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Learning Objectives
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Integrated Effect can 
be a Scalar Cost
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Fuel

Financial cost of time and fuel
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Cost Accumulates 
from Start to Finish

J = fuel flow rate( )
0

final time

! dt
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Optimal System Regulation
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Cost functions that penalize state deviations over a time interval:

Quadratic scalar variation

Vector variation

Weighted vector variation

•! No penalty for control use
•! Why not use infinite control? 4



Cement 
Kiln
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Pulp & Paper Machines

•! Machine length: ~ 2 football 
fields

•! Paper speed " 2,200 m/min = 80 
mph

•! Maintain 3-D paper quality
•! Avoid paper breaks at all cost!
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Paper-Making Machine Operation
https://www.youtube.com/watch?v=6BhEXBAAk24



Hazardous Waste Generated 
by Large Industrial Plants

•! Cement dust
•! Coal fly ash
•! Metal emissions
•! Dioxin
•! Electroscrap  and other 

hazardous waste
•! Waste chemicals
•! Ground water contamination
•! Ancillary mining and logging 

issues
•! Greenhouse  gasses
•! Need to optimize total “cost”-

benefit of production 
processes (including health/
environmental/regulatory 
cost)
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Tradeoffs Between Performance and 
Control in Integrated Cost Function

Trade performance against control usage
Minimize a cost function that contains state and 

control (r: relative importance of the two)
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Dynamic Optimization: !
The Optimal Control Problem

min
u(t )

J = min
u(t )

! x(t f )"# $% + L x(t),u(t)[ ]dt
to

t f

&
'
(
)
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+
,
)
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dx(t)
dt

= f[x(t),u(t)] , x(to ) given

Minimize a scalar function, J, of 
terminal and integral costs

with respect to the control, u(t), in (to,tf),
subject to a dynamic constraint

dim(x) = n x 1
dim(f) = n x 1
dim(u) = m x 1
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Example of Dynamic Optimization

Fuel Used, kg

Thrust, N

Angle of Attack, deg

Any deviation from optimal thrust and angle-of-attack 
profiles would increase total fuel used

Optimal control profile
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Components of the Cost Function

! x(t f )"# $% positive scalar function of a vector

Terminal cost is a function of the state at 
the final time

L x(t),u(t)[ ]dt
to

t f

! positive scalar function of two vectors

Integral cost is a function of the state and 
control from start to finish

L x(t),u(t)[ ] : Lagrangian of the cost function
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Components of the Cost Function
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Lagrangian examples

L x(t),u(t)[ ] =

1
dm dt
d$ dt
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Terminal cost examples

! x(t f )"# $% =
x(t f )& xGoal
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Example: Dynamic Model of 
Infection and Immune Response

•! x1 =  Concentration of a pathogen, 
which displays antigen

•! x2 = Concentration of plasma cells, 
which are carriers and producers 
of antibodies

•! x3 = Concentration of antibodies, 
which recognize antigen and kill 
pathogen

•! x4 = Relative characteristic of a 
damaged organ [0 = healthy, 1 = 
dead]
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Natural Response to Pathogen 
Assault (No Therapy)
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Cost Function Considers Infection, 
Organ Health, and Drug Usage 

•! Tradeoffs between final values, integral values over a 
fixed time interval, state, and control

•! Cost function includes weighted square values of
–! Final concentration of the pathogen
–! Final health of the damaged organ (0 is good, 1 is bad)
–! Integral of pathogen concentration
–! Integral health of the damaged organ (0 is good, 1 is bad)
–! Integral of drug usage

•! Drug cost may reflect physiological or financial cost
15

min
u(t )

J = min
u(t )

! x(t f )"# $% + L x(t),u(t)[ ]dt
to
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Necessary Conditions 
for Optimal Control!
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Augment the Cost Function

J = ! x(t f )"# $% + L x(t),u(t)[ ]+ &&T (t) f[x(t),u(t)]' dx(t)
dt

"
#(

$
%)

*
+
,

-
.
/
dt

to

t f

0

•! Must express sensitivity of the cost to the dynamic response
•! Adjoin dynamic constraint to integrand using Lagrange 

multiplier, #(t)
–!Same dimension as the dynamic constraint, [n x 1]
–!Constraint = 0 when the dynamic equation is satisfied
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min
u(t )

J = J*= ! x*(t f )"# $% + L x*(t),u*(t)[ ]+ &&*T (t) f[x*(t),u*(t)]' dx*(t)
dt

"
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$
%)

*
+
,

-
.
/
dt

to

t f

0

•! Optimization goal is to minimize J with respect to u(t) in (to,tf),

Substitute the Hamiltonian !
in the Cost Function

J = ! x(t f )"# $% + H x(t),u(t),&&(t)[ ]' &&T (t) dx(t)
dt

(
)
*

+
,
-to

t f

. dt

The optimal cost, J*, is produced by the optimal histories of 
state, control, and Lagrange multiplier

Substitute the Hamiltonian in the cost function

min
u(t )

J = J*= ! x*(t f )"# $% + H x*(t),u*(t),&& *(t)[ ]' && *T (t) dx*(t)
dt

(
)
*

+
,
-to

t f

. dt
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 H (x,u,!!) ! L(x,u) + !!T f x,u( )
Define Hamiltonian, H[.]



Integration by Parts

udv = uv ! vdu""

•! Vector definite integral

•! Scalar indefinite integral

!!T (t) dx(t)
dt

dt =
t0

t f

" !!T (t)x(t)
t0

t f # d!!T (t)
dt

x(t)dt
t0

t f

"

 

u = !!T (t)
dv = !x(t)dt = dx
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The Optimal Control Solution
•! Along the optimal trajectory, the cost, J*,  

should be insensitive to small variations in 
control policy
•! To first order,

!J*= "#
" x
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t=t f
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Setting                   leads to 
three necessary conditions for optimality

!J* = 0
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!x(!u) is arbitrary perturbation in state due to 

perturbation in control over the time interval, t0,t f( ).



Three Conditions 
for Optimality

1) !"
!x

# $$T%
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)* t= t f

= 0

Individual terms should remain zero 
for arbitrary variations in 

3) !H
!u

= 0 in t0 ,t f( )

2) !H
!x

+ d""
T
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Solution for Lagrange Multiplier

Insensitivity to Control Variation

!
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!
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#
$ u * t( )  in to,t f( )

!x t( )  and !u t( )
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Iterative Numerical Optimization 
Using Steepest-Descent

•! Forward solution to find the state, x(t)
•! Backward solution to find the Lagrange multiplier,
•! Steepest-descent adjustment of control history, u(t)
•! Iterate to find the optimal solution

 

!xk (t) = f[xk (t),uk!1(t)] ,
with
x(to ) given

uk!1(t)  prescribed in to,t f( )
k =   Iteration index

Use educated guess for u(t) on first iteration

!! t( )
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Numerical Optimization 
Using Steepest-Descent

•! Forward solution to find the state, x(t)
•! Backward solution to find the Lagrange multiplier, 
•! Steepest-descent adjustment of control history, u(t)
•! Iterate to optimal solution

!! k (t f ) =
"#[xk (t f )]

"x
$
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)
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       Boundary condition at final time
Calculated from terminal value of the state
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Numerical Optimization 
Using Steepest-Descent

uk (t) = uk!1(t)! "
#H
#u

$
%&

'
()k

T

= uk!1(t)! "
# L
#u x(t )=xk (t )

u(t )=uk!1(t )

+ ** k
T t( ) # f

#u x(t )=xk (t )
u(t )=uk!1(t )
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•! Forward solution to find the state, x(t)
•! Backward solution to find the Lagrange multiplier,  
•! Steepest-descent adjustment of control history, u(t)
•! Iterate to optimal solution

!! t( )

! :   Steepest-descent gain 24



Optimal Treatment 
of an Infection!

25

Dynamic Model for the Infection 
Treatment Problem

Nonlinear Dynamics of Innate 
Immune Response and Drug Effect

 

!x1 = (a11 ! a12x3)x1 + b1u1
!x2 = a21(x4 )a22x1x3 ! a23(x2 ! x2*)+ b2u2
!x3 = a31x2 ! (a32 + a33x1)x3 + b3u3
!x4 = a41x1 ! a42x4 + b4u4

dx(t)
dt

= f[x(t),u(t)] , x(to ) given

26



 

J = 1
2
s11x1 f

2 + s44x4 f

2( ) + 1
2

q11x1
2 + q44x4

2 + ru2( )dt
to

t f

!

Optimal Treatment with 
Four Drugs (separately)

Unit Cost 
Weights
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Control Cost 
Weight = 100

Increased Cost of Drug Use

28



Accounting for Uncertainty 
in Initial Condition!

29

Account for Uncertainty in Initial 
Condition and Unknown Disturbances

Neighboring-Optimal (Feedback) Control

Nominal, Open-Loop Optimal Control

30

!u(t) = "C(t) x(t)" x*(t)[ ]

u(t) = u*(t)+ !u(t)

u*(t) = uopt (t)



Neighboring-Optimal Control

 

!x(t) = !x*(t)+ !!x(t)
= f{[x*(t)+ !x(t)],[u*(t)+ !u(t)]]}
" f[x*(t),u*(t)]+ F(t)!x(t)+G(t)!u(t)

Linearize dynamic equation

•! Nominal optimal control history
•! Optimal perturbation control
•! Sum the two for neighboring-

optimal control

!u(t) = "C(t) x(t)" xopt (t)#$ %&

u * (t) = uopt (t)

u(t) = uopt (t)+ !u(t)
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Optimal Feedback 
Gain, C(t)

!u * (t) = "C * (t) !x(t)

•! Solution of Euler-Lagrange equations for 
–! Linear dynamic system
–! Quadratic cost function  

•! leads to linear, time-varying (LTV) optimal 
feedback controller

 

!S(t) = !FT (t)S(t)! S(t)F(t)+ S(t)G(t)R!1GT (t)S(t)!Q
S(t f ) = S f

where C*(t) = R!1GT (t)S(t)

Matrix Riccati equation (see 
Supplemental Material for derivation) 32



u(t) = u*(t)!C(t)"x(t)
= u*(t)!C(t)[x(t)! x*(t)]

50% Increased Initial Infection and Scalar 
Neighboring-Optimal Control (u1)
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Optimal, Constant Gain 
Feedback Control for Linear, 

Time-Invariant Systems!
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Linear-Quadratic (LQ) Optimal 
Control Law

35

 !!x(t) = F t( )!x t( ) +G t( )!u t( )

 !!x(t) = F t( )!x t( ) +G t( ) !uC t( )" C* t( )!x t( )#$ %&

Optimal Control for !
Linear, Time-Invariant Dynamic Process

min
u
J = J*= lim

t f!"

1
2

#x*T (t)Q#x*(t)+ #u*T (t)R#u*(t)$% &'
0

t f

( dt

Original system is linear and time-invariant (LTI)

Minimize quadratic cost function for tf -> $
Terminal cost is of no concern 

 !!x(t) = F!x(t)+G!u(t), !x 0( )   given

Dynamic constraint is the linear, 
time-invariant (LTI) plant
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Linear-Quadratic (LQ) Optimal 
Control for LTI System, and 

 
!S * (0) !

t f !"
0

Steady-state solution of the matrix Riccati equation = 
Algebraic Riccati Equation

!FTS *!S *F + S *G *R!1GTS *!Q = 0

!u(t) = "C*! x(t)

C*= R!1GTS*
m " n( ) = m "m( ) m " n( ) n " n( )

MATLAB function: lqr

Optimal control gain matrix

Optimal control

t f !"
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Example: Open-Loop Stable and 
Unstable Second-Order System 

Response to Initial Condition

Stable Eigenvalues =
  –0.5000 + 3.9686i
  –0.5000 - 3.9686i

Unstable Eigenvalues =
   +0.2500 + 3.9922i
   +0.2500 - 3.9922i

38



r = 1
Control Gain (C*) =
    0.2620    1.0857

Riccati Matrix (S*) =
    2.2001    0.0291
    0.0291    0.1206

Closed-Loop Eigenvalues =
   –6.4061
   –2.8656

r = 100
Control Gain (C*) =
    0.0028    0.1726

Riccati Matrix (S*) =
   30.7261    0.0312
    0.0312    1.9183

Closed-Loop Eigenvalues =
  –0.5269 + 3.9683j
  –0.5269 - 3.9683j

min
!u

J = min
!u

1
2

!x1
2 + !x2

2 + r!u2( )dt
0

"

#
$

%
&

'

(
)

!u(t) = " c1 c2#
$

%
&

!x1(t)
!x2 (t)

#

$
'
'

%

&
(
(
= "c1!x1(t)" c2!x2 (t)

Example: LQ Regulator Stabilizes 
Unstable System, r = 1 and 100
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Example: LQ Regulator Stabilizes 
Unstable System, r = 1 and 100

40



Requirements for Guaranteeing 
Stability of the LQ Regulator

 !!x(t) = F!x(t) +G!u(t) = F "GC[ ]!x(t)
Closed-loop system is stable whether or 

not open-loop system is stable if ...
Q > 0
R > 0

 
Rank G FG ! Fn!1G"# $% =  n

... and (F,G) is a controllable pair

41

Next Time:!
Formal Logic, Algorithms, 

and Incompleteness!
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SSuupppplleemmeennttaarryy  MMaatteerriiaall!!
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Linearized Model of 
Infection Dynamics

 

!!x1
!!x2
!!x3
!!x4
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=

(a11 ( a12x3*) 0 (a12x1 * 0

a21(x4*)a22x3 * a23 a21(x4*)a22x1 *
)a21
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a41 0 0 (a42
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"
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0 b2 0 0
0 0 b3 0
0 0 0 b4
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!u1
!u2
!u3
!u4

"
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&
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!w1
!w2
!w3

!w4

"
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$
$
$
$
$

%

&

'
'
'
'
'

Locally linearized (time-varying) dynamic equation
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Expand Optimal Control Function

 

J x*(to )+ !x(to )[ ], x*(t f )+ !x(t f )"# $%{ } !
J * x*(to ),x*(t f )"# $% + !J !x(to ),!x(t f )"# $% + !2J !x(to ),!x(t f )"# $%

•! Nominal optimized cost, plus nonlinear dynamic constraint

•! Expand optimized cost function to second degree

 

J * x*(to ),x*(t f )!" #$ =% x*(t f )!" #$ + L x*(t),u*(t)[ ]
to

t f

& dt

subject to nonlinear dynamic equation
!x*(t) = f x*(t),u*(t)[ ], x(to ) = xo

= J * x *(to ),x *(t f )!" #$ + %2J %x(to ),%x(t f )!" #$
as First Variation, %J %x(to ),%x(t f )!" #$ = 0
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Second Variation of the Cost Function

Cost weighting matrices expressed as

Objective: Minimize second-variational cost subject to 
linear dynamic constraint

 

min
!u

!2J = 1
2
!xT (t f )"xx (t f )!x(t f )+

1
2

!xT (t) !uT (t)#
$

%
&

Lxx (t) Lxu(t)
Lux (t) Luu(t)

#

$
'
'

%

&
(
(

!x(t)
!u(t)

#

$
'
'

%

&
(
(to

t f

) dt
*
+
,

-,

.
/
,

0,
subject to perturbation dynamics

!!x(t) = F(t)!x(t)+G(t)!u(t), !x(to ) = !xo

 

S(t f ) ! !xx (t f ) =
"2!
"x2

(t f )

Q(t) M(t)
MT (t) R(t)

#

$
%
%

&

'
(
(
!

Lxx (t) Lxu(t)
Lux (t) Luu(t)

#

$
%
%

&

'
(
(

dim S(t f )!" #$ = dim Q(t)[ ] = n % n
dim R(t)[ ] = m % m
dim M(t)[ ] = n % m
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Second Variational Hamiltonian 

!2J =
1
2
!xT (t f )S(t f )!x(t f ) +

1
2

!xT (t) !uT (t)"
#

$
%

Q(t) M(t)
MT (t) R(t)

"

#
&
&

$

%
'
'

!x(t)
!u(t)

"

#
&
&

$

%
'
'
dt

to

t f

(
)
*
+

,+

-
.
+

/+

H !x(t),!u(t),!"" t( )#$ %& = L !x(t),!u(t)[ ]+ !""T t( )f !x(t),!u(t)[ ]
= 1
2

!xT (t)Q(t)!x(t)+ 2!xT (t)M(t)!u(t)+ !uT (t)R(t)!u(t)#$ %&

+!""T t( ) F(t)!x(t)+G(t)!u(t)[ ]

Variational Lagrangian plus adjoined dynamic constraint

Variational cost function

= 1
2
!xT (t f )S(t f )!x(t f )+

1
2

!xT (t)Q(t)!x(t)+ 2!xT (t)M(t)!u(t)+ !uT (t)R(t)!u(t)"# $%dt
to

t f

&
'
(
)

*)

+
,
)

-)
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Second Variational Euler-
Lagrange Equations

H = 1
2

!xT (t)Q(t)!x(t)+ 2!xT (t)M(t)!u(t)+ !uT (t)R(t)!u(t)"# $%

+!&&T t( ) F(t)!x(t)+G(t)!u(t)[ ]

!"" t f( ) = #xx (t f )!x(t f ) = S(t f )!x(t f )
Terminal condition, solution for adjoint 

vector, and optimality condition

 
! !"" t( ) = #

$H !x(t),!u(t),!"" t( )%& '(
$x

)
*
+

,+

-
.
+

/+

T

= #Q(t)!x(t) #M(t)!u(t) # FT (t)!"" t( )

!H "x(t),"u(t),"## t( )$% &'
!u

(
)
*

+*

,
-
*

.*

T

=MT (t)"x(t) + R(t)"u(t) /GT (t)"## t( ) = 0
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Use Control Law to Solve the Two-
Point Boundary-Value Problem

!u(t) = "R"1(t) MT (t)!x(t)+GT (t)!## t( )$% &'

Boundary conditions at initial and final times
 

!!x(t)
! !"" t( )

#

$
%
%

&

'
(
(
=

F(t) )G(t)R)1(t)MT (t)#$ &' )G(t)R)1(t)GT (t)

)Q(t) +M(t)R)1(t)MT (t)#$ &' ) F(t) )G(t)R)1(t)MT (t)#$ &'
T

*
+
,

-,

.
/
,

0,

!x(t)
!"" t( )

#

$
%
%

&

'
(
(

!x(to )

!"" t f( )
#

$

%
%

&

'

(
(
=

!xo

S f!x f

#

$
%
%

&

'
(
(

Perturbation state vector
Perturbation adjoint vector

From Hu = 0

Substitute for control in system and adjoint  equations
Two-point boundary-value problem

49

Use Control Law to Solve the Two-
Point Boundary-Value Problem
Suppose that the terminal adjoint relationship applies 

over the entire interval

!"" t( ) = S t( )!x t( )
Feedback control law becomes

 

!u(t) = "R"1(t) MT (t)!x(t)+GT (t)S t( )!x t( )#$ %&
= "R"1(t) MT (t)+GT (t)S t( )#$ %&!x t( )
! "C(t)!x t( ) dim C( ) = m ! n
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Linear-Quadratic (LQ) Optimal 
Control Gain Matrix

•! Properties of feedback gain matrix
–! Full state feedback (m x n)
–! Time-varying matrix
–! R, G, and M given

•! Control weighting matrix, R
•! State-control weighting matrix, M
•! Control effect matrix, G

–! S(t) remains to be determined

!u(t) = "C(t)!x t( )

C(t) = R!1(t) GT (t)S t( ) +MT (t)"# $%

•! Optimal feedback gain matrix

51

Solution for the Adjoining 
Matrix, S(t)

 !
!"" t( ) = !S t( )!x t( ) + S t( )!!x t( )

 
!S t( )!x t( ) = ! !"" t( ) # S t( )!!x t( )

Time-derivative of adjoint vector

Rearrange

Recall

 

!!x(t)
! !"" t( )

#

$
%
%

&

'
(
(
=

F(t) )G(t)R)1(t)MT (t)#$ &' )G(t)R)1(t)GT (t)

)Q(t) +M(t)R)1(t)MT (t)#$ &' ) F(t) )G(t)R)1(t)MT (t)#$ &'
T

*
+
,

-,

.
/
,

0,

!x(t)
!"" t( )

#

$
%
%

&

'
(
(
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Solution for the Adjoining 
Matrix, S(t)

Substitute

!"" t( ) = S t( )!x t( )

 

!S t( )!x t( ) = "Q(t) +M(t)R"1(t)MT (t)#$ %&!x t( ) " F(t) "G(t)R"1(t)MT (t)#$ %&
T
S t( )!x t( )

" S t( ) F(t) "G(t)R"1(t)MT (t)#$ %&!x t( ) "G(t)R"1(t)GT (t)S t( )!x t( ){ }
%x(t) can be eliminated
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!S t( )!x t( ) = "Q(t) +M(t)R"1(t)MT (t)#$ %&!x t( ) " F(t) "G(t)R"1(t)MT (t)#$ %&
T
!'' t( )

" S t( ) F(t) "G(t)R"1(t)MT (t)#$ %&!x t( ) "G(t)R"1(t)GT (t)!'' t( ){ }

Substitute

Matrix Riccati Equation for S(t)

•! Characteristics of the Riccati matrix, S(t)
–! S(tf) is symmetric, n x n, and typically positive semi-definite
–! Matrix Riccati equation is symmetric
–! Therefore, S(t) is symmetric and positive semi-definite throughout

•! Once S(t) has been determined, optimal feedback control gain matrix, 
C(t) can be calculated

 

!S t( ) = !Q(t)+M(t)R!1(t)MT (t)"# $% ! F(t)!G(t)R!1(t)MT (t)"# $%
T
S t( )

!S t( ) F(t)!G(t)R!1(t)MT (t)"# $% + S t( )G(t)R!1(t)GT (t)S t( )
S t f( ) = &xx t f( )

The result is a nonlinear, ordinary differential equation for S(t), with 
terminal boundary conditions

54



Neighboring-Optimal (LQ) 
Feedback Control Law 

!u(t) = "R"1(t) MT (t) +GT (t)S t( )#$ %&!x t( ) = "C(t)!x t( )
Full state is fed back to all available controls

u(t) = u * (t) !C(t)"x t( ) = u * (t) !C(t) x t( ) ! x * t( )#$ %&

Optimal control history plus feedback correction
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Nonlinear System with 
Neighboring-Optimal 

Feedback Control 
Nonlinear dynamic system

 !x(t) = f x t( ),u(t)!" #$

u(t) = u * (t) !C(t)"x t( ) = u * (t) !C(t) x t( ) ! x * t( )#$ %&

 
!x(t) = f x t( ), u * (t) !C(t) x t( ) ! x * t( )"# $%"# $%{ }

Neighboring-optimal control law

Nonlinear dynamic system with neighboring-optimal 
feedback control
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Example: Response of Stable Second-
Order System to Random Disturbance

Eigenvalues = –1.1459, –7.8541
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Example: Disturbance Response of Unstable 
System with LQ Regulators, r = 1 and 100
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Equilibrium Response to 
a Command Input!

59

Steady-State Response to 
Commands

 

!!x(t) = F!x(t)+G!u(t)+L!w(t),
!x(to ) given

!y(t) = Hx!x(t)+Hu!u(t)+Hw!w(t)

State equilibrium with constant inputs ...
0 = F!x*+G!u*+L!w*

!x*= "F"1 G!u*+L!w*( )

!y* = Hx!x *+Hu!u *+Hw!w *
... constrained by requirement to satisfy command input
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Steady-State Response to 
Commands

Equilibrium that satisfies a commanded input, %yC

0
!yC

"

#
$
$

%

&
'
'
=

F G
Hx Hu

"

#
$
$

%

&
'
'

!x *
!u *

"

#
$

%

&
' +

L
Hw

"

#
$
$

%

&
'
'
!w *

(n + r) x (n + m)

Combine equations

0 = F!x*+G!u*+L!w*
!y*= Hx!x*+Hu!u*+Hw!w*
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Equilibrium Values of State and 
Control to Satisfy Commanded Input

Equilibrium that satisfies a commanded input, %yC

 

!x*
!u*

"

#
$

%

&
' =

F G
Hx Hu

"

#
$
$

%

&
'
'

(1
(L!w*

!yC (Hw!w*
"

#
$
$

%

&
'
'

! A(1 (L!w*
!yC (Hw!w*

"

#
$
$

%

&
'
'

A must be square for inverse to exist
Then, number of commands = number of controls
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Inverse of the Matrix

Bij have same dimensions as equivalent blocks of A
Equilibrium that satisfies a commanded input, %yC

 

F G
Hx Hu

!

"
#
#

$

%
&
&

'1

! A'1 = B =
B11 B12
B21 B22

!

"
#
#

$

%
&
&

!x* = "B11L!w *+B12 !yC "Hw!w *( )
!u* = "B21L!w *+B22 !yC "Hw!w *( )

!x*
!u*

"

#
$

%

&
' =

B11 B12
B21 B22

"

#
$
$

%

&
'
'

(L!w*
!yC (Hw!w*

"

#
$
$

%

&
'
'
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Elements of Matrix Inverse and 
Solutions for Open-Loop Equilibrium

B11 B12
B21 B22

!

"
#
#

$

%
&
&
=

F'1 'GB21 + In( ) 'F'1GB22

'B22HxF
'1 'HxF

'1G +Hu( )'1
!

"

#
#
#

$

%

&
&
&

Substitution and elimination (see Supplement)

Solve for B22, then B12 and B21, then B11

!x*= B12!yC " B11L+B12Hw( )!w*
!u*= B22!yC " B21L+B22Hw( )!w*

64



LQ Regulator with Command Input 
(Proportional Control Law)

!u(t) = !uC (t) "C!x t( )
How do we define %uC(t)?
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Non-Zero Steady-State Regulation 
with LQ Regulator

Command input provides equivalent state and 
control values  for the LQ regulator

!u(t) = !u*(t)"C !x t( )" !x* t( )#$ %&
= B22!y*"C !x t( )"B12!y*#$ %&
= B22 +CB12( )!y*"C!x t( )

Control law with command input
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LQ Regulator with Forward 
Gain Matrix

!u(t) = !u*(t)"C !x t( )" !x* t( )#$ %&
= CF!y*"CB!x t( )

!! Disturbance affects the system, 
whether or not it is measured

!! If measured, disturbance effect of 
can be countered by CD 
(analogous to CF) 67

 

CF ! B22 +CB12
CB ! C


