
Numerical Optimization!
Robert Stengel!

 Robotics and Intelligent Systems MAE
345, Princeton University, 2017

•! Gradient search
•! Gradient-free search

–! Grid-based search
–! Random search
–! Downhill simplex method

•! Monte Carlo evaluation
•! Simulated annealing
•! Genetic algorithms
•! Particle swarm optimization

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE345.html 1

Numerical Optimization

•! Previous examples with simple cost function, J,
could be evaluated analytically

•! What if J is too complicated to find an analytical
solution for the minimum?

•! … or J has multiple minima?
•! Use numerical optimization to find local and/or

global solutions
2

Two Approaches to
Numerical Minimization

2) Evaluate cost, J , and search for smallest value

1)" Slope and curvature of surface
a)" Evaluate gradient , !J/!u, and search for zero
b)" Evaluate Hessian, !2J/!u2, and search for positive value

Jo = J uo() = starting guess
J1 = Jo + !J1 uo + !u1() such that J1 < Jo
J2 = J1 + !J2 u1 + !u2() such that J2 < J1

Stop when difference
between Jn and Jn–1
is negligible

! J
!u

"
#$

%
&' o

= ! J
!u u=u0

= starting guess

! J
!u

"
#$

%
&' n

= ! J
!u

"
#$

%
&' n(1

+) ! J
!u

"
#$

%
&' n

= ! J
!u u=un

such that ! J
!u n

< ! J
!u n(1

… until gradient is
close enough to zero

3

Gradient/Hessian Search to
Minimize a Quadratic Function

J = 1
2
u! u*()T R u! u*() , R > 0

= 1
2
uTRu! uTRu*!u*T Ru+ u*T Ru*()

Cost function, gradient,
and Hessian matrix

Guess a starting value
of u, uo

! J
!u u=uo

= uo " u*()T R = uo " u*()T !
2 J

!u2 u=uo

uo " u*()T = ! J
!u u=uo

R"1 row()

u*= uo !R
!1 " J

"u u=uo

#

$
%
%

&

'
(
(

T

column()

Solve for u*

4

! J
!u

= u" u*()T R = 0 when u = u*

! 2 J
!u2

= R = symmetric constant > 0

Optimal Value of Quadratic
Function Found in a One Step

•! Gradient establishes general
search direction

•! Hessian fine-tunes direction
and tells exactly how far to go

u*= uo !R
!1 " J

"u u=uo

#

$
%
%

&

'
(
(

T

= uo !
" 2 J
"u2 u=uo

#

$
%
%

&

'
(
(

!1

" J
"u u=uo

#

$
%
%

&

'
(
(

T

5

Numerical Example

J = 1
2

u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

T

1 2
2 9

(

)
*

+

,
-

u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

.
/
0

10

2
3
0

40

5 J
5u

!
"#

$
%&
T

=
u1
u2

!

"
##

$

%
&&
' 1

3
!
"#

$
%&

(

)
*
*

+

,
-
-

T

1 2
2 9

(

)
*

+

,
-; R = 1 2

2 9
(

)
*

+

,
-

•! Cost function and derivatives

•! First guess at optimal control

u1
u2

!

"
##

$

%
&&
0

= 4
7

!
"#

$
%&

•! Derivatives at starting point

! J
!u u=u0

= 4
7

"
#$

%
&'
(1

3
"
#$

%
&'

)

*
+
+

,

-
.
.

T
1 2
2 9

)

*
+

,

-
. =

11
42

"
#$

%
&'

•! Solution from starting
point

u*=
u1
u2

!

"
##

$

%
&&

*

= 4
7

!
"#

$
%&
' 9 / 5 '2 / 5

'2 / 5 1 / 5
(

)
*

+

,
-

11
42

!
"#

$
%&

= 4
7

!
"#

$
%&
' 3

4
!
"#

$
%&
= 1

3
!
"#

$
%&

u* = uo ! R
!1 "J

"u u=uo

#

$
%
%

&

'
(
(

T

6

Newton-Raphson
Iteration

•! Many cost functions are not quadratic
•! However, the surface is well-approximated by a

quadratic in the vicinity of the optimum, u*

Optimal solution requires multiple steps

J u*+!u() " J u*() + !J u*() + !2J u*() + ...

!J u*() = !uT # J
#u u=u*

= 0

!2J u*() = !uT # 2 J
#u2 u=u*

$

%
&

'

(
)!u * 0

7

Newton-Raphson Iteration
Newton-Raphson algorithm is an iterative search
using both the gradient and the Hessian matrix

uk+1 = uk !
" 2J
"u2 u=uk

#

$
%
%

&

'
(
(

!1

"J
"u u=uk

#

$
%
%

&

'
(
(

T

8

Difficulties with Newton-
Raphson Iteration

•! Good when close to the optimum, but …
•! Hessian matrix (i.e., the curvature) may be

–! Hard to estimate, e.g., large effects of
small errors

–! Locally misleading, e.g., wrong curvature
•! Gradient searches focus on local minima

uk+1 = uk !
" 2J
"u2 u=uk

#

$
%
%

&

'
(
(

!1

"J
"u u=uk

#

$
%
%

&

'
(
(

T

9

Steepest-Descent Algorithm Multiplies
Gradient by a Scalar Constant

uk+1 = uk ! " #J
#u u=uk

$

%
&
&

'

(
)
)

T •! Replace Hessian matrix
by a scalar constant

•! Gradient is orthogonal to
equal-cost contours

10

Choice of Steepest-
Descent Constant

If gain is too small
Convergence is slow

If gain is too large
Convergence oscillates or

may fail

Solution: Make gain adaptive
11

Optimal Steepest-
Descent Gain

Use optimal gain, !*, on each major iteration

Find optimal gain by evaluating cost, J,
for intermediate solutions with same !J !u()

Adjustment rule for !
• Starting estimate, J0

• First estimate, J1, using !
• Second estimate, J2, using 2!

If J2 > J1

• Quadratic fit through three points to find !*
• Else, third estimate, J3, using 4!
• …

12

Gradient Search
Issues

•! Need to evaluate gradient (and possibly Hessian matrix)
•! Not global: gradient searches focus on local minima
•! Convergence may be difficult with noisy or complex

cost functions

uk+1 = uk ! "
J
#u u=uk

$

%
&
&

'

(
)
)

T

uk+1 = uk !
" 2 J
"u2 u=uk

#

$
%
%

&

'
(
(

!1

" J
"u u=uk

#

$
%
%

&

'
(
(

T

Steepest Descent Newton Raphson

13

Gradient-Free Search:
Grid-Based Search

Jo = J uo() = starting guess
J1 = Jo + !J1 uo + !u1() such that J1 < Jo
J2 = J1 + !J2 u1 + !u2() such that J2 < J1

14

Gradient-Free Search:
Random Search

* Select control parameters using a
random number generator

Jo = J uo() = starting guess
J1 = Jo + !J1 uo + !u1() such that J1 < Jo
J2 = J1 + !J2 u1 + !u2() such that J2 < J1

15

Three-Parameter Grid Search
n = 125 n = 1000

•! Regular spacing
•! Fixed resolution
•! Trials grow as mn, where

–! n = Number of parameters
–! m = Resolution

16

Three-Parameter Random
Field Search

Variable spacing and resolution
Arbitrary number of trials

Random space-filling

n = 1000n = 125

17

Directed (Structured) Search
for Minimum Cost

Continuation of grid-based or random search
Localize areas of low cost

Increase sampling density in those areas

18

Directed (Structured) Search
for Minimum Cost

•! Interpolate or extrapolate from one or more starting points

19

Downhill Simplex Search
(Nelder-Mead Algorithm)

•! Simplex: N-dimensional figure in control space
defined by
–! N + 1 vertices
–! (N + 1) N / 2 straight edges between vertices

20https://en.wikipedia.org/wiki/Nelder-Mead_method

Search Procedure for
Downhill Simplex Method

•! Project search from this vertex through middle of opposite
face (or edge for N = 2)
•! Reflection [equal distance along direction]
•! Expansion [longer distance along direction]
•! Contraction [shorter distance along direction]
•! Shrink [replace all but best point with points contracted toward

best point]
•! Evaluate cost at new vertex (e.g., J4 at right)
•! Drop J1 vertex, and form simplex with new vertex
•! Repeat until cost is “small enough” (termination)
•! MATLAB implementation: fminsearch

•! Select starting set of vertices
•! Evaluate cost at each vertex
•! Determine vertex with largest

cost (e.g., J1 at right)

21

Monte Carlo Evaluation of
Systems and Cost Functions

•! Multiple evaluations of a function with
uncertain parameters using
–! Random number generators, and
–! Assumed or measured statistics of parameters

•! Not an exhaustive evaluation of all
parameters

22

Example (from Wikipedia):
Evaluation of " from
percentage of points that
fall within the unit circle
(30,000 trials)

Monte Carlo Evaluation of
Systems and Cost Functions

•! Example: 2-D quadratic function with
added Gaussian noise

•! Each trial generates a different result

[X,Y] = meshgrid(-8:.5:8);
 Z = X.^2 + Y.^2;
 Z1 = Z + 4*randn(33);
 surf(X,Y,Z1)
 colormap hsv
 alpha(.4)

! z = 4()

23

Effect of Increasing
Noise on Cost Function

[X,Y] = meshgrid(-8:.5:8);
 Z = X.^2 + Y.^2;
 Z1 = Z + 4*randn(33);
 surf(X,Y,Z1)
 colormap hsv
 alpha(.4)

! z = 4

! z = 0 ! z = 8

! z = 16

24

Iso-Cost Contours Lose Structure
with Increasing Noise

! z = 4

! z = 0 ! z = 8

! z = 16

25

Effect of Averaging on
Noisy Cost Function

•! One trial

[X,Y] = meshgrid(-8:.5:8);
 Z = X.^2 + Y.^2;
 Z1 = Z + 16*randn(33);
 Z2 = Z1;
% Averaged Z1
 for k = 1:1000
 Z1 = Z + 16*randn(33);
 Z2 = Z1 * (1/(k + 1)) + Z2 * (k/(k+1));
 end
 figure
 surf(X,Y,Z2)
 colormap hsv
 alpha(.4)

•! One trial

•! 1,000 trials

! z = 0

! z = 16

! z = 16

26

Estimating the
Probability of Coin Flips

•! Single coin
–! Exhaustive search: Correct answer in

2 trials
–! Random search (20,000 trials)

•! 21 coins
–! Exhaustive search: Correct answer in

nm = 221 = 2,097,152 trials
–! Random search (20,000 trials)

% Single coin
 x = [];
 prob = round(rand);
 for k = 1:20000
 prob = round(rand) * (1/(k + 1)) + prob * (k/(k+1));
 x = [x prob];
 end
 figure
 plot(x), grid

% 21 coins
 y = [];
 prob = round(rand);
 for k = 1:20000
 for j = 1:21
 coin(j) = round(rand);
 end
 score = sum(coin);
 if score > 10
 result = 1;
 else result = 0;
 end
 prob = result * (1/(k + 1)) + prob * (k/(k+1));
 y = [y prob];
 end
 figure
 plot(y), grid

...

27

Random Search Excels When There
are Many Uncertain Parameters

•! Single coin
–! Exhaustive search: Correct answer in 2

trials
–! Random search (20,000 trials)

•! 21 coins
–! Exhaustive search: Correct answer in

nm = 221 = 2,097,152 trials
–! Random search (20,000 trials)

28

Physical Annealing
•! Produce a strong, hard object made of crystalline material

–! High temperature allows molecules to redistribute to relieve stress,
remove dislocations

–! Gradual cooling allows large, strong crystals to form
–! Low temperature working (e.g., squeezing, bending, drawing, shearing,

and hammering) produces desired crystal structure and shape

Turbojet Engine
Turbines Turbine Blade

Casting Single-Crystal
Turbine Blade

29

Simulated Annealing Algorithm
•! Goal: Find global minimum among local

minima
•! Approach: Randomized search, with

convergence that emulates physical annealing
–! Evaluate cost, Jk

–! Accept if Jk < Jk – 1

–! Accept with probability Pr(E) if Jk > Jk – 1
•! Probability distribution of energy state, E

(Boltzmann Distribution)

Pr(E) ! e"E /kT

k : Boltzmann's constant
T : Temperature

•! Algorithm s cooling schedule accepts many bad
guesses at first, fewer as iteration number, k, increases

•! MATLAB implementation: simulannealbnd (Global
Optimization Toolbox)

30https://en.wikipedia.org/wiki/Simulated_annealing

Application of Annealing
Principle to Search

•! If cost decreases (J2 < J1), always
accept new point

•! If cost increases (J2 > J1), accept new
point with probability proportional to
Boltzmann factor

e! J2 ! J1()/kT

•! Occasional diversion from convergent path intended to prevent
entrapment by a local minimum

•! As search progresses, decrease kT, making probability of
accepting a cost increase smaller

SA Face Morphing
http://www.youtube.com/watch?v=SP3nQKnzexs

Realistic Bird Flight Animation by SA
http://www.youtube.com/watch?v=SoM1nS3uSrY

31

Combination of Simulated
Annealing with Downhill

Simplex Method

•! Same annealing strategy as before
–! If cost decreases (J2 < J1), always

accept new point
–! If cost increases (J2 > J1), accept

new point probabilistically
–! As search progresses, decrease T

•! Introduce random wobble to
simplex search
–! Add random components to costs

evaluated at vertices
–! Project new vertex as before

based on modified costs
–! With large T, this becomes a

random search
–! Decrease random components on

a cooling schedule

J1SA = J1 + !J1 rng()
J2SA = J2 + !J2 rng()
J3SA = J3 + !J3 rng()
... = ...

e! J2 ! J1()/kT

SA Mona Lisa
http://www.youtube.com/watch?v=eHWZcPLRMjQ

32

Genetic Coding:
Replication, Recombination, and Mutation of

Chromosomes

33

Broad Characteristics
of Genetic Algorithms

•! Search based on the coding of a parameter set, not the
parameters themselves

•! Search evolves from a population of points
•! Blind search, i.e., without gradient
•! Probabilistic transitions from one control state to another

(using random number generator)
•! Control parameters assembled as genes of a single

chromosome strand (Example: four 4-bit parameters =
four “genes”)

34
John Holland, 1975

Progression of a
Genetic Algorithm

Most fit chromosome evolves from a sequence
of reproduction, crossover, and mutation

•! Initialize algorithm with N (even)
random chromosomes, cn (two
8-bit genes or parameters in
example)

•! Evaluate fitness, Fn, of each
chromosome

•! Compute total fitness, Ftotal, of
chromosome population

F1

F2

F3

F4

Ftotal = Fn
n=1

N

! Bigger F is better

35

Genetic Algorithm:
Reproduction

•! Reproduce N additional copies of the N
originals with probabilistic weighting
based on relative fitness, Fn /Ftotal, of
originals (Survival of the fittest)

•! Roulette wheel selection:
–! Pr(cn) = Fn /Ftotal
–! Multiple copies of most-fit chromosomes
–! No copies of least-fit chromosomes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Starting Set

Reproduced Set

36

Reproduction Eliminates
Least Fit Chromosomes

Probabilistically

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Starting Set Reproduced Set

37

Genetic Algorithm: Crossover
•! Arrange N new chromosomes in N/2

pairs chosen at random
•! Interchange tails that are cut at

random locations

Head Tail Head Tail

38

Crossover Creates New
Chromosome Population Containing

Old Gene Sequences
Reproduced Set Crossover Set

39

Mutated SetCrossover Set

Flip a bit, 0 -> 1 or 1 -> 0, at
random every 1,000 to 5,000 bits

Genetic Algorithm: Mutation

40

Create New Generations By
Reproduction, Crossover, and Mutation

Until Solution Converges
Fmax and Ftotal increase with

advancing generations
Chromosomes narrow in on best

values with advancing generations

41

MATLAB implementation: ga
(Global Optimization Toolbox)

Comments on GA

•! Short, fit genes tend to survive crossover
•! Random location of crossover

–! produces large and small variations in
genes

–! interchanges genes in chromosomes
•! Multiple copies of best genes evolve
•! Alternative implementations

–! Real numbers rather than binary numbers
–! Retention of elite chromosomes
–! Clustering in fit regions to produce elites

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

GA Mona Lisa
http://www.youtube.com/watch?v=rGt3iMAJVT8

42https://en.wikipedia.org/wiki/
Genetic_algorithm

Particle Swarm
Optimization

•! Converse of the GA: Uses multiple cost evaluations to
guide parameter search directly

•! Stochastic, population-based algorithm
•! Search for optimizing parameters modeled on social

behavior of groups that possess cognitive consistency
•! Particles = Parameter vectors
•! Particles have position and velocity
•! Projection of own best (Local best)
•! Knowledge of swarm s best

–! Neighborhood best
–! Global best

43

Peregrine Falcon Hunting Murmuration of Starlings in Rome
https://www.youtube.com/watch?v=V-mCuFYfJdI

Particle Swarm Optimization

Jargon : argminJ(u) = u*
i.e., argument of J that minimizes J

u: Parameter vector ! "Position" of the particles
v: "Velocity" of u

dim(u) = dim(v) = Number of particles

Recursive algorithm to find best particle
or configuration of particles

44

Find min
u
J(u) = J *(u*)

https://en.wikipedia.org/wiki/Particle_swarm_optimization

Particle Swarm Optimization

•! Local best: RNG, downhill simplex, or SA step for each particle
•! Neighborhood best: argmin of closest n neighboring points
•! Global best: argmin of all particles

45

uk = uk!1 + av k!1
v k = bv k!1 + c ubestlocalk!1 ! uk!1() + d ubestneighborhoodk!1 ! uk!1() + e ubestglobalk!1 ! uk!1()

u0: Starting value from random number generator
v0: Zero

a, b, c, d :Search tuning parameters

Particle Swarm
Optimization

MATLAB implementation: particleswarm
(Global Optimization Toolbox)

46

Comparison of Algorithms in
Caterpillar Gait-Training Example

Y. Bourquin, U. Sussex, BIRG

Performance:
distance traveled

47

Next Time:!
Dynamic Optimal Control!

48

Supplemental Material

49

Rosenbrock Function

J(u1,u2) = 1! u1()2 +100 u2 ! u1
2()2

Typical test function for
numerical optimization

algorithms

Wolfram Alpha
Minimize[(1-u1)^2+100 (u2 - u1^2)^2, u1, u2]

50

Cost Function and Gradient Searches
•! Evaluate J and search for smallest value

Jo = J uo() = starting guess
J1 = Jo + !J1 uo + !u1() such that J1 < Jo
J2 = J1 + !J2 u1 + !u2() such that J2 < J1

! J
!u

"
#$

%
&' o

= ! J
!u u=u0

= starting guess

! J
!u

"
#$

%
&' n

= ! J
!u

"
#$

%
&' n(1

+) ! J
!u

"
#$

%
&' n

= ! J
!u u=un

such that ! J
!u n

< ! J
!u n(1

•! J is a scalar
•! J provides no search direction

•! !J/!u is a vector
•! !J/!u indicates feasible search direction

… until
gradient is
close enough
to zero

Stop when
difference between
Jn and Jn–1 is
negligible

•! Evaluate !J/!u and search for zero

51

Comparison of SA, DS, and GA in
Designing a PID Controller:

ALFLEX Reentry Test Vehicle

Motoda, Stengel, and Miyazawa, 2002 52

Parameter Uncertainties
and Touchdown

Requirements for ALFLEX
Reentry Test Vehicle

53

ALFLEX Pitch Attitude
Control Logic

54

Comparison of SA, DS, and GA in
Designing a PID Controller

55

Genetic Algorithm Applications

Evolution of Locomotion
http://www.youtube.com/watch?v=STkfUZtR-Vs&feature=related

Learning Network Weights for a Flapping Wing Neural-Controller
http://www.youtube.com/watch?v=BfY4jRtcE4c&feature=related

Virtual Creature Evolution
http://www.youtube.com/watch?v=oquKOVfzGfk&NR=1

GA Mona Lisa, 2
http://www.youtube.com/watch?v=A8x4Lyj33Ro&NR=1

56

Examples of Particle
Swarm Optimization

Robot Swarm Animation
http://www.youtube.com/watch?v=RLIA1EKfSys

Learning Robot Control System Gains
http://www.youtube.com/watch?v=itf8NHF1bS0&feature=related

Swarm-Bots Finding a Path and Retrieving Object
http://www.youtube.com/watch?v=Xs_Y22N1r_A

57

Parabolic and Phased-Array
Radar Antenna Patterns

58

Phased-Array Antenna Design
Using Genetic Algorithm or
Particle Swarm Optimization

Boeringer and Warner, 2004

59

Phased-Array Antenna Design
Using Genetic Algorithm

60

Phased-Array Antenna Design Using
Particle Swarm Optimization

61

Comparison of Phased-Array
Antenna Designs

62

Summary of Gradient-Free
Optimization Algorithms

!! Grid search
!! Uniform coverage of search space

!! Random Search
!! Arbitrary placement of test parameters

!! Downhill Simplex Method
!! Robust search of difficult cost function topology

!! Simulated Annealing
!! Structured random search with convergence feature

!! Genetic Algorithm
!! Coding of the parameter set

!! Particle Swarm Optimization
!! Intuitively appealing, efficient heuristic

63

