Formal Logic, Algorithms, and Incompleteness

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017

Learning Objectives

- Principles of axiomatic systems and formal logic
- Application of logic in computing machines
- Algorithms and numbering systems
- Gödel's Theorems: What axiomatic systems can't do

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. <u>http://www.princeton.edu/~stengel/MAE345.html</u>

Intelligent Systems

- Perform useful functions driven by desired goals and current knowledge
 - Emulate biological and cognitive processes
 - **Process** information to achieve objectives
 - Learn by example or from experience
 - Adapt functions to a changing environment

Should robots be "More like us?"

- Semantics: The study of meaning
- Syntax: Orderly or systematic arrangement of parts or elements

Cognitive Paradigms for Intelligent Systems

• Thinking

- Syntax
- Algorithmic behavior
- Comparison
- Reflection
- Consciousness
 - Understanding and judgment of truth

Intelligence

- Flexible response
- Recognition of similarity and contradiction
- Ranking of information
- Synthesis of solutions
- Reasoning

Underlying structure: Logic

Formal Logic

Deduction

- Shows that a <u>proposition</u> follows from one or more other propositions
- Establishes the validity of a <u>claim</u> or argument
- Reasons from input to rules to output
- Induction
 - Infers a general law or <u>principle</u> from the observation of particular instances
 - Reasons from input and output to rules

Inference

- Derivation of conclusions from information, as by
 - Deduction
 - Induction
- Reasoning from something known or assumed, as by
 - Application of rules or meta-rules (i.e., rules about rules)
 - Probability and statistics

"Forms of Inference" Lead to "Formulas"

- Formulas
 - Symbols
 - Operations
 - Rules
- Axioms
 - Unproved but <u>assumed</u> <u>formulas</u>
 - <u>Starting point</u> for proofs of formulas

- Theorems
 - Formulas proved to be true based on
 - Axioms
 - Other theorems
- Algorithms
 - <u>Systematic procedures</u> for using formulas
- Calculus
 - A system or <u>method of</u> <u>calculation</u>
 - A method of assessment

Propositional Calculus - 1

- **Proposition:** A statement that may be <u>either true or false</u>
- Complete, unanalyzed propositions and combinations
 - What can be said -- formal relations and implications axioms of the system
 - Deductive structure: Rules of Inference
 - Concern with form or syntax of statements
 - Meaning of a statement may not be self-evident; for example,

may be different notations for the same statement

Infix	Prefix	Postfix
"Algebraic notation"	"Reverse Polish notation"	"Polish notation"
?	1954	1924

6

Examples of Propositions

Princeton's colors are orange and black (true) are red and gray (false)

6 + 6 = 12; 6 + 7 = 12

"I have a bridge to sell to you"

Variables and Operators (or Sentential Variables and Connectives)

- Sentential variables may be either true or false
- **Operators connect sentential (or propositional) variables**
- A proposition (or sentence) is a formula containing variables and operators

And	$\wedge \text{ or } \&$	Conjunction
Or	\vee	Disjunction
Not	\neg or \sim	Negation
Implies	\rightarrow or \supset	Material Implication (If)
Equivalent	\equiv or \leftrightarrow	Material Equivalence (If and only if)

Dyadic Operations - 1

- Operations involving two arguments (i.e., sentential variables)
- Arguments of operators = Propositions
 - X represents "Socrates is a man"
 - Y represents "All men are mortal"
- Examples of formulas or connective expressions [dyadic operations (2 arguments)]

$$X \wedge Y$$
$$X \vee Y$$

- "Socrates is a man" and "All men are mortal"
- "Socrates is a man" or "All men are mortal"

Dyadic Operations - 2

$$\begin{array}{c} X \longrightarrow Y \\ X \equiv Y \end{array}$$

- "Socrates is a man" implies that "All men are mortal"
- "Socrates is a man" is equivalent to "All men are mortal"
- 1st argument is the antecedent; 2nd argument is the consequent
- **"IF-THEN-ELSE"** interpretation of dyadic operations
 - If X is true and Y is true, then $X \wedge Y$ is true; else $X \wedge Y$ is false
 - If X is true or Y is true, then $X \lor Y$ is true; else $X \lor Y$ is false

Monadic Operations and Syntactic Propositions

- Negation is a monadic (single argument) operation
 - If X is true, then $\neg X$ is false
 - If X is false, then $\neg X$ is true
- Brackets group propositions to form Syntactic Propositions (i.e., propositions based on propositions)
- Incorporation of negation in dyadic operations:

$$X \land (\neg Y)$$
$$X \lor (\neg Y)$$

If *X* is true and *Y* is false, then $X \land (\neg Y)$ is true; else ...

If X is true or Y is false, then ...

Truth Tables for Dyadic Expressions

X	Y	$X \wedge Y$	$X \lor Y$	$X \rightarrow Y$	$X \equiv Y$	$X \land (\neg Y)$	•••
Т	Т	Т	Т	Т	Т	F	
Т	F	F	Т	F	F	Т	
F	Т	F	Т	T	F	F	
F	F	F	F	T	Т	F	

- Syntactic combinations build sentences
- Tautology (repetitive statement) is always true
 - "X implies Y and Z" is the same as "X implies Y and X implies Z"

$$(X \to (Y \land Z)) \equiv ((X \to Y) \land (X \to Z))$$

More Concepts in Propositional Calculus

- Fallacy or Contradiction
 - Saying that [X or Y is false is the same as saying that "X is false and Y is false" is false)] is a fallacy or contradiction

$$\neg (X \lor Y) \equiv \neg (\neg Y \land \neg X)$$

- <u>Liar's paradox</u>: "I am lying." True or false? Sentence refers to its own truth.
- Truth depends on the propositions described by X, Y, and Z $(X \wedge Y) \vee (\neg Y \wedge Z)$
 - Well-formed formulas (WFFs) make sense and are unambiguous

$$(X \wedge Y) \lor (\neg YY(Z))$$
 Not a *WFF*

More Concepts in Propositional Calculus

- Decisions are based on testing the validity of WFFs
- De Morgan's Laws
 - Two propositions are jointly true only if neither is false

$$\neg (X \land Y) \equiv \neg X \lor \neg Y$$

$$\neg (X \lor Y) \equiv \neg X \land \neg Y$$

- Modus Ponens rule (rule of detachment or elimination)
 - If X is true and X implies Y, then we can infer that Y is true

$$(X \land (X \to Y)) \to Y$$

Modus Ponens Rule

- Rule of detachment, elimination, definition, or substitution
 - If X is true and X implies Y, then we can infer that Y is true

$$(X \land (X \to Y)) \to Y$$

- X is true and X implies Y, then (X is true and X implies Y) implies that Y is true
- Example from Wikipedia:
 - If it's raining, I'll meet you at the movie theater.
 - It's raining.
 - Therefore, I'll meet you at the movie theater

Material Implication

- $\cdot X \rightarrow Y$
- Same as "¬X or Y"
- X is false does not imply that Y is not true
- "If", not "If and only if", which is material equivalency
- Double negative
 - Example:
 - X: Anyone can be caught in the rain
 - Y: That person is wet
 - X -> Y, or (if X Y)
 - Suppose Dave is wet; was he caught in the rain?
 - Dave went under a sprinkler and got wet; he was not caught in the rain, but he is wet
 - Therefore [(false) -> (true)] is true
 - Material implication does not indicate causality

Material Implication *(if)* vs. Material Equivalence *(iff)*

- $X \equiv Y$
- "If and only if": iff
- The truth of X requires the truth of Y
- If: I will eat lunch if the E-Quad Café has tuna salad
- Iff: I will eat lunch if and only if the E-Quad Café has tuna salad

Toward Predicate Calculus

Sentence

- Series of words forming a grammatically complete expression of a single thought
- Normally contains (at least) a subject and a predicate

Predicate

- That which is predicated (or said) of the subject in a proposition
- Second term of a proposition, e.g.,
 - Socrates is a man
- The statement made about the subject, e.g.,
 - The main verb, its object, and modifiers

Predicate Calculus

- Extensions to propositional calculus
 - Predicates
 - Flexible variables, i.e., more states than only true or false
 - Quantification
 - Conversion of <u>words to numbers</u>
 - Introduction of <u>degrees of value</u>
 - Inference rules for quantifiers
 - First-order logic
 - Productive use of predicates, variables, and quantification
- Building blocks for expert systems

Predicates

- Predicate, P(X)
 - A statement (or proposition) about individuals (or arguments) that is either true or false*
 - One argument: Example: "is-red"
 - Two arguments: Example: "is-greaterthan"
- QUEEN OF HEARTS is-red (true)
- LIVE GRASS is-red (false)
- SEVEN is-greater-than FOUR
- One-argument predicate, P(X), performs a sort

* also called an atomic formula

Variable

- A placeholder that is to be filled with a constant, e.g., X in P(X)
- A slot that receives a value
- A symbolic address for information

Quantification

 "Universal quantifiers say something that is true for all possible values of a variable."*

x: variable

(forall (x) f) f: formula; specifies scope of x

$$(forall(x)(if(inst x fire-engine)(color x red))))$$

- **Existential quantifiers**
 - state conditions under which a variable exists
 - predicate properties or relationships of one or more variables

|(exists(x)f)|

$$(forall (x)(if (person x)(exists (y)(head - of x y)))))$$

* Charniak and McDermott, 1985

Inference Rules for Quantifiers

- Well-formed formula (WFF)
 - Syntactically correct combination of connectives, predicates, constants, variables, and quantifiers
- Universal Quantification (or Elimination or Instantiation)
 - Man(Socrates) -> Mortal(Socrates)
 - or "The man, Socrates, is mortal" ["given any", "for all"]
- Existential Quantification (or Elimination or Instantiation)
 - Man(person) -> Happy(person)
 - Someone is happy ["there exists at least one"]
- Existential Introduction (Generalization)
 - Man(Jerry) -> Likes_ice_cream(Jerry)
 - Someone likes ice cream ["general to specific" or v.v.]

Examples of Sentences

LISP-like terms and prefix notation

- (catch-object jack-1 block-1)
- (inst block-1 block)
- (color block-1 blue)
- With connectives
 - (and (color block-1 yellow) (inst block-1 elephant))
 - (if (supports block-2 block-1) (on block-1 block-2))
 - (if (and (inst clyde elephant) (color elephant gray)) (color clyde gray))

- Jack-1 catches the object called Block-1
- Block-1 is an instantiation of a block
- Block-1 is blue
- Block-1 is a yellow elephant
- If block-2 supports block-1, then block-1 is on block-2
- If clyde is an elephant and an elephant is gray, then clyde is gray

First-Order Logic

- Further extensions to predicate calculus
- Functions
 - Fixed number of arguments
 - Rather than returning TRUE or FALSE, functions return objects, e.g.,
 - "uncle-of" Mary returns John
 - Functions of functions, e.g.,
 - (father-of (father-of (John)) returns John' s paternal grandfather

First-Order Logic

- Equals
 - Two individuals are equal if and only if (equivalence) they are indistinguishable under all predicates and functions

$$X \equiv Y$$
 if a

if and only if

$$P(X) \equiv P(Y), \quad F(X) \equiv F(Y), \quad \forall P \land F$$

- Axiomatization
 - Axioms: necessary relationships between objects in a domain
 - Formal expression in sentences of first-order logic (emphasis on syntax over semantics)

Apollo Guidance Computer Commands

- Display/Keyboard (DSKY)
- Sentence
 - Subject and predicate
 - Subject is implied
 - Astronaut, or
 - GNC system
 - Sentence describes action to be taken employing or involving an object
- Predicate
 - Verb + Noun
 - Verb = Action
 - Noun = Variable or Program (i.e., the object)

Numerical Codes for Verbs and Nouns in Apollo Guidance Computer Programs

Verb Code	e Description	Remarks
01	Display 1st component of	Octal display of data
		on REGISTER 1
02	Display 2nd component of	Octal display of data
		on REGISTER 1
03	Display 3rd component of	Octal display of data
		on REGISTER 1

Noun Code	Description	Scale/Units	
01	Specify machine address	XXXXX	
02	Specify machine address	XXXXX	
03	(Spare)		
04	(Spare)		
05	Angular error	XXX.XX degrees	
06	Pitch angle	XXX.XX degrees	
	Heads up-down	+/- 00001	
07	Change of program or major mode		
11	Engine ON enable		

Verbs and Nouns in Apollo Guidance Computer Programs

- Verbs (Actions)
 - Display
 - Enter
 - Monitor
 - Write
 - Terminate
 - Start
 - Change
 - Align
 - Lock
 - Set
 - Return
 - Test
 - Calculate
 - Update

- Selected Nouns (Variables)
 - Checklist
 - Self-test ON/OFF
 - Star number
 - Failure register code
 - Event time
 - Inertial velocity
 - Altitude
 - Latitude
 - Miss distance
 - Delta time of burn
 - Velocity to be gained

- Selected Programs (CM)
 - AGC Idling
 - Gyro Compassing
 - LET Abort
 - Landmark Tracking
 - Ground Track
 Determination
 - Return to Earth
 - SPS Minimum Impulse
 - CSM/IMU Align
 - Final Phase
 - First Abort Burn

Algorithms

- Systematic procedures for using formulas
- Computer programs contain algorithms
- Euclid's Algorithm
 - Highest common denominator (HCD) of 2 numbers
 - In example, HCD = 21
 - Operations based on natural numbers (positive integers)
- Procedure is completed in a finite number of steps

 $\begin{array}{ll} 3654 \div 1365 \text{ gives remainder } 924 \\ 1365 \div 924 & \text{gives remainder } 441 \\ 924 \div 441 & \text{gives remainder } 42 \\ 441 \div 42 & \text{gives remainder } 21 \\ 42 \div 21 & \text{gives remainder } 0. \end{array}$

- Flow charts
 - Operations
 - Conditions
 - Sub-routines

Some Natural Numbering Systems

Natural numbers: non-negative, whole numbers

Denary (Base 10)	Binary (Base 2)	Unary (Base 1)	
0	0	?	
1	1	1	
2	10	11	 Other number
3	11	111	systems
4	100	1111	- DNA (Base 4)
5	101	11111	[ATCG]
6	110	111111	Ootol (Bacco)
7	111	1111111	
8	1000	11111111	– Hexadecimal
9	1001	111111111	(<i>Base 16</i>)
10	1010	1111111111	F 2
11	1011	11111111111	F 3
			$=(15 \times 16^{1})+(3 \times 16^{0})$
Digits	Binary Digits	Marks	= 243
	"Bits" (John Tukey)		
Fwo 5-finger hand s	True-False	Chalk and a rock	
One 10-finger hand	Yes-No	Abacus	
	Present-Absent	"Chisenbop"	21

Algorithms are Independent of Numbering System

- Logical algorithms may deal with objects or symbols directly
- For computation, objects or symbols ultimately are represented by numbers (e.g., 0s and 1s) or alphabet
- Mathematical logical algorithms are independent of the numbering system

Towers of Hanoi: An Axiomatic System

Problem: Move all disks (one at a time) from 1st peg to 3rd peg without putting a larger disk on a smaller disk

- Objects
 - Disks: 1, 2, 3, 4, 5
 - Pegs: A, B, C

- Predicates
 - Sorting: DISK, PEG
 - DISK(A) is FALSE
 - PEG(A) is TRUE
 - Comparison:
 SMALLER
 - SMALLER(1,2) is TRUE

Barr and Feigenbaum, 1982

Towers of Hanoi

• First axiom

 $\forall XYZ.(SMALLER(X,Y) \land (SMALLER(Y,Z)) \rightarrow SMALLER(X,Z))$

• Premise

$SMALLER(1,2) \land SMALLER(2,3)$

- Situational constant, S
 - Identifies state of system after a series of moves
- More predicates
 - Vertical relationship: ON
 - ON(X, Y, S) asserts that disc X is on disk Y in situation S
 - Nothing on top of disk: FREE
 - FREE(X,S) indicates that no disc is on X

Towers of Hanoi

Second axiom*

$$\forall X S.FREE(X,S) \equiv \neg \exists Y.(ON(Y,X,S))$$

* "For all disks X and situation S, X is free in situation S if and only if there does not exist a disk Y such that Y is ON X in situation S."

- More Predicates
 - Acceptable (legal) move: LEGAL (X, Y, S)
 - Act of moving disk: MOVE(X, Y, S)
- Object of analysis
 - Find a situation that is TRUE if a move is legal and is accomplished
- More Axioms
 - See Handbook of AI for additional steps

Example of theorem proving, i.e., of theory that a goal state can be reached

<u>Gödel's</u> Incompleteness Theorems (1931)

http://en.wikipedia.org/wiki/Gödel's_incompleteness_theorems

- 1st Theorem: "No consistent system of axioms whose theorems can be listed by an 'effective procedure' (e.g., a computer program ...) is capable of proving all truths about the relations of the natural numbers (arithmetic)."
 - "There will always be statements about the natural numbers that are true, but that are unprovable within the system."
- 2nd Theorem: "Such a system cannot demonstrate its own consistency."
- ~ "Liar's Paradox", replacing "provability" for "truth"

http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

- 1st Theorem: "Informally, Gödel's incompleteness theorem states that all consistent axiomatic formulations of number theory include undecidable propositions (Hofstadter 1989)."
- **2nd Theorem:** "If number theory is consistent, then a proof of this fact does not exist using the methods of first-order predicate calculus."

Thomas Kuhn: *The Structure of Scientific Revolutions*, 1962

- Advances in Science
 - Not a steady, cumulative acquisition of knowledge
 - Peaceful interludes punctuated by intellectually violent revolutions
- Paradigm
 - <u>Pre-Kuhn</u>: A pattern, exemplar, or example (OED, 1483)
 - <u>Post-Kuhn</u>: "A collection of procedures or ideas that instruct scientists, implicitly, what to believe and how to work." (Horgan, 2012)
- Paradigm Shift
 - One world view is replaced by another
 - <u>Gödel's theorem</u>: for any axiomatic system there exist propositions that are either undecidable or not provably consistent
 - Theory rests on subjective framework
 - Propositions are true or false only within the context of a paradigm

http://blogs.scientificamerican.com/cross-check/2012/05/23/what-thomaskuhn-really-thought-about-scientific-truth/

Next Time: Computers, Computing, and Sets

Enigma and the Bletchley Park Bombe

26-letter, 3- or 4-rotor encryption device used by German military during WWII Algorithmic decyphering computer designed by Polish mathematicians, Alan Turing, and US Navy

40

Calvin and Hobbes

41

MATLAB Stateflow

- Incorporation of event-driven logic in a control system
 - Simulink operates within the MATLAB environment
 - Stateflow implements logic blocks within Simulink

Automatic Shifting Example

- **Stateflow block represents** • the control logic
- **Double-click on block to** • reveal the Stateflow logic

1

Stateflow Chart for an Automatic Transmission

Automatic Shifting Simulation

Combining Discrete-Event Logic with the Dynamic Model

Temperature Control Example

See MATLAB Manual, <u>Getting Started</u>, Simulink, for details of model building (http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/)

Physical Plant Model

Contents of Physical Plant

Air Control Logic

Contents of Air Controller

49

Temperature Control Simulation

Solving Rubik's Cube:

An algorithm

http://www.cs.swarthmore.edu/~knerr/helps/rcube.html

