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•! Gradient search
•! Gradient-free search

–! Grid-based search
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•! Genetic algorithms
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Numerical Optimization

•! Previous examples with simple cost function, J, 
could be evaluated analytically

•! What if J is too complicated to find an analytical 
solution for the minimum?

•! … or J has multiple minima?
•! Use numerical optimization to find local and/or 

global solutions
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Two Approaches to 
Numerical Minimization

2) Evaluate cost, J , and search for smallest value

1)" Slope and curvature of surface
a)" Evaluate gradient , !J/!u, and search for zero
b)" Evaluate Hessian, !2J/!u2, and search for positive value

Jo = J uo( ) = starting guess
J1 = Jo + !J1 uo + !u1( ) such that J1 < Jo
J2 = J1 + !J2 u1 + !u2( ) such that J2 < J1

Stop when difference 
between Jn and Jn–1 
is negligible
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… until gradient is 
close enough to zero
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Gradient/Hessian Search to 
Minimize a Quadratic Function

J = 1
2
u! u*( )T R u! u*( ) , R > 0

= 1
2
uTRu! uTRu*!u*T Ru+ u*T Ru*( )

Cost function, gradient, 
and Hessian matrix

Guess a starting value 
of u, uo
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! J
!u

= u" u*( )T R = 0 when u = u*

! 2 J
!u2

= R = symmetric constant > 0



Optimal Value of Quadratic 
Function Found in a One Step

•! Gradient establishes general 
search direction

•! Hessian fine-tunes direction 
and tells exactly how far to go
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Numerical Example

J = 1
2

u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

T

1 2
2 9

(

)
*

+

,
-

u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

.
/
0

10

2
3
0

40

5 J
5u

!
"#

$
%&
T

=
u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

T

1 2
2 9

(

)
*

+

,
-; R = 1 2

2 9
(

)
*

+

,
-

•! Cost function and derivatives

•! First guess at optimal control
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•! Solution from starting 
point
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Newton-Raphson 
Iteration

•! Many cost functions are not quadratic
•! However, the surface is well-approximated by a 

quadratic in the vicinity of the optimum, u*

Optimal solution requires multiple steps

J u*+!u( ) " J u*( ) + !J u*( ) + !2J u*( ) + ...

!J u*( ) = !uT # J
#u u=u*

= 0
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Newton-Raphson Iteration
Newton-Raphson algorithm is an iterative search 
using both the gradient and the Hessian matrix 
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Difficulties with Newton-
Raphson Iteration

•! Good when close to the optimum, but …
•! Hessian matrix (i.e., the curvature) may be

–! Hard to estimate, e.g., large effects of 
small errors

–! Locally misleading, e.g., wrong curvature
•! Gradient searches focus on local minima
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Steepest-Descent Algorithm Multiplies 
Gradient by a Scalar Constant

uk+1 = uk ! " #J
#u u=uk
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T •! Replace Hessian matrix 
by a scalar constant

•! Gradient is orthogonal to 
equal-cost contours
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Choice of Steepest-
Descent Constant

If gain is too small
Convergence is slow

If gain is too large
Convergence oscillates or 

may fail

Solution: Make gain adaptive
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Optimal Steepest-
Descent Gain

Use optimal gain,  !*, on each major iteration

Find optimal gain by evaluating cost, J, 
for intermediate solutions with same !J !u( )

Adjustment rule for !
•  Starting estimate, J0

•  First estimate, J1,  using !
•  Second estimate, J2,  using 2!

 

If  J2 > J1

•  Quadratic fit through three points to find !*
•  Else, third estimate, J3,  using 4!
•  …
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Gradient Search 
Issues

•! Need to evaluate gradient (and possibly Hessian matrix)
•! Not global: gradient searches focus on local minima
•! Convergence may be difficult with noisy  or complex 

cost functions
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Gradient-Free Search: 
Grid-Based Search

Jo = J uo( ) = starting guess
J1 = Jo + !J1 uo + !u1( ) such that J1 < Jo
J2 = J1 + !J2 u1 + !u2( ) such that J2 < J1
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Gradient-Free Search: 
Random Search

* Select control parameters using a 
random number generator

Jo = J uo( ) = starting guess
J1 = Jo + !J1 uo + !u1( ) such that J1 < Jo
J2 = J1 + !J2 u1 + !u2( ) such that J2 < J1
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Three-Parameter Grid Search
n = 125 n = 1000

•! Regular spacing
•! Fixed resolution
•! Trials grow as mn, where

–! n = Number of parameters
–! m = Resolution

16



Three-Parameter Random 
Field Search

Variable spacing and resolution
Arbitrary number of trials

Random space-filling

n = 1000n = 125
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Directed (Structured) Search 
for Minimum Cost

Continuation of grid-based or random search
Localize areas of low cost

Increase sampling density in those areas

18



Directed (Structured) Search 
for Minimum Cost

•! Interpolate or extrapolate from one or more starting points

19

Downhill Simplex Search 
(Nelder-Mead Algorithm)

•! Simplex: N-dimensional figure in control space 
defined by
–! N + 1 vertices
–! (N + 1) N / 2 straight edges between vertices

20https://en.wikipedia.org/wiki/Nelder-Mead_method



Search Procedure for 
Downhill Simplex Method

•! Project search from this vertex through middle of opposite 
face (or edge for N = 2)
•! Reflection [equal distance along direction]
•! Expansion [longer distance along direction]
•! Contraction [shorter distance along direction]
•! Shrink [replace all but best point with points contracted toward 

best point]
•! Evaluate cost at new vertex (e.g., J4 at right)
•! Drop J1 vertex, and form simplex with new vertex
•! Repeat until cost is “small enough” (termination)
•! MATLAB implementation: fminsearch 

•! Select starting set of vertices
•! Evaluate cost at each vertex
•! Determine vertex with largest 

cost (e.g., J1 at right)
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Monte Carlo Evaluation of 
Systems and Cost Functions

•! Multiple evaluations of a function with 
uncertain parameters using 
–! Random number generators, and
–! Assumed or measured statistics of parameters

•! Not an exhaustive evaluation of all 
parameters

22

Example (from Wikipedia):
Evaluation of " from 
percentage of points that 
fall within the unit circle 
(30,000 trials)



Monte Carlo Evaluation of 
Systems and Cost Functions

•! Example: 2-D quadratic function with 
added Gaussian noise

•! Each trial generates a different result  

[X,Y] = meshgrid(-8:.5:8);
    Z   =   X.^2 + Y.^2;
    Z1  =   Z + 4*randn(33);
    surf(X,Y,Z1)
    colormap hsv
    alpha(.4)

! z = 4( )
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Effect of Increasing 
Noise on Cost Function

[X,Y] = meshgrid(-8:.5:8);
    Z   =   X.^2 + Y.^2;
    Z1  =   Z + 4*randn(33);
    surf(X,Y,Z1)
    colormap hsv
    alpha(.4)

! z = 4

! z = 0 ! z = 8

! z = 16
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Iso-Cost Contours Lose Structure 
with Increasing Noise

! z = 4

! z = 0 ! z = 8

! z = 16
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Effect of Averaging on 
Noisy Cost Function

•! One trial

[X,Y] = meshgrid(-8:.5:8);
    Z   =   X.^2 + Y.^2;
    Z1  =   Z + 16*randn(33); 
    Z2  =   Z1;
%   Averaged Z1
    for k = 1:1000
        Z1  =   Z + 16*randn(33);
        Z2  =   Z1 * (1/(k + 1)) + Z2 * (k/(k+1));
    end
    figure
    surf(X,Y,Z2)
    colormap hsv
    alpha(.4)

•! One trial

•! 1,000 trials

! z = 0

! z = 16

! z = 16
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Estimating the 
Probability of Coin Flips

•! Single coin
–! Exhaustive search: Correct answer in 

2 trials
–! Random search (20,000 trials)

•! 21 coins
–! Exhaustive search: Correct answer in 

nm = 221 = 2,097,152 trials
–! Random search (20,000 trials)

%   Single coin
    x       =   [];
    prob  =   round(rand);
    for k = 1:20000
        prob    =   round(rand) * (1/(k + 1)) + prob * (k/(k+1));
        x          =   [x prob];
    end
    figure
    plot(x), grid
    
%   21 coins
    y       =   [];
    prob  =   round(rand);
    for k = 1:20000
        for j = 1:21
            coin(j) =   round(rand);
        end
        score   =   sum(coin);
        if score > 10
            result  =   1;
        else    result  =   0;
        end
        prob =   result * (1/(k + 1)) + prob * (k/(k+1));
        y       =   [y prob];
    end
    figure
    plot(y), grid
 

...
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Random Search Excels When There 
are Many Uncertain Parameters

•! Single coin
–! Exhaustive search: Correct answer in 2 

trials
–! Random search (20,000 trials)

•! 21 coins
–! Exhaustive search: Correct answer in 

nm = 221 = 2,097,152 trials
–! Random search (20,000 trials)
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Physical Annealing
•! Produce a strong, hard object made of crystalline material

–! High temperature allows molecules to redistribute to relieve stress, 
remove dislocations

–! Gradual cooling allows large, strong crystals to form
–! Low temperature working (e.g., squeezing, bending, drawing, shearing, 

and hammering) produces desired crystal structure and shape 

Turbojet Engine 
Turbines Turbine Blade 

Casting Single-Crystal 
Turbine Blade
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Simulated Annealing Algorithm
•! Goal: Find global minimum among local 

minima
•! Approach: Randomized search, with 

convergence that emulates physical annealing
–! Evaluate cost, Jk

–! Accept if  Jk < Jk – 1

–! Accept with probability Pr(E) if  Jk > Jk – 1 
•! Probability distribution of energy state, E 

(Boltzmann Distribution)

Pr(E) ! e"E /kT

k :   Boltzmann's constant
T :  Temperature

•! Algorithm s cooling schedule  accepts many bad 
guesses at first, fewer as iteration number, k, increases

•! MATLAB implementation: simulannealbnd (Global 
Optimization Toolbox)

30https://en.wikipedia.org/wiki/Simulated_annealing



Application of Annealing 
Principle to Search

•! If cost decreases (J2 < J1), always 
accept new point

•! If cost increases (J2 > J1), accept new 
point with probability proportional to 
Boltzmann factor

e! J2 ! J1( )/kT

•! Occasional diversion from convergent path intended to prevent 
entrapment by a local minimum

•! As search progresses, decrease kT, making probability of 
accepting a cost increase smaller

SA Face Morphing
http://www.youtube.com/watch?v=SP3nQKnzexs

Realistic Bird Flight Animation by SA
http://www.youtube.com/watch?v=SoM1nS3uSrY
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Combination of Simulated 
Annealing with Downhill 

Simplex Method

•! Same annealing strategy as before
–! If cost decreases (J2 < J1), always 

accept new point
–! If cost increases (J2 > J1), accept 

new point probabilistically
–! As search progresses, decrease T

•! Introduce random wobble  to 
simplex search
–! Add random components to costs 

evaluated at vertices
–! Project new vertex as before 

based on modified costs
–! With large T, this becomes a 

random search
–! Decrease random components on 

a cooling  schedule

J1SA = J1 + !J1 rng( )
J2SA = J2 + !J2 rng( )
J3SA = J3 + !J3 rng( )
... = ...

e! J2 ! J1( )/kT

SA Mona Lisa
http://www.youtube.com/watch?v=eHWZcPLRMjQ
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Genetic Coding: 
Replication, Recombination, and Mutation of 

Chromosomes

33

Broad Characteristics 
of Genetic Algorithms

•! Search based on the coding of a parameter set, not the 
parameters themselves

•! Search evolves from a population of points
•! Blind  search, i.e., without gradient
•! Probabilistic transitions from one control state to another 

(using random number generator)
•! Control parameters assembled as genes of a single 

chromosome strand (Example: four 4-bit parameters = 
four “genes”)

34
John Holland, 1975



Progression of a 
Genetic Algorithm

Most fit chromosome evolves from a sequence 
of reproduction, crossover, and mutation

•! Initialize algorithm with N (even) 
random chromosomes, cn (two 
8-bit genes or parameters in 
example)

•! Evaluate fitness, Fn, of each 
chromosome

•! Compute total fitness, Ftotal, of 
chromosome population

F1

F2

F3

F4

Ftotal = Fn
n=1

N

! Bigger F is better
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Genetic Algorithm: 
Reproduction

•! Reproduce N additional copies of the N 
originals with probabilistic weighting 
based on relative fitness, Fn /Ftotal, of 
originals (Survival of the fittest)

•! Roulette wheel selection:
–! Pr(cn) = Fn /Ftotal
–! Multiple copies of most-fit chromosomes
–! No copies of least-fit chromosomes
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Reproduction Eliminates 
Least Fit Chromosomes 

Probabilistically

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Starting Set Reproduced Set

37

Genetic Algorithm: Crossover
•! Arrange N new chromosomes in N/2 

pairs chosen at random
•! Interchange tails that are cut at 

random locations

Head Tail Head Tail
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Crossover Creates New 
Chromosome Population Containing 

Old Gene Sequences
Reproduced Set Crossover Set
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Mutated SetCrossover Set

Flip a bit, 0 -> 1 or 1 -> 0, at 
random every 1,000 to 5,000 bits

Genetic Algorithm: Mutation

40



Create New Generations By 
Reproduction, Crossover, and Mutation 

Until Solution Converges
Fmax and Ftotal increase with 

advancing generations
Chromosomes narrow in on best 

values with advancing  generations
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MATLAB implementation: ga 
(Global Optimization Toolbox)

Comments on GA

•! Short, fit genes tend to survive crossover
•! Random location of crossover 

–! produces large and small variations in 
genes

–! interchanges genes in chromosomes
•! Multiple copies of best genes evolve
•! Alternative implementations

–! Real numbers rather than binary numbers
–! Retention of elite  chromosomes
–! Clustering in fit  regions to produce elites
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GA Mona Lisa
http://www.youtube.com/watch?v=rGt3iMAJVT8

42https://en.wikipedia.org/wiki/
Genetic_algorithm



Particle Swarm 
Optimization

•! Converse of the GA:  Uses multiple cost evaluations to 
guide parameter search directly

•! Stochastic, population-based algorithm
•! Search for optimizing parameters modeled on social 

behavior of groups that possess cognitive consistency
•! Particles = Parameter vectors
•! Particles have position and velocity
•! Projection of own best (Local best)
•! Knowledge of swarm s best

–! Neighborhood best
–! Global best

43

Peregrine Falcon Hunting Murmuration of Starlings in Rome
https://www.youtube.com/watch?v=V-mCuFYfJdI

Particle Swarm Optimization

Jargon :   argminJ(u) = u*
i.e.,  argument  of J  that minimizes J

 

u:  Parameter vector !  "Position" of the particles
v:  "Velocity" of u

dim(u) = dim(v) =   Number of particles

Recursive algorithm to find best particle 
or configuration of particles

44

Find min
u
J(u) = J *(u*)

https://en.wikipedia.org/wiki/Particle_swarm_optimization



Particle Swarm Optimization

•! Local best:  RNG, downhill simplex, or SA step for each particle
•! Neighborhood best: argmin of closest n neighboring points
•! Global best: argmin of all particles

45

uk = uk!1 + av k!1
v k = bv k!1 + c ubestlocalk!1 ! uk!1( ) + d ubestneighborhoodk!1 ! uk!1( ) + e ubestglobalk!1 ! uk!1( )

u0:  Starting value from random number generator
v0:  Zero

a, b, c, d :Search tuning parameters 

Particle Swarm 
Optimization

MATLAB implementation: particleswarm 
(Global Optimization Toolbox)
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Comparison of Algorithms in 
Caterpillar Gait-Training Example

Y. Bourquin, U. Sussex, BIRG

Performance: 
distance traveled
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Next Time:!
Dynamic Optimal Control!

48



Supplemental Material

49

Rosenbrock Function

J(u1,u2 ) = 1! u1( )2 +100 u2 ! u1
2( )2

Typical test function for 
numerical optimization 

algorithms

Wolfram Alpha
Minimize[(1-u1)^2+100 (u2 - u1^2)^2, u1, u2]
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Cost Function and Gradient Searches
•! Evaluate J and search for smallest value

Jo = J uo( ) = starting guess
J1 = Jo + !J1 uo + !u1( ) such that J1 < Jo
J2 = J1 + !J2 u1 + !u2( ) such that J2 < J1
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•! J is a scalar
•! J provides no search direction

•! !J/!u is a vector
•! !J/!u indicates feasible search direction

… until 
gradient is 
close enough 
to zero

Stop when 
difference between 
Jn and Jn–1 is 
negligible

•! Evaluate !J/!u and search for zero
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Comparison of SA, DS, and GA in 
Designing a PID Controller: 

ALFLEX Reentry Test Vehicle

Motoda, Stengel, and Miyazawa, 2002 52



Parameter Uncertainties 
and Touchdown 

Requirements for ALFLEX 
Reentry Test Vehicle
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ALFLEX Pitch Attitude 
Control Logic
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Comparison of SA, DS, and GA in 
Designing a PID Controller
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Genetic Algorithm Applications

Evolution of Locomotion
http://www.youtube.com/watch?v=STkfUZtR-Vs&feature=related

Learning Network Weights for a Flapping Wing Neural-Controller
http://www.youtube.com/watch?v=BfY4jRtcE4c&feature=related

Virtual Creature Evolution
http://www.youtube.com/watch?v=oquKOVfzGfk&NR=1

GA Mona Lisa, 2
http://www.youtube.com/watch?v=A8x4Lyj33Ro&NR=1
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Examples of Particle 
Swarm Optimization

Robot Swarm Animation
http://www.youtube.com/watch?v=RLIA1EKfSys

Learning Robot Control System Gains
http://www.youtube.com/watch?v=itf8NHF1bS0&feature=related

Swarm-Bots Finding a Path and Retrieving Object
http://www.youtube.com/watch?v=Xs_Y22N1r_A
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Parabolic and Phased-Array 
Radar Antenna Patterns
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Phased-Array Antenna Design 
Using Genetic Algorithm or 
Particle Swarm Optimization

Boeringer and Warner, 2004
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Phased-Array Antenna Design 
Using Genetic Algorithm
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Phased-Array Antenna Design Using 
Particle Swarm Optimization
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Comparison of Phased-Array 
Antenna Designs
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Summary of Gradient-Free 
Optimization Algorithms

!! Grid search
!! Uniform coverage of search space

!! Random Search
!! Arbitrary placement of test parameters

!! Downhill Simplex Method
!! Robust search of difficult cost function topology

!! Simulated Annealing
!! Structured random search with convergence feature

!! Genetic Algorithm
!! Coding of the parameter set

!! Particle Swarm Optimization
!! Intuitively appealing, efficient heuristic 
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