

Numerical Optimization

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017

- Gradient search
- Gradient-free search
 - Grid-based search
 - Random search
 - Downhill simplex method
- Monte Carlo evaluation
- Simulated annealing
- Genetic algorithms
- Particle swarm optimization

1

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Numerical Optimization

- Previous examples with simple cost function, *J*, could be evaluated analytically
- What if *J* is too complicated to find an analytical solution for the minimum?
- ... or J has multiple minima?
- Use numerical optimization to find *local* and/or *global* solutions

1) Slope and curvature of surface

- a) Evaluate gradient , $\partial J/\partial u$, and search for zero
- b) Evaluate Hessian, $\partial^2 J/\partial u^2$, and search for positive value

2) Evaluate cost, J, and search for smallest value

 $J_{o} = J(\mathbf{u}_{o}) = starting guess$ $J_{1} = J_{o} + \Delta J_{1}(\mathbf{u}_{o} + \Delta \mathbf{u}_{1}) such that \quad J_{1} < J_{o}$ $J_{2} = J_{1} + \Delta J_{2}(\mathbf{u}_{1} + \Delta \mathbf{u}_{2}) such that \quad J_{2} < J_{1}$ Stop when difference between J_{n} and J_{n-1} is negligible

Gradient/Hessian Search to Minimize a <u>Quadratic</u> Function

Cost function, gradient, and Hessian matrix

Guess a starting value of u, u_o

$$J = \frac{1}{2} (\mathbf{u} - \mathbf{u}^*)^T \mathbf{R} (\mathbf{u} - \mathbf{u}^*), \quad \mathbf{R} > \mathbf{0}$$
$$= \frac{1}{2} (\mathbf{u}^T \mathbf{R} \mathbf{u} - \mathbf{u}^T \mathbf{R} \mathbf{u}^* - \mathbf{u}^{*T} \mathbf{R} \mathbf{u} + \mathbf{u}^{*T} \mathbf{R} \mathbf{u}^*)$$

 $\frac{\partial J}{\partial \mathbf{u}} = (\mathbf{u} - \mathbf{u}^*)^T \mathbf{R} = \mathbf{0} \text{ when } \mathbf{u} = \mathbf{u}^*$ $\frac{\partial^2 J}{\partial \mathbf{u}^2} = \mathbf{R} = symmetric \text{ constant} > \mathbf{0}$

$$\frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u}=\mathbf{u}_o} = \left(\mathbf{u}_o - \mathbf{u}^*\right)^T \mathbf{R} = \left(\mathbf{u}_o - \mathbf{u}^*\right)^T \frac{\partial^2 J}{\partial \mathbf{u}^2}\Big|_{\mathbf{u}=\mathbf{u}_o}$$
$$\mathbf{u}_o - \mathbf{u}^*\right)^T = \frac{\partial J}{\partial \mathbf{u}}\Big| \qquad \mathbf{R}^{-1} \quad (row)$$

Solve for u*

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T \quad (column)$$

Optimal Value of Quadratic Function Found in a One Step

- Gradient establishes general search direction
- Hessian fine-tunes direction and tells exactly how far to go

5

Numerical Example

• **Cost function and derivatives** $J = \frac{1}{2} \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right\}$ $\left(\frac{\partial J}{\partial \mathbf{u}} \right)^T = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}; \mathbf{R} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$

First guess at optimal control

Derivatives at starting point

- Solution from starting point

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

Newton-Raphson Iteration

- Many cost functions are not quadratic
- However, the surface is well-approximated by a quadratic in the vicinity of the optimum, u*

$$J(\mathbf{u}^* + \Delta \mathbf{u}) \approx J(\mathbf{u}^*) + \Delta J(\mathbf{u}^*) + \Delta^2 J(\mathbf{u}^*) + \dots$$
$$\Delta J(\mathbf{u}^*) = \Delta \mathbf{u}^T \frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u}=\mathbf{u}^*} = 0$$
$$\Delta^2 J(\mathbf{u}^*) = \Delta \mathbf{u}^T \left[\frac{\partial^2 J}{\partial \mathbf{u}^2}\Big|_{\mathbf{u}=\mathbf{u}^*}\right] \Delta \mathbf{u} \ge 0$$

Optimal solution requires multiple steps

Newton-Raphson Iteration

Newton-Raphson algorithm is an iterative search using both the gradient and the Hessian matrix

Difficulties with Newton-Raphson Iteration

- Good when close to the optimum, but ...
- Hessian matrix (i.e., the curvature) may be
 - Hard to estimate, e.g., large effects of small errors
 - Locally misleading, e.g., wrong curvature
- Gradient searches focus on local minima

Steepest-Descent Algorithm Multiplies Gradient by a Scalar Constant

- Replace Hessian matrix by a scalar constant
- Gradient is orthogonal to equal-cost contours

- Need to evaluate gradient (and possibly Hessian matrix)
- Not global: gradient searches focus on local minima
- Convergence may be difficult with "noisy" or complex cost functions

- *m* = Resolution

Variable spacing and resolution Arbitrary number of trials Random space-filling

17

Directed (Structured) Search for Minimum Cost

Continuation of grid-based or random search Localize areas of low cost Increase sampling density in those areas

Directed (Structured) Search for Minimum Cost

· Interpolate or extrapolate from one or more starting points

19

Downhill Simplex Search (Nelder-Mead Algorithm)

- <u>Simplex</u>: *N*-dimensional figure in control space defined by
 - N+1 vertices
 - (N+1) N/2 straight edges between vertices

Search Procedure for Downhill Simplex Method

- Select starting set of vertices
- Evaluate cost at each vertex
- Determine vertex with largest cost (e.g., J₁ at right)

- Project search from this vertex through middle of opposite face (or edge for N = 2)
 - Reflection [equal distance along direction]
 - Expansion [longer distance along direction]
 - Contraction [shorter distance along direction]
 - Shrink [replace all but best point with points contracted toward best point]
- Evaluate cost at new vertex (e.g., J₄ at right)
- Drop J₁ vertex, and form simplex with new vertex
- Repeat until cost is "small enough" (termination)
- MATLAB implementation: *fminsearch*

21

Monte Carlo Evaluation of Systems and Cost Functions

- Multiple evaluations of a function with uncertain parameters using
 - Random number generators, and
 - Assumed or measured statistics of parameters
- Not an exhaustive evaluation of all parameters

Monte Carlo Evaluation of Systems and Cost Functions

 Example: 2-D quadratic function with added Gaussian noise
 Each trial generates a different result (σ_z = 4)
 [X,Y] = meshgrid(-8:.5:8); Z = X.^A2 + Y.^A2; Z1 = Z + 4*randn(33); surf(X,Y,Z1) colormap hsv alpha(.4)

Iso-Cost Contours Lose Structure with Increasing Noise

25

Effect of Averaging on Noisy Cost Function

Estimating the Probability of Coin Flips

Single coin

- Exhaustive search: Correct answer in 2 trials
- Random search (20,000 trials)
- 21 coins
 - Exhaustive search: Correct answer in $n^m = 2^{21} = 2,097,152$ trials
 - Random search (20,000 trials)

x = [];
prob = round(rand);
for k = 1:20000
prob = round(rand) * (1/(k + 1)) + prob * (k/(k+1));
x = [x prob];
end
figure
plot(x), grid
% 21 coins
y = [];
prob = round(rand);
for k = 1:20000
for j = 1:21
coin(j) = round(rand);
end
score = sum(coin);
if score > 10
result = 1;
else result = 0;
end
prob = result * (1/(k + 1)) + prob * (k/(k+1));
y = [y prob];
end
figure
plot(y), grid

Random Search Excels When There are Many Uncertain Parameters

Single coin

_

6:0

Exhaustive search: Correct answer in 2 trials

Random search (20,000 trials)

21 coins

- Exhaustive search: Correct answer in $n^m = 2^{21} = 2,097,152$ trials
 - Random search (20,000 trials)

Physical Annealing

- Produce a strong, hard object made of crystalline material
 - High temperature allows molecules to redistribute to relieve stress, remove dislocations
 - Gradual cooling allows large, strong crystals to form
 - Low temperature "working" (e.g., squeezing, bending, drawing, shearing, and hammering) produces desired crystal structure and shape

Simulated Annealing Algorithm

- Goal: Find global minimum among local minima
- Approach: Randomized search, with convergence that emulates *physical annealing*
 - Evaluate cost, J_k
 - Accept if $J_k < J_{k-1}$
 - Accept with probability Pr(E) if $J_k > J_{k-1}$
- Probability distribution of energy state, *E* (Boltzmann Distribution)

 $\Pr(E) \propto \overline{e^{-E/kT}}$

- k: Boltzmann's constant
- T: Temperature

- Algorithm's "cooling schedule" accepts many bad guesses at first, fewer as iteration number, k, increases
- MATLAB implementation: simulannealbnd (Global Optimization Toolbox)

https://en.wikipedia.org/wiki/Simulated_annealing

Application of Annealing Principle to Search

- If cost decreases (J₂ < J₁), always accept new point
- If cost increases $(J_2 > J_1)$, accept new point with probability proportional to Boltzmann factor

$$e^{-(J_2-J_1)/kT}$$

- Occasional diversion from convergent path intended to prevent entrapment by a local minimum
- As search progresses, decrease *kT*, making probability of accepting a cost increase smaller

31

Combination of Simulated Annealing with Downhill Simplex Method

- Introduce random "wobble" to simplex search
 - Add random components to costs evaluated at vertices
 - Project new vertex as before based on modified costs
 - With large *T*, this becomes a random search
 - Decrease random components on a "cooling" schedule
- Same annealing strategy as before
 - If cost decreases $(J_2 < J_1)$, always accept new point
 - If cost increases $(J_2 > J_1)$, accept new point probabilistically
 - As search progresses, decrease T

$$J_{1_{SA}} = J_1 + \Delta J_1(rng)$$
$$J_{2_{SA}} = J_2 + \Delta J_2(rng)$$
$$J_{3_{SA}} = J_3 + \Delta J_3(rng)$$
$$\dots = \dots$$

Genetic Coding: Replication, Recombination, and Mutation of Chromosomes

Broad Characteristics of Genetic Algorithms

- Search based on the coding of a parameter set, <u>not the</u> <u>parameters</u> themselves
- Search evolves from a population of points
- "Blind" search, i.e., without gradient
- **Probabilistic transitions** from one control state to another (using random number generator)
- Control parameters assembled as genes of a single chromosome strand (Example: four 4-bit parameters = four "genes")

Progression of a Genetic Algorithm

Most fit chromosome evolves from a sequence of reproduction, crossover, and mutation

Initialize algorithm with *N* (even) • C1 1 1 0 1 0 0 1 0 0 0 1 F_1 random chromosomes, c, (two P1 P₂ 8-bit genes or parameters in F_{2} C₂ 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 example) P. P2 F_3 Evaluate <u>fitness</u>, *F_n*, of each C₃ 0 1 0 0 0 chromosome p. P2 F_4 0 1 0 1 1 1 1 0 C4 0 0 0 1 0 Compute <u>total</u> fitness, *F*_{total}, of chromosome population 0 • p1 p2 $F_{total} = \sum_{n=1}^{N} F_n$ Bigger **F** is better 35

Genetic Algorithm: Reproduction

- Reproduce N additional copies of the N originals with probabilistic weighting based on relative fitness, F_n/F_{total}, of originals (Survival of the fittest)
- Roulette wheel selection:
 - $\mathbf{Pr}(\boldsymbol{c}_n) = \boldsymbol{F}_n / \boldsymbol{F}_{total}$
 - Multiple copies of most-fit chromosomes
 - No copies of least-fit chromosomes

- C₁ 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0
- C₂ 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0
- **c**₃ 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1
- ¢4 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0
- C₂₁ 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1
- C₂₂ 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1
- c23 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0
- C₂₄ 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1

Reproduced Set

- ¢₁₀ 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0
- C₁₀ 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0
- C10
 0
 1
 0
 1
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 1
 1
 0
 1
 0
 0
 1
 1
 0
 1
 0
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
 1
 0
 1
- c₁₃ 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0
- C₁₇ 1 0 1 1 0 1 1 0 1 1 0 0 0
- C₁₅ 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1
- C₂₂ 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1

Reproduction Eliminates Least Fit Chromosomes Probabilistically

Starting Set

Reproduced Set

One or more copies of each remaining chromosome

37

Genetic Algorithm: Crossover

• Arrange *N* new chromosomes in *N*/2 pairs chosen at random

Interchange tails that are cut at random locations

Crossover Creates New Chromosome Population Containing Old Gene Sequences

Create New Generations By Reproduction, Crossover, and Mutation Until Solution Converges

Chromosomes narrow in on best values with advancing generations

F_{max} and *F_{total}* increase with advancing generations

MATLAB implementation: ga (Global Optimization Toolbox)

41

Comments on GA

Particle Swarm Optimization

- Converse of the GA: Uses multiple cost evaluations to guide parameter search directly
- Stochastic, population-based algorithm
- Search for optimizing parameters modeled on social behavior of groups that possess cognitive consistency
- **Particles = Parameter vectors**
- · Particles have position and velocity
- Projection of own best (Local best)
- Knowledge of swarm's best
 - Neighborhood best
 - Global best

Peregrine Falcon Hunting Murmuration of Starlings in Rome https://www.youtube.com/watch?v=V-mCuFYfJdI

43

Particle Swarm Optimization

Find $\min_{\mathbf{u}} J(\mathbf{u}) = J^*(\mathbf{u}^*)$

Jargon : $\operatorname{argmin} J(\mathbf{u}) = \mathbf{u}^*$

i.e., **argument** of J that minimizes J

Recursive algorithm to find best particle or configuration of particles

u: Parameter vector ~ "Position" of the particles
 v: "Velocity" of u
 dim(u) = dim(v) = Number of particles

Comparison of Algorithms in Caterpillar Gait-Training Example

Next Time: Dynamic Optimal Control

Supplemental Material

49

Rosenbrock Function

Cost Function and Gradient Searches

• Evaluate J and search for smallest value

Comparison of SA, DS, and GA in Designing a PID Controller: ALFLEX Reentry Test Vehicle

Parameter Uncertainties and Touchdown Requirements for ALFLEX Reentry Test Vehicle

Category	Number of parameters
Mass parameters	5
Aerodynamics	27
Actuator dynamics	9
Sensor dynamics and error	38
Atmospheric condition	6
Initial condition and error at release	18

Touchdown states	Requirement
Position, ^a m	X > 0, Y < 18
Velocity, m/s	$V_G < 62, \dot{Z} < 3$
Attitude, deg	$\Theta < 23, \Phi < 10, \Psi < 8$
Side slip, deg	$ \beta_G < 8$

53

ALFLEX Pitch Attitude Control Logic

Comparison of SA, DS, and GA in Designing a PID Controller

Table 2 Comparison of three optimization methods				
Parameter	Simulated annealing	Downhill- simplex	Genetic algorithm	
Best design vector d^*				
K _f	0.866	2.95	0.423	
KP	3.88	4.33	4.11	
K_{I}	1.04	2.24	1.08	
KD	3.05	3.31	3.18	
Total simulation number	31,998	13,604	121,552	
Number of evaluated design vectors	66	51	745	

Table 3 Results of 10,000 Monte Carlo evaluations using optimized design parameters					
Method	Cost function J	[Confidence interval]			
Simulated annealing Downhill-simplex Genetic algorithm	0.0135 0.0278 0.0133	[0.012, 0.016] [0.025, 0.031] [0.012, 0.015]			

55

Genetic Algorithm Applications

GA Mona Lisa, 2 http://www.youtube.com/watch?v=A8x4Lyj33Ro&NR=1

Learning Network Weights for a Flapping Wing Neural-Controller http://www.youtube.com/watch?v=BfY4jRtcE4c&feature=related

Virtual Creature Evolution http://www.youtube.com/watch?v=oquKOVfzGfk&NR=1

Evolution of Locomotion http://www.youtube.com/watch?v=STkfUZtR-Vs&feature=related

Examples of Particle Swarm Optimization

Robot Swarm Animation http://www.youtube.com/watch?v=RLIA1EKfSys

Swarm-Bots Finding a Path and Retrieving Object http://www.youtube.com/watch?v=Xs_Y22N1r_A

Learning Robot Control System Gains http://www.youtube.com/watch?v=itf8NHF1bS0&feature=related

57

Parabolic and Phased-Array Radar Antenna Patterns

Phased-Array Antenna Design Using Genetic Algorithm or Particle Swarm Optimization

Phased-Array Antenna Design Using Genetic Algorithm

Phased-Array Antenna Design Using Particle Swarm Optimization

Comparison of Phased-Array Antenna Designs

Summary of Gradient-Free Optimization Algorithms

- Grid search
 - Uniform coverage of search space
- Random Search
 - Arbitrary placement of test parameters
- Downhill Simplex Method
 - Robust search of difficult cost function topology
- Simulated Annealing
 - Structured random search with convergence feature
- Genetic Algorithm
 - Coding of the parameter set
- Particle Swarm Optimization
 - Intuitively appealing, efficient heuristic