligned}
&\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{o}}=\left(\mathbf{u}_{o}-\mathbf{u}^{*}\right)^{T} \mathbf{R}=\left.\left(\mathbf{u}_{o}-\mathbf{u}^{*}\right)^{T} \frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}_{o}} \\
&\left(\mathbf{u}_{o}-\mathbf{u}^{*}\right)^{T}\left.=\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{o}} \quad \mathbf{R}^{-1} \quad \text { (row }\right)
\end{aligned}
$$

Solve for \mathbf{u}^{*}

$$
\left.\mathbf{u}^{*}=\mathbf{u}_{o}-\mathbf{R}^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{o}}\right]^{T} \quad \text { (column }\right)
$$

Optimal Value of Quadratic Function Found in a One Step

$$
\begin{aligned}
\mathbf{u}^{*} & =\mathbf{u}_{o}-\mathbf{R}^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{u=u_{0}}\right]^{T} \\
& =\mathbf{u}_{o}-\left[\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}_{o}}\right]^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{u=u_{o}}\right]^{T}
\end{aligned}
$$

- Gradient establishes general search direction
- Hessian fine-tunes direction and tells exactly how far to go

5

Numerical Example

- Cost function and derivatives
$J=\frac{1}{2}\left[\left[\binom{u_{1}}{u_{2}}-\binom{1}{3}\right]^{T}\left[\begin{array}{ll}1 & 2 \\ 2 & 9\end{array}\right]\left[\binom{u_{1}}{u_{2}}-\binom{1}{3}\right]\right\}$
$\left(\frac{\partial J}{\partial \mathbf{u}}\right)^{T}=\left[\binom{u_{1}}{u_{2}}-\binom{1}{3}\right]^{T}\left[\begin{array}{ll}1 & 2 \\ 2 & 9\end{array}\right] ; \quad \mathbf{R}=\left[\begin{array}{cc}1 & 2 \\ 2 & 9\end{array}\right]$

- First guess at optimal control

$$
\binom{u_{1}}{u_{2}}_{0}=\binom{4}{7}
$$

- Derivatives at starting point

$$
\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{0}}=\left[\binom{4}{7}-\binom{1}{3}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 9
\end{array}\right]=\binom{11}{42}
$$

- Solution from starting point

$$
\mathbf{u}^{*}=\mathbf{u}_{o}-\mathbf{R}^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{o}}\right]^{T}
$$

$$
\begin{aligned}
\mathbf{u}^{*} & =\binom{u_{1}}{u_{2}}^{*}=\binom{4}{7}-\left[\begin{array}{cc}
9 / 5 & -2 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right]\binom{11}{42} \\
& =\binom{4}{7}-\binom{3}{4}=\binom{1}{3}
\end{aligned}
$$

Newton-Raphson Iteration

- Many cost functions are not quadratic
- However, the surface is well-approximated by a quadratic in the vicinity of the optimum, u^{*}

$$
\begin{aligned}
J\left(\mathbf{u}^{*}+\Delta \mathbf{u}\right) & \approx J\left(\mathbf{u}^{*}\right)+\Delta J\left(\mathbf{u}^{*}\right)+\Delta^{2} J\left(\mathbf{u}^{*}\right)+\ldots \\
\Delta J\left(\mathbf{u}^{*}\right) & =\left.\Delta \mathbf{u}^{T} \frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}^{*}}=0 \\
\Delta^{2} J\left(\mathbf{u}^{*}\right) & =\Delta \mathbf{u}^{T}\left[\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}^{*}}\right] \Delta \mathbf{u} \geq 0
\end{aligned}
$$

Optimal solution requires multiple steps

Newton-Raphson Iteration

Newton-Raphson algorithm is an iterative search using both the gradient and the Hessian matrix

Difficulties with NewtonRaphson Iteration

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}-\left[\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{T}
$$

- Good when close to the optimum, but ...
- Hessian matrix (i.e., the curvature) may be
- Hard to estimate, e.g., large effects of small errors
- Locally misleading, e.g., wrong curvature
- Gradient searches focus on local minima

Steepest-Descent Algorithm Multiplies Gradient by a Scalar Constant

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}-\varepsilon\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{T}
$$

- Replace Hessian matrix by a scalar constant
- Gradient is orthogonal to equal-cost contours

Choice of SteepestDescent Constant

If gain is too small
Convergence is slow

If gain is too large
Convergence oscillates or may fail

Solution: Make gain adaptive
11

Optimal SteepestDescent Gain

Adjustment rule for ε

- Starting estimate, J_{0}
- First estimate, J_{1}, using ε
- Second estimate, J_{2}, using 2ε

If	$J_{2}>J_{1}$
- Quadratic fit through three points to find ε^{*}	

- Quadic
- Else, third estimate, J_{3}, using 4ε
- ...

Use optimal gain, ε^{*}, on each major iteration

Gradient Search Issues

Steepest Descent
$\mathbf{u}_{k+1}=\mathbf{u}_{k}-\varepsilon\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{T}$

Newton Raphson

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}-\left[\left.\frac{\partial^{2} J}{\partial \mathbf{u}^{2}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{-1}\left[\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{k}}\right]^{T}
$$

- Need to evaluate gradient (and possibly Hessian matrix)
- Not global: gradient searches focus on local minima
- Convergence may be difficult with "noisy" or complex cost functions

Gradient-Free Search: Grid-Based Search

Gradient-Free Search: Random Search

Three-Parameter Grid Search

- Regular spacing
- Fixed resolution
- Trials grow as m^{n}, where
- $n=$ Number of parameters
- $m=$ Resolution

Three-Parameter Random Field Search

Variable spacing and resolution Arbitrary number of trials Random space-filling

Directed (Structured) Search for Minimum Cost

Continuation of grid-based or random search
Localize areas of low cost
Increase sampling density in those areas

Directed (Structured) Search for Minimum Cost

- Interpolate or extrapolate from one or more starting points

Downhill Simplex Search (Nelder-Mead Algorithm)

- Simplex: N-dimensional figure in control space defined by
$-N+1$ vertices
$-(N+1) N / 2$ straight edges between vertices

Search Procedure for
 Downhill Simplex Method

- Select starting set of vertices
- Evaluate cost at each vertex
- Determine vertex with largest cost (e.g., J_{1} at right)

- Project search from this vertex through middle of opposite face (or edge for $N=2$)
- Reflection [equal distance along direction]
- Expansion [longer distance along direction]
- Contraction [shorter distance along direction]
- Shrink [replace all but best point with points contracted toward best point]
- Evaluate cost at new vertex (e.g., J_{4} at right)
- Drop J_{1} vertex, and form simplex with new vertex
- Repeat until cost is "small enough" (termination)
- MATLAB implementation: fminsearch

Monte Carlo Evaluation of Systems and Cost Functions

- Multiple evaluations of a function with uncertain parameters using
- Random number generators, and
- Assumed or measured statistics of parameters
- Not an exhaustive evaluation of all parameters

Example (from Wikipedia):
Evaluation of π from percentage of points that fall within the unit circle (30,000 trials)

Monte Carlo Evaluation of Systems and Cost Functions

- Example: 2-D quadratic function with added Gaussian noise
- Each trial generates a different result $\left(\sigma_{z}=4\right)$
[X, Y] = meshgrid(-8:.5:8); $\mathbf{Z}=\mathbf{X} .^{\wedge} \mathbf{2}+\mathbf{Y}^{\wedge}{ }^{\wedge}$;
$Z 1=Z+4^{*}$ randn(33); surf(X,Y,Z1) colormap hsv alpha(.4)

[X, Y] = meshgrid(-8:.5:8);
Z = X.^2 + Y.^2;
$Z 1=Z+4^{\star}$ randn(33); $\operatorname{surf}(X, Y, Z 1)$ colormap hsv alpha(.4)

Effect of Increasing Noise on Cost Function

$$
\sigma_{z}=4
$$

Iso-Cost Contours Lose Structure with Increasing Noise

Effect of Averaging on Noisy Cost Function

- 1,000 trials $\sigma_{z}=16$

Estimating the Probability of Coin Flips

- Single coin

- Exhaustive search: Correct answer in 2 trials
- Random search (20,000 trials)
- 21 coins
- Exhaustive search: Correct answer in $n^{\boldsymbol{m}}=\mathbf{2}^{\mathbf{2 1}}=\mathbf{2 , 0 9 7 , 1 5 2 \text { trials }}$
- Random search (20,000 trials)


```
% Single coin
    x = [];
    prob = round(rand);
    for k=1:20000
        prob = round(rand) * (1/(k+1)) + prob * (k/(k+1));
    x = [x prob];
    end
figure
plot(x), grid
% 21 coins
y = [];
prob = round(rand);
for k= 1:20000
    for j= 1:21
        coin(j) = round(rand)
        Coi
    score = sum(coin);
    if score> 10
        result = 1;
    else result = 0;
    end
    prob = result * (1/(k + 1)) + prob * (k/(k+1));
    y = [y prob];
end
figure
plot(y), grid
```


Random Search Excels When There are Many Uncertain Parameters

- Single coin
- Exhaustive search: Correct answer in 2 trials
- Random search (20,000 trials)

- 21 coins
- Exhaustive search: Correct answer in $n^{m}=2^{21}=\mathbf{2 , 0 9 7 , 1 5 2}$ trials
- Random search (20,000 trials)

Physical Annealing

- Produce a strong, hard object made of crystalline material
- High temperature allows molecules to redistribute to relieve stress, remove dislocations
- Gradual cooling allows large, strong crystals to form
- Low temperature "working"(e.g., squeezing, bending, drawing, shearing, and hammering) produces desired crystal structure and shape

Simulated Annealing Algorithm

- Goal: Find global minimum among local minima
- Approach: Randomized search, with convergence that emulates physical annealing
- Evaluate cost, J_{k}
- Accept if $J_{k}<J_{k-1}$
- Accept with probability $\operatorname{Pr}(E)$ if $J_{k}>J_{k-1}$

- Probability distribution of energy state, E (Boltzmann Distribution)

$\operatorname{Pr}(E) \propto e^{-E / k T}$
$k:$ Boltzmann's constant
$T:$ Temperature

- Algorithm' s "cooling schedule" accepts many bad guesses at first, fewer as iteration number, \boldsymbol{k}, increases
- MATLAB implementation: simulannealbnd (Global Optimization Toolbox)

Application of Annealing Principle to Search

- If cost decreases $\left(J_{2}<J_{1}\right)$, always accept new point
- If cost increases $\left(J_{2}>J_{1}\right)$, accept new point with probability proportional to Boltzmann factor

$$
e^{-\left(J_{2}-J_{1}\right) / k T}
$$

- Occasional diversion from convergent path intended to prevent entrapment by a local minimum
- As search progresses, decrease $k T$, making probability of accepting a cost increase smaller

Combination of Simulated Annealing with Downhill Simplex Method

- Introduce random "wobble" to simplex search
- Add random components to costs evaluated at vertices
- Project new vertex as before based on modified costs
- With large T, this becomes a random search
- Decrease random components on a "cooling" schedule

- Same annealing strategy as before
- If cost decreases ($J_{2}<J_{1}$), always accept new point
- If cost increases ($J_{2}>J_{1}$), accept new point probabilistically
- As search progresses, decrease T

$$
\begin{aligned}
& J_{1_{S A}}=J_{1}+\Delta J_{1}(r n g) \\
& J_{2_{S A}}=J_{2}+\Delta J_{2}(r n g) \\
& J_{3_{S A}}=J_{3}+\Delta J_{3}(r n g) \\
& \ldots=\ldots
\end{aligned}
$$

Genetic Coding:

Replication, Recombination, and Mutation of Chromosomes

(f) \qquad
Hetaroduplexes

33

Broad Characteristics of Genetic Algorithms

- Search based on the coding of a parameter set, not the parameters themselves
- Search evolves from a population of points
- "Blind" search, i.e., without gradient
- Probabilistic transitions from one control state to another (using random number generator)
- Control parameters assembled as genes of a single chromosome strand (Example: four 4-bit parameters = four "genes")

Progression of a
 Genetic Algorithm

Most fit chromosome evolves from a sequence of reproduction, crossover, and mutation

- Initialize algorithm with N (even) random chromosomes, c_{n} (two 8 -bit genes or parameters in example)
- Evaluate fitness, F_{n}, of each chromosome
- Compute total fitness, $F_{\text {total }}$ of chromosome population

$$
F_{\text {total }}=\sum_{n=1}^{N} F_{n}
$$

Genetic Algorithm:
 Reproduction

- Reproduce N additional copies of the N originals with probabilistic weighting based on relative fitness, $F_{n} / F_{\text {total }}$, of originals (Survival of the fittest)
- Roulette wheel selection:
$-\operatorname{Pr}\left(c_{n}\right)=F_{n} / F_{\text {total }}$
- Multiple copies of most-fit chromosomes
- No copies of least-fit chromosomes

Starting Set

c_{22} (0011|10

$$
\begin{aligned}
& \text { Reproduced Set }
\end{aligned}
$$

Starting Set

Reproduced Set

Genetic Algorithm: Crossover

- Arrange N new chromosomes in N/2 pairs chosen at random

c_{10}| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | | | | | | | | | | | | |

\mathbf{c}_{17}| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

c_{10}| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\mathbf{c}_{22}| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{1}$

c_{13}| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\mathbf{c}_{1}| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 1

\mathbf{c}_{15}| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\left.\mathbf{c}_{10}$| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\, | 0 |
| :--- |

Head
Tail
Head
Tail

Crossover Creates New Chromosome Population Containing Old Gene Sequences

39

Create New Generations By Reproduction, Crossover, and Mutation Until Solution Converges

Chromosomes narrow in on best values with advancing generations
$F_{\text {max }}$ and $F_{\text {total }}$ increase with advancing generations

MATLAB implementation: ga (Global Optimization Toolbox)

Comments on GA

GA Mona Lisa
 http://www. youtube.com/watch?v=rGt3iMAJVT8

- Short, fit genes tend to survive crossover
- Random location of crossover
- produces large and small variations in genes
- interchanges genes in chromosomes
- Multiple copies of best genes evolve
- Alternative implementations
- Real numbers rather than binary numbers
- Retention of "elite" chromosomes
- Clustering in "fit" regions to produce elites

${ }^{c_{n}}$ 1011101110 010110100

0	1	0	1	1	1	1	0	0	1

https://en.wikipedia.org/wiki/ Genetic_algorithm

Particle Swarm Optimization

- Converse of the GA: Uses multiple cost evaluations to guide parameter search directly
- Stochastic, population-based algorithm
- Search for optimizing parameters modeled on social behavior of groups that possess cognitive consistency
- Particles = Parameter vectors
- Particles have position and velocity
- Projection of own best (Local best)
- Knowledge of swarm's best
- Neighborhood best
- Global best

Particle Swarm Optimization

Find $\min _{\mathbf{u}} J(\mathbf{u})=J^{*}\left(\mathbf{u}^{*}\right)$
u
Jargon: $\operatorname{argmin} J(\mathbf{u})=\mathbf{u}^{*}$
i.e., argument of J that minimizes J

Recursive algorithm to find best particle or configuration of particles
$\mathbf{u}:$ Parameter vector ~ "Position" of the particles
\mathbf{v} : "Velocity" of \mathbf{u}
$\operatorname{dim}(\mathbf{u})=\operatorname{dim}(\mathbf{v})=$ Number of particles

Particle Swarm Optimization

- Local best: RNG, downhill simplex, or SA step for each particle
- Neighborhood best: argmin of closest n neighboring points
- Global best: argmin of all particles

$$
\begin{gathered}
\mathbf{u}_{k}=\mathbf{u}_{k-1}+a \mathbf{v}_{k-1} \\
\mathbf{v}_{k}=b \mathbf{v}_{k-1}+c\left(\mathbf{u}_{\text {best }_{\text {local }_{k-1}}}-\mathbf{u}_{k-1}\right)+d\left(\mathbf{u}_{\text {best }_{\text {teighoorhood }}^{k-1}}-\mathbf{u}_{k-1}\right)+e\left(\mathbf{u}_{\text {best }_{\text {global }_{k-1}}}-\mathbf{u}_{k-1}\right)
\end{gathered}
$$

\mathbf{u}_{0} : Starting value from random number generator
\mathbf{v}_{0} : Zero
a, b, c, d :Search tuning parameters

Particle Swarm Optimization

MATLAB implementation: particleswarm (Global Optimization Toolbox)

Comparison of Algorithms in Caterpillar Gait-Training Example

Next Time:
 Dynamic Optimal Control

Supplemental Material

Rosenbrock Function

Typical test function for numerical optimization algorithms

$$
J\left(u_{1}, u_{2}\right)=\left(1-u_{1}\right)^{2}+100\left(u_{2}-u_{1}^{2}\right)^{2}
$$

Cost Function and Gradient Searches

- Evaluate J and search for smallest value

$J_{o}=J\left(\mathbf{u}_{o}\right)=$ starting guess	
$J_{1}=J_{o}+\Delta J_{1}\left(\mathbf{u}_{o}+\Delta \mathbf{u}_{1}\right)$ such that	$J_{1}<J_{o}$
$J_{2}=J_{1}+\Delta J_{2}\left(\mathbf{u}_{1}+\Delta \mathbf{u}_{2}\right)$ such that	$J_{2}<J_{1}$

Stop when difference between J_{n} and J_{n-1} is negligible

- $\quad J$ is a scalar
- J provides no search direction
- Evaluate $\partial \mathrm{J} / \partial \mathrm{du}$ and search for zero
$\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{o}=\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{0}}=$ starting guess
$\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n}=\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n-1}+\Delta\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n}=\left.\frac{\partial J}{\partial \mathbf{u}}\right|_{\mathbf{u}=\mathbf{u}_{n}}$ such that $\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n}<\left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n-1}$
... until
gradient is
close enough
to zero
- $\partial J / d u$ is a vector

- \quad JJ/du indicates feasible search direction

Comparison of SA, DS, and GA in Designing a PID Controller: ALFLEX Reentry Test Vehicle

Parameter Uncertainties and Touchdown Requirements for ALFLEX Reentry Test Vehicle

Table 4	Uncertain parameters for ALFLEX model
	Number of
Category	parameters
Mass parameters	5
Aerodynamics	27
Actuator dynamics	9
Sensor dynamics and error	38
Atmospheric condition	6
Initial condition and error at release	18

Table 5 touchdown performance	
Touchdown states	Requirement
Position, ${ }^{\text {a }} \mathrm{m}$	$X>0,\|Y\|<18$
Velocity, m / s	$V_{G}<62, \dot{Z}<3$
Attitude, deg	$\Theta<23,\|\Phi\|<10,\|\Psi\|<8$
Side slip, deg	$\left\|\beta_{G}\right\|<8$

${ }^{\text {a }}$ Runway coordination; the origin is at the runway threshold, the X axis is directed along the runway centerline, and the Z axis is directed downward.

ALFLEX Pitch Attitude Control Logic

Comparison of SA, DS, and GA in Designing a PID Controller

Genetic Algorithm Applications

GA Mona Lisa, 2

http://www.youtube.com/watch?v=A8x4Lyj33Ro\&NR=1

Learning Network Weights for a Flapping Wing Neural-Controller http://www.youtube.com/watch?v=BfY4jRtcE4c\&feature=related

Virtual Creature Evolution
http://www.youtube.com/watch?v=oquKOVfzGfk\&NR=1

Examples of Particle Swarm Optimization

Robot Swarm Animation
http://www.youtube.com/watch?v=RLIA1EKfSys

Swarm-Bots Finding a Path and Retrieving Object

http://www.youtube.com/watch?v=Xs_Y22N1r_A

Learning Robot Control System Gains
http://www.youtube.com/watch?v=itf8NHF1bS0\&feature=related

Parabolic and Phased-Array Radar Antenna Patterns

Phased-Array Antenna Design Using Genetic Algorithm or Particle Swarm Optimization

Phased-Array Antenna Design Using Genetic Algorithm

Phased-Array Antenna Design Using Particle Swarm Optimization

Comparison of Phased-Array Antenna Designs

Summary of Gradient-Free Optimization Algorithms

- Grid search
- Uniform coverage of search space
- Random Search
- Arbitrary placement of test parameters
- Downhill Simplex Method
- Robust search of difficult cost function topology
- Simulated Annealing
- Structured random search with convergence feature
- Genetic Algorithm
- Coding of the parameter set
- Particle Swarm Optimization
- Intuitively appealing, efficient heuristic

