

Design of optimal feedback control laws

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

1

3

Optimal System Regulation

Cost functions that penalize state deviations over a time interval:

Pulp & Paper Machines

- Machine length: ~ 2 football fields
- Paper speed ≤ 2,200 m/min = 80 mph
- Maintain 3-D paper quality
- Avoid paper breaks at all cost!

Paper-Making Machine Operation https://www.youtube.com/watch?v=6BhEXBAAk24

Hazardous Waste Generated by Large Industrial Plants

- Cement dust
- Coal fly ash
- Metal emissions
- Dioxin
- "Electroscrap" and other hazardous waste
- Waste chemicals
- Ground water contamination
- Ancillary mining and logging issues
- "Greenhouse" gasses
- Need to optimize <u>total</u> "cost"benefit of production processes (including health/ environmental/regulatory cost)

Tradeoffs Between Performance and Control in Integrated Cost Function

Trade performance against control usage Minimize a cost function that contains state and control (*r*: relative importance of the two)

7

Dynamic Optimization: The Optimal Control Problem

Minimize a scalar function, *J*, of terminal and integral costs

$$\min_{\mathbf{u}(t)} J = \min_{\mathbf{u}(t)} \left\{ \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} L \left[\mathbf{x}(t), \mathbf{u}(t) \right] dt \right\}$$

with respect to the control, u(t), in (t_o, t_f) , subject to a dynamic constraint

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)], \quad \mathbf{x}(t_o) \text{ given} \qquad \begin{array}{c} \dim(\mathbf{x}) = n \times 1 \\ \dim(\mathbf{f}) = n \times 1 \\ \dim(\mathbf{u}) = m \times 1 \end{array}$$

9

Example of Dynamic Optimization

<u>Any</u> deviation from optimal thrust and angle-of-attack profiles would increase total fuel used

Components of the Cost Function

Integral cost is a function of the state and control from start to finish

 $\int_{t_o} L[\mathbf{x}(t), \mathbf{u}(t)] dt \quad \text{positive scalar function of two vectors}$

 $L[\mathbf{x}(t), \mathbf{u}(t)]$: Lagrangian of the cost function

Terminal cost is a function of the state at the final time

 $\phi \left[\mathbf{x}(t_f) \right]$ positive scalar function of a vector

11

Components of the Cost Function

Lagrangian examples

$$L[\mathbf{x}(t), \mathbf{u}(t)] = \begin{cases} 1 \\ dm/dt \\ d\$/dt \\ \frac{1}{2} [\mathbf{x}^{T}(t)\mathbf{Q}\mathbf{x}(t) + \mathbf{u}(t)\mathbf{R}\mathbf{u}(t)] \end{cases}$$

Terminal cost examples $\phi \left[\mathbf{x}(t_f) \right] = \begin{cases} \left| \mathbf{x}(t_f) - \mathbf{x}_{Goal} \right| \\ \frac{1}{2} \left[\mathbf{x}(t_f) - \mathbf{x}_{Goal} \right]^2 \end{cases}$

Example: Dynamic Model of Infection and Immune Response

- x_1 = Concentration of a pathogen, which displays antigen
- x₂ = Concentration of plasma cells, which are carriers and producers of antibodies
- x₃ = Concentration of antibodies, which recognize antigen and kill pathogen
- x₄ = Relative characteristic of a damaged organ [0 = healthy, 1 = dead]

Cost Function Considers Infection, Organ Health, and Drug Usage

$$\min_{\mathbf{u}(t)} J = \min_{\mathbf{u}(t)} \left\{ \phi \Big[\mathbf{x}(t_f) \Big] + \int_{t_o}^{t_f} L \big[\mathbf{x}(t), \mathbf{u}(t) \big] dt \right\}$$
$$= \min_{u} \left[\frac{1}{2} \Big(s_{11} x_{1_f}^2 + s_{44} x_{4_f}^2 \Big) + \frac{1}{2} \int_{t_o}^{t_f} \Big(q_{11} x_1^2 + q_{44} x_4^2 + r u^2 \Big) dt \right]$$

- Tradeoffs between final values, integral values over a fixed time interval, state, and control
- Cost function includes weighted square values of
 - Final concentration of the pathogen
 - Final health of the damaged organ (0 is good, 1 is bad)
 - Integral of pathogen concentration
 - Integral health of the damaged organ (0 is good, 1 is bad)
 - Integral of drug usage
- Drug cost may reflect physiological or financial cost

15

Necessary Conditions for Optimal Control

Augment the Cost Function

- Must express sensitivity of the cost to the dynamic response
- Adjoin dynamic constraint to integrand using Lagrange multiplier, λ(t)
 - Same dimension as the dynamic constraint, [n x 1]
 - Constraint = 0 when the dynamic equation is satisfied

$$J = \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} \left\{ L \left[\mathbf{x}(t), \mathbf{u}(t) \right] + \lambda^T (t) \left[\mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t) \right] - \frac{d\mathbf{x}(t)}{dt} \right] \right\} dt$$

• Optimization goal is to minimize J with respect to u(t) in (t_o, t_f) ,

$$\min_{\mathbf{u}(t)} J = J^* = \phi \Big[\mathbf{x}^*(t_f) \Big] + \int_{t_o}^{t_f} \left\{ L \Big[\mathbf{x}^*(t), \mathbf{u}^*(t) \Big] + \frac{\lambda^{*T}(t)}{h} \Big[\mathbf{f} [\mathbf{x}^*(t), \mathbf{u}^*(t)] - \frac{d\mathbf{x}^*(t)}{dt} \Big] \right\} dt$$

1	7

Substitute the Hamiltonian in the Cost Function

Define Hamiltonian, H[.]

$$H(\mathbf{x},\mathbf{u},\boldsymbol{\lambda}) \triangleq L(\mathbf{x},\mathbf{u}) + \boldsymbol{\lambda}^T \mathbf{f}(\mathbf{x},\mathbf{u})$$

Substitute the Hamiltonian in the cost function

$$J = \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} \left\{ H \left[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t) \right] - \boldsymbol{\lambda}^T(t) \frac{d\mathbf{x}(t)}{dt} \right\} dt$$

The optimal cost, *J**, is produced by the optimal histories of state, control, and Lagrange multiplier

$$\min_{\mathbf{u}(t)} J = J^* = \phi \Big[\mathbf{x}^*(t_f) \Big] + \int_{t_o}^{t_f} \bigg\{ H \Big[\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\lambda}^*(t) \Big] - \boldsymbol{\lambda}^{*T}(t) \frac{d\mathbf{x}^*(t)}{dt} \bigg\} dt$$
18

Integration by Parts

Scalar indefinite integral

$$\int u \, dv = uv - \int v \, du$$

Vector definite integral

 $u = \lambda^{T}(t)$ $dv = \dot{\mathbf{x}}(t)dt = d\mathbf{x}$

$$\int_{t_0}^{t_f} \boldsymbol{\lambda}^T(t) \frac{d\mathbf{x}(t)}{dt} dt = \boldsymbol{\lambda}^T(t) \mathbf{x}(t) \Big|_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d\boldsymbol{\lambda}^T(t)}{dt} \mathbf{x}(t) dt$$

19

The Optimal Control Solution

 Along the optimal trajectory, the cost, *J**, should be insensitive to small variations in control policy

• To first order,

$$\Delta J^* = \left\{ \left[\frac{\partial \phi}{\partial x} - \lambda^T \right] \right\} \Delta \mathbf{x} (\Delta \mathbf{u}) \bigg|_{t=t_f} + \left[\lambda^T \Delta \mathbf{x} (\Delta \mathbf{u}) \right]_{t=t_o} + \int_{t_o}^{t_f} \left\{ \frac{\partial H}{\partial \mathbf{u}} \Delta \mathbf{u} + \left[\frac{\partial H}{\partial \mathbf{x}} + \frac{d\lambda^T}{dt} \right] \Delta \mathbf{x} (\Delta \mathbf{u}) \right\} dt = \mathbf{0}$$

 $\Delta \mathbf{x}(\Delta \mathbf{u})$ is arbitrary perturbation in state due to perturbation in control over the time interval, (t_0, t_f) .

Setting $\Delta J^* = 0$ leads to three necessary conditions for optimality

Iterative Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- Iterate to find the optimal solution

Use educated guess for u(t) on first iteration

Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- Iterate to optimal solution

Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- Iterate to optimal solution

$$\mathbf{u}_{k}(t) = \mathbf{u}_{k-1}(t) - \varepsilon \left[\frac{\partial H}{\partial \mathbf{u}} \right]_{k}^{T}$$

= $\mathbf{u}_{k-1}(t) - \varepsilon \left[\frac{\partial L}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} + \lambda_{k}^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} \right]^{T}$
 ε : Steepest-descent gain

24

Optimal Treatment of an Infection

25

Dynamic Model for the Infection Treatment Problem

Optimal Treatment with Four Drugs (separately)

Accounting for Uncertainty in Initial Condition

Account for Uncertainty in Initial Condition and Unknown Disturbances

Nominal, Open-Loop Optimal Control

Neighboring-Optimal (Feedback) Control

29

 $\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}^*(t) + \Delta \dot{\mathbf{x}}(t)$ $= \mathbf{f} \{ [\mathbf{x}^*(t) + \Delta \mathbf{x}(t)], [\mathbf{u}^*(t) + \Delta \mathbf{u}(t)] \}$ $\approx \mathbf{f} [\mathbf{x}^*(t), \mathbf{u}^*(t)] + \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t)$

- Nominal optimal control history
- Optimal perturbation control
- Sum the two for neighboringoptimal control

$$\mathbf{u}^{*}(t) = \mathbf{u}_{opt}(t)$$
$$\Delta \mathbf{u}(t) = -\mathbf{C}(t) [\mathbf{x}(t) - \mathbf{x}_{opt}(t)]$$
$$\mathbf{u}(t) = \mathbf{u}_{opt}(t) + \Delta \mathbf{u}(t)$$

- Solution of Euler-Lagrange equations for
 - Linear dynamic system
 - Quadratic cost function
- leads to linear, time-varying (LTV) optimal feedback controller

Optimal, Constant Gain Feedback Control for Linear, Time-Invariant Systems

Linear-Quadratic (LQ) Optimal Control Law

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(\mathbf{t}) \Delta \mathbf{u}(t)$

35

Optimal Control for Linear, <u>Time-Invariant</u> Dynamic Process

Original system is linear and time-invariant (LTI)

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t), \quad \Delta \mathbf{x}(0) \text{ given}$

Minimize quadratic cost function for $t_f \rightarrow \infty$ Terminal cost is of no concern

$$\min_{u} J = J^* = \lim_{t_f \to \infty} \frac{1}{2} \int_{0}^{t_f} \left[\Delta \mathbf{x}^{*T}(t) \mathbf{Q} \Delta \mathbf{x}^{*}(t) + \Delta \mathbf{u}^{*T}(t) \mathbf{R} \Delta \mathbf{u}^{*}(t) \right] dt$$

Dynamic constraint is the linear, time-invariant (LTI) plant

Example: Open-Loop Stable and Unstable Second-Order System Response to Initial Condition

Example: LQ Regulator Stabilizes Unstable System, r = 1 and 100

39

Example: LQ Regulator Stabilizes Unstable System, r = 1 and 100

Requirements for Guaranteeing Stability of the LQ Regulator

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) = \left[\mathbf{F} - \mathbf{G} \mathbf{C}\right] \Delta \mathbf{x}(t)$

Closed-loop system is stable whether or not open-loop system is stable if ...

... and (F,G) is a controllable pair

Rank [G	FG	•••	$\mathbf{F}^{n-1}\mathbf{G}$]=	n
----------	----	-----	------------------------------	----	---

41

Next Time: Formal Logic, Algorithms, and Incompleteness

Supplementary Material

43

Linearized Model of Infection Dynamics

Locally linearized (time-varying) dynamic equation

$\begin{bmatrix} \Delta \dot{x}_1 \\ \Delta \dot{x}_2 \\ \Delta \dot{x}_3 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$	$(a_{11} - a_{12}x_3^*)$ $a_{21}(x_4^*)a_{22}x_3^*$	0 <i>a</i> ₂₃	$-a_{12}x_1^*$ $a_{21}(x_4^*)a_{22}x_1^*$	0 $\frac{\partial a_{21}}{\partial x_4}a_{22}x_1^*x_3^*$	$\begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix}$
$\left[\Delta \dot{x}_{4} \right]$	$-a_{33}x_{3} * \\ a_{41} \\ + \begin{bmatrix} b_{1} & 0 \\ 0 & b_{2} \end{bmatrix}$	a_{31} 0 0 0	$\begin{bmatrix} a_{31}x_1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \Delta u_1 \\ \Delta u_2 \end{bmatrix}_{+}$	$\begin{bmatrix} \Delta w_1 \\ \Delta w_2 \end{bmatrix}$	$\int \Delta x_4$
		b_3	$\begin{array}{c c} 0 \\ b_4 \end{array} \begin{bmatrix} \Delta u_3 \\ \Delta u_4 \end{bmatrix}$	$\left[\begin{array}{c} \Delta w_3 \\ \Delta w_4 \end{array}\right]$	

44

Expand Optimal Control Function

Expand optimized cost function to second degree

$$J\left\{ \begin{bmatrix} \mathbf{x}^{*}(t_{o}) + \Delta \mathbf{x}(t_{o}) \end{bmatrix}, \begin{bmatrix} \mathbf{x}^{*}(t_{f}) + \Delta \mathbf{x}(t_{f}) \end{bmatrix} \right\} \approx J^{*} \begin{bmatrix} \mathbf{x}^{*}(t_{o}), \mathbf{x}^{*}(t_{f}) \end{bmatrix} + \Delta J \begin{bmatrix} \Delta \mathbf{x}(t_{o}), \Delta \mathbf{x}(t_{f}) \end{bmatrix} + \Delta^{2} J \begin{bmatrix} \Delta \mathbf{x}(t_{o}), \Delta \mathbf{x}(t_{f}) \end{bmatrix}$$
$$= J^{*} \begin{bmatrix} \mathbf{x}^{*}(t_{o}), \mathbf{x}^{*}(t_{f}) \end{bmatrix} + \Delta^{2} J \begin{bmatrix} \Delta \mathbf{x}(t_{o}), \Delta \mathbf{x}(t_{f}) \end{bmatrix}$$
as First Variation, $\Delta J \begin{bmatrix} \Delta \mathbf{x}(t_{o}), \Delta \mathbf{x}(t_{f}) \end{bmatrix} = 0$

Nominal optimized cost, plus nonlinear dynamic constraint

$$J * \left[\mathbf{x}^{*}(t_{o}), \mathbf{x}^{*}(t_{f}) \right] = \phi \left[\mathbf{x}^{*}(t_{f}) \right] + \int_{t_{o}}^{t_{f}} L \left[\mathbf{x}^{*}(t), \mathbf{u}^{*}(t) \right] dt$$

subject to nonlinear dynamic equation
 $\dot{\mathbf{x}}^{*}(t) = \mathbf{f} \left[\mathbf{x}^{*}(t), \mathbf{u}^{*}(t) \right], \mathbf{x}(t_{o}) = \mathbf{x}_{o}$

45

Second Variation of the Cost Function

Objective: Minimize <u>second-variational cost</u> subject to linear dynamic constraint

$$\begin{split} \min_{\Delta \mathbf{u}} \Delta^2 J &= \frac{1}{2} \Delta \mathbf{x}^T(t_f) \phi_{\mathbf{x}\mathbf{x}}(t_f) \Delta \mathbf{x}(t_f) + \frac{1}{2} \begin{cases} \int_{t_o}^{t_f} \left[\Delta \mathbf{x}^T(t) & \Delta \mathbf{u}^T(t) \right] \left[\begin{array}{c} L_{\mathbf{x}\mathbf{x}}(t) & L_{\mathbf{x}\mathbf{u}}(t) \\ L_{\mathbf{u}\mathbf{x}}(t) & L_{\mathbf{u}\mathbf{u}}(t) \end{array} \right] \left[\begin{array}{c} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{array} \right] dt \\ \\ \text{subject to perturbation dynamics} \\ \Delta \dot{\mathbf{x}}(t) &= \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t), \Delta \mathbf{x}(t_o) = \Delta \mathbf{x}_o \end{cases}$$

Cost weighting matrices expressed as

$$\mathbf{S}(t_f) \triangleq \phi_{\mathbf{xx}}(t_f) = \frac{\partial^2 \phi}{\partial \mathbf{x}^2}(t_f)$$
$$\begin{bmatrix} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^T(t) & \mathbf{R}(t) \end{bmatrix} \triangleq \begin{bmatrix} L_{\mathbf{xx}}(t) & L_{\mathbf{xu}}(t) \\ L_{\mathbf{ux}}(t) & L_{\mathbf{uu}}(t) \end{bmatrix}$$

 $\dim \left[\mathbf{S}(t_f) \right] = \dim \left[\mathbf{Q}(t) \right] = n \times n$ $\dim \left[\mathbf{R}(t) \right] = m \times m$ $\dim \left[\mathbf{M}(t) \right] = n \times m$

Second Variational Hamiltonian

Variational cost function

$$\Delta^{2}J = \frac{1}{2}\Delta\mathbf{x}^{T}(t_{f})\mathbf{S}(t_{f})\Delta\mathbf{x}(t_{f}) + \frac{1}{2} \begin{cases} \int_{t_{o}}^{t_{f}} \left[\Delta\mathbf{x}^{T}(t) \ \Delta\mathbf{u}^{T}(t) \right] \begin{bmatrix} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^{T}(t) & \mathbf{R}(t) \end{bmatrix} \begin{bmatrix} \Delta\mathbf{x}(t) \\ \Delta\mathbf{u}(t) \end{bmatrix} dt \end{cases}$$
$$= \frac{1}{2}\Delta\mathbf{x}^{T}(t_{f})\mathbf{S}(t_{f})\Delta\mathbf{x}(t_{f}) + \frac{1}{2} \begin{cases} \int_{t_{o}}^{t_{f}} \left[\Delta\mathbf{x}^{T}(t)\mathbf{Q}(t)\Delta\mathbf{x}(t) + 2\Delta\mathbf{x}^{T}(t)\mathbf{M}(t)\Delta\mathbf{u}(t) + \Delta\mathbf{u}^{T}(t)\mathbf{R}(t)\Delta\mathbf{u}(t) \right] dt \end{cases}$$

Variational Lagrangian plus adjoined dynamic constraint

$$H[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \lambda(t)] = L[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)] + \Delta \lambda^{T}(t) \mathbf{f}[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)]$$

$$= \frac{1}{2} [\Delta \mathbf{x}^{T}(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + 2\Delta \mathbf{x}^{T}(t) \mathbf{M}(t) \Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R}(t) \Delta \mathbf{u}(t)]$$

$$+ \Delta \lambda^{T}(t) [\mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t)]$$

47

Second Variational Euler-Lagrange Equations

$$H = \frac{1}{2} \Big[\Delta \mathbf{x}^{T}(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + 2\Delta \mathbf{x}^{T}(t) \mathbf{M}(t) \Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R}(t) \Delta \mathbf{u}(t) \Big]$$

 $+\Delta \boldsymbol{\lambda}^{T} (t) [\mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t)]$

Terminal condition, solution for adjoint vector, and optimality condition

$$\Delta \lambda(t_f) = \phi_{\mathbf{x}\mathbf{x}}(t_f) \Delta \mathbf{x}(t_f) = \mathbf{S}(t_f) \Delta \mathbf{x}(t_f)$$

$$\Delta \dot{\boldsymbol{\lambda}}(t) = -\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \mathbf{x}}\right\}^{T} = -\mathbf{Q}(t)\Delta \mathbf{x}(t) - \mathbf{M}(t)\Delta \mathbf{u}(t) - \mathbf{F}^{T}(t)\Delta \boldsymbol{\lambda}(t)$$

 $\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \mathbf{u}}\right\}^{T} = \mathbf{M}^{T}(t)\Delta \mathbf{x}(t) + \mathbf{R}(t)\Delta \mathbf{u}(t) - \mathbf{G}^{T}(t)\Delta \boldsymbol{\lambda}(t) = \mathbf{0}$

Use Control Law to Solve the Two-Point Boundary-Value Problem

From $\mathbf{H}_{\mathbf{u}} = \mathbf{0}$ $\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{G}^{T}(t) \Delta \lambda(t) \right]$

Substitute for control in system and adjoint equations Two-point boundary-value problem

$\Delta \dot{\mathbf{x}}(t)$	$\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]$	$-\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)$	JL	$\Delta \mathbf{x}(t)$
$\begin{bmatrix} \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix}^{=}$	$\left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]$	$-\left[\mathbf{F}(t)-\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}$	Ì	$\Delta \boldsymbol{\lambda}(t)$

Boundary conditions at initial and final times

$ \begin{aligned} \Delta \mathbf{x}(t_o) \\ \Delta \boldsymbol{\lambda}(t_f) \end{aligned} \end{bmatrix} = \begin{bmatrix} \Delta \mathbf{x}_o \\ \mathbf{S}_f \Delta \mathbf{x}_f \end{bmatrix} $	Perturbation state vector Perturbation adjoint vector
--	--

49

Use Control Law to Solve the Two-Point Boundary-Value Problem

Suppose that the terminal adjoint relationship applies over the entire interval

$$\Delta \boldsymbol{\lambda}(t) = \mathbf{S}(t) \Delta \mathbf{x}(t)$$

Feedback control law becomes

Linear-Quadratic (LQ) Optimal Control Gain Matrix

 $\Delta \mathbf{u}(t) = -\mathbf{C}(t)\Delta \mathbf{x}(t)$

Optimal feedback gain matrix

$$\mathbf{C}(t) = \mathbf{R}^{-1}(t) \left[\mathbf{G}^{T}(t) \mathbf{S}(t) + \mathbf{M}^{T}(t) \right]$$

- Properties of feedback gain matrix
 - Full state feedback (m x n)
 - Time-varying matrix
 - R, G, and M given
 - Control weighting matrix, R
 - State-control weighting matrix, M
 - Control effect matrix, G
 - S(t) remains to be determined

51

Solution for the Adjoining Matrix, S(*t*)

Time-derivative of adjoint vector

$$\begin{split} \Delta \dot{\boldsymbol{\lambda}}(t) &= \dot{\mathbf{S}}(t) \Delta \mathbf{x}(t) + \mathbf{S}(t) \Delta \dot{\mathbf{x}}(t) \\ & \textbf{Rearrange} \\ \hline \dot{\mathbf{S}}(t) \Delta \mathbf{x}(t) &= \Delta \dot{\boldsymbol{\lambda}}(t) - \mathbf{S}(t) \Delta \dot{\mathbf{x}}(t) \\ & \textbf{Recall} \\ \\ \hline \begin{bmatrix} \Delta \dot{\mathbf{x}}(t) \\ \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix} &= \begin{cases} \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t) \mathbf{R}^{-1}(t) \mathbf{M}^{T}(t) \end{bmatrix} & -\mathbf{G}(t) \mathbf{R}^{-1}(t) \mathbf{G}^{T}(t) \\ \begin{bmatrix} -\mathbf{Q}(t) + \mathbf{M}(t) \mathbf{R}^{-1}(t) \mathbf{M}^{T}(t) \end{bmatrix} & -\begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t) \mathbf{R}^{-1}(t) \mathbf{M}^{T}(t) \end{bmatrix}^{T} \\ \end{cases} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \boldsymbol{\lambda}(t) \end{bmatrix}$$

Solution for the Adjoining Matrix, S(t)

Substitute

 $\dot{\mathbf{S}}(t)\Delta\mathbf{x}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\Delta\lambda(t)$ $- \mathbf{S}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\Delta\lambda(t)\right\}$

Substitute

 $\Delta \boldsymbol{\lambda}(t) = \mathbf{S}(t) \Delta \mathbf{x}(t)$

 $\dot{\mathbf{S}}(t)\underline{\Delta\mathbf{x}(t)} = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\underline{\Delta\mathbf{x}(t)} - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\mathbf{S}(t)\underline{\Delta\mathbf{x}(t)} - \mathbf{S}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\underline{\Delta\mathbf{x}(t)} - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{S}(t)\underline{\Delta\mathbf{x}(t)}\right\}\right\}$

 $\Delta x(t)$ can be eliminated

53

Matrix Riccati Equation for S(t)

The result is a nonlinear, ordinary differential equation for S(t), with terminal boundary conditions

$$\dot{\mathbf{S}}(t) = \begin{bmatrix} -\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} - \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix}^{T} \mathbf{S}(t)$$
$$-\mathbf{S}(t) \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} + \mathbf{S}(t)\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{S}(t)$$
$$\mathbf{S}(t_{f}) = \phi_{\mathbf{x}\mathbf{x}}(t_{f})$$

- Characteristics of the Riccati matrix, S(t)
 - $S(t_{i})$ is symmetric, $n \ge n$, and typically positive semi-definite
 - Matrix Riccati equation is symmetric
 - Therefore, S(t) is symmetric and positive semi-definite throughout
- Once S(t) has been determined, optimal feedback control gain matrix, C(t) can be calculated

Full state is fed back to all available controls

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \Big[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{S}(t) \Big] \Delta \mathbf{x}(t) = -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

Optimal control history plus feedback correction

$$\mathbf{u}(t) = \mathbf{u}^{*}(t) - \mathbf{C}(t)\Delta\mathbf{x}(t) = \mathbf{u}^{*}(t) - \mathbf{C}(t)[\mathbf{x}(t) - \mathbf{x}^{*}(t)]$$
55

Nonlinear System with Neighboring-Optimal Feedback Control

Nonlinear dynamic system

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t) \right]$$

Neighboring-optimal control law

$$\mathbf{u}(t) = \mathbf{u}^{*}(t) - \mathbf{C}(t)\Delta\mathbf{x}(t) = \mathbf{u}^{*}(t) - \mathbf{C}(t)\left[\mathbf{x}(t) - \mathbf{x}^{*}(t)\right]$$

Nonlinear dynamic system with neighboring-optimal feedback control

$$\dot{\mathbf{x}}(t) = \mathbf{f}\left\{\mathbf{x}(t), \left[\mathbf{u}^{*}(t) - \mathbf{C}(t)\left[\mathbf{x}(t) - \mathbf{x}^{*}(t)\right]\right]\right\}$$

Example: Response of <u>Stable</u> Second-Order System to Random Disturbance

Example: Disturbance Response of <u>Unstable</u> System with LQ Regulators, r = 1 and 100

Equilibrium Response to a Command Input

59

Steady-State Response to Commands

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t),$

 $\Delta \mathbf{x}(t_o)$ given

 $\Delta \mathbf{y}(t) = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t) + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t) + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}(t)$

State equilibrium with constant inputs ...

 $\mathbf{0} = \mathbf{F} \Delta \mathbf{x}^* + \mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*$ $\Delta \mathbf{x}^* = -\mathbf{F}^{-1} (\mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*)$

... constrained by requirement to satisfy command input

 $\Delta \mathbf{y}^* = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}^* + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}^* + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^*$

Steady-State Response to Commands

Equilibrium that satisfies a commanded input, Δy_c

$$\mathbf{0} = \mathbf{F} \Delta \mathbf{x}^* + \mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*$$
$$\Delta \mathbf{y}^* = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}^* + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}^* + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^*$$

Combine equations

61

Equilibrium Values of State and Control to Satisfy Commanded Input

Equilibrium that satisfies a commanded input, Δy_c

$$\begin{bmatrix} \Delta \mathbf{x}^{*} \\ \Delta \mathbf{u}^{*} \end{bmatrix} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{H}_{\mathbf{u}} \end{bmatrix}^{-1} \begin{bmatrix} -\mathbf{L}\Delta \mathbf{w}^{*} \\ \Delta \mathbf{y}_{C} - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^{*} \end{bmatrix}$$
$$\triangleq \mathbf{A}^{-1} \begin{bmatrix} -\mathbf{L}\Delta \mathbf{w}^{*} \\ \Delta \mathbf{y}_{C} - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^{*} \end{bmatrix}$$

A must be square for inverse to exist Then, number of commands = number of controls

Inverse of the Matrix

$$\begin{bmatrix} \mathbf{F} & \mathbf{G} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{H}_{\mathbf{u}} \end{bmatrix}^{-1} \triangleq \mathbf{A}^{-1} = \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}$$

$$\begin{bmatrix} \Delta \mathbf{x}^* \\ \Delta \mathbf{u}^* \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} \begin{bmatrix} -\mathbf{L}\Delta \mathbf{w}^* \\ \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^* \end{bmatrix}$$

 B_{ij} have same dimensions as equivalent blocks of A Equilibrium that satisfies a commanded input, Δy_c

$$\Delta \mathbf{x}^* = -\mathbf{B}_{11}\mathbf{L}\Delta \mathbf{w}^* + \mathbf{B}_{12}\left(\Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^*\right)$$
$$\Delta \mathbf{u}^* = -\mathbf{B}_{21}\mathbf{L}\Delta \mathbf{w}^* + \mathbf{B}_{22}\left(\Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^*\right)$$

63

Elements of Matrix Inverse and Solutions for Open-Loop Equilibrium

Substitution and elimination (see Supplement)

$\begin{bmatrix} \mathbf{B}_{11} \end{bmatrix}$	B ₁₂]_[$\mathbf{F}^{-1}\left(-\mathbf{G}\mathbf{B}_{21}+\mathbf{I}_{n}\right)$	$-\mathbf{F}^{-1}\mathbf{GB}_{22}$
B ₂₁	B ₂₂		$-\mathbf{B}_{22}\mathbf{H}_{\mathbf{x}}\mathbf{F}^{-1}$	$\left(-\mathbf{H}_{\mathbf{x}}\mathbf{F}^{-1}\mathbf{G}+\mathbf{H}_{\mathbf{u}}\right)^{-1}$

Solve for B_{22} , then B_{12} and B_{21} , then B_{11}

$$\Delta \mathbf{x}^* = \mathbf{B}_{12} \Delta \mathbf{y}_C - (\mathbf{B}_{11}\mathbf{L} + \mathbf{B}_{12}\mathbf{H}_{\mathbf{w}}) \Delta \mathbf{w}^*$$
$$\Delta \mathbf{u}^* = \mathbf{B}_{22} \Delta \mathbf{y}_C - (\mathbf{B}_{21}\mathbf{L} + \mathbf{B}_{22}\mathbf{H}_{\mathbf{w}}) \Delta \mathbf{w}^*$$

LQ Regulator with Command Input (Proportional Control Law)

$$\Delta \mathbf{u}(t) = \Delta \mathbf{u}_C(t) - \mathbf{C} \Delta \mathbf{x}(t)$$

How do we define $\Delta u_C(t)$?

Non-Zero Steady-State Regulation with LQ Regulator

Command input provides equivalent state and control values for the LQ regulator

Control law with command input

$$\Delta \mathbf{u}(t) = \Delta \mathbf{u}^{*}(t) - \mathbf{C} \Big[\Delta \mathbf{x}(t) - \Delta \mathbf{x}^{*}(t) \Big]$$

= $\mathbf{B}_{22} \Delta \mathbf{y}^{*} - \mathbf{C} \Big[\Delta \mathbf{x}(t) - \mathbf{B}_{12} \Delta \mathbf{y}^{*} \Big]$
= $\Big(\mathbf{B}_{22} + \mathbf{C} \mathbf{B}_{12} \Big) \Delta \mathbf{y}^{*} - \mathbf{C} \Delta \mathbf{x}(t)$

65

