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Learning Objectives

Principles of axiomatic systems and formal logic
Application of logic in computing machines
Algorithms and numbering systems

Godel’s Theorems: What axiomatic systems
can’t do
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Intelligent Systems

- Perform useful functions driven by desired
goals and current knowledge
— Emulate biological and cognitive processes
— Process information to achieve objectives
— Learn by example or from experience
— Adapt functions to a changing environment

Should robots be “More like us?”

Semantics: The study of meaning
Syntax: Orderly or systematic arrangement of parts or elements




Cognitive Paradigms for
Intelligent Systems

-  Thinking
— Syntax
— Algorithmic behavior
— Comparison
— Reflection
- Consciousness
— Understanding and judgment of truth
- Intelligence
— Flexible response
— Recognition of similarity and contradiction
— Ranking of information
— Synthesis of solutions
— Reasoning

Underlying structure: Logic




Formal Logic

« Deduction \
— Shows that a proposition follows from one or
more other propositions @

— Establishes the validity of a claim or argument
— Reasons from input to rules to output

 Induction

— Infers a general law or principle from the \
observation of particular instances
— Reasons from input and output to rules @

 Inference

— Derivation of conclusions from information, as by
Deduction
Induction

— Reasoning from something known or assumed, as by
Application of rules or meta-rules (i.e., rules about rules)
Probability and statistics




“Forms of Inference” Lead to

‘6 »”
Formulas
- Formulas - Theorems
— Symbols — Formulas proved to be true
— Operations based on
_ Rules - Axioms
_ « Other theorems
* Axioms - Algorithms
— Unproved but assumed — Systematic procedures for
formulas using formulas
— Starting point for proofs . Calculus
of formulas — A system or method of
calculation

— A method of assessment




Propositional Calculus - 1

- Proposition: A statement that may be either true or false

- Complete, unanalyzed propositions and combinations

— What can be said -- formal relations and implications --
axioms of the system

— Deductive structure: Rules of Inference
— Concern with form or syntax of statements

— Meaning of a statement may not be self-evident; for
example,

(2+3), (+23), (23+)

— may be different notations for the same statement

Infix Prefix Postfix
“Algebraic notation” || “Reverse Polish notation” | | “Polish notation”
? 1954 1924




Examples of Propositions

Princeton’ s colors are and
black (true) ... are red and gray (false)

6+6=12;6+7=12



Variables and Operators
(or Sentential Variables and Connectives)

Sentential variables may be either true or false
Operators connect sentential (or propositional) variables

A proposition (or sentence) is a formula containing
variables and operators

And A or & Conjunction

Or Vv Disjunction

Not —Or ~ Negation
Implies —> or D Material Implication (If)

Equivalent =0r < Material Equivalence (If and onlyif’)




Dyadic Operations - 1

Operations involving two arguments (i.e.,
sentential variables)

Arguments of operators = Propositions
— Xrepresents “Socrates is a man”
— Yrepresents “All men are mortal”

Examples of formulas or connective expressions
[dyadic operations (2 arguments)]

XAY
XVvY

“Socrates is a man” and “All men are mortal”
“Socrates is a man” or “All men are mortal”




Dyadic Operations - 2

Y Sy ° “Socrates is a man” implies that
— “All men are mortal”

X =Y | * “Socrates is aman” is equivalent
to “All men are mortal”

1st argument is the antecedent; 2" argument is the
consequent

“IF-THEN-ELSE” interpretation of dyadic operations
— If Xis true and Yis true, then X A Y is true; else X A Yis false
— If Xis true or Yis true, then X VY is true: else X V Yis false
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Monadic Operations
and Syntactic Propositions

Negation is a monadic (single argument) operation
— If Xis true, then = Xis false
— If Xis false, then =X is true

Brackets group propositions to form Syntactic Propositions
(i.e., propositions based on propositions)

Incorporation of negation in dyadic operations:

X A (_IY) If Xis true and Y is false, then X A(=Y)
Is true; else ...

XV (—|Y) If Xis true or Yis false, then ...

11



Truth Tables for Dyadic Expressions

X Y |XAY XvY X—Y X=Y'XA(-Y) ...
T Tl T T T T ' F
T F| F T F F + T
F Tl F T T F 1 F
F F| F F T T ' F

Syntactic combinations build sentences

Tautology (repetitive statement) is always true

— “Ximplies Yand Z’ is the same as “Ximplies Y
and X implies Z°

(X > (Y AZ)=(X>Y)A (X > Z))

12



More Concepts in
Propositional Calculus

Fallacy or Contradiction

— Saying that [X or Y is false is the same as saying that “Xis
false and Y is false” is false)] is a fallacy or contradiction

_I(X\/Y)E_I(_IY/\_IX)

— Liar’ s paradox: “l am lying.” True or false? Sentence refers
to its own truth.

- Truth depends on the propositions described by X, Y,
and Z
(X AY)V (=Y AZ)

- Well-formed formulas ( ) make sense and are
unambiguous

(X AY)V (=YY (Z)) Nota WFF

13



More Concepts in
Propositional Calculus

- Decisions are based on testing -
the validity of WFFs “
- De Morgan’s Laws

— Two propositions are jointly true
only if neither is false

—l(X/\Y)E—lX\/—lY

—|(X\/Y)E—|X/\—|Y

Modus Ponens rule (rule of

detachment or elimination)
— If X'is true and X implies Y, then

we can infer that Yis true

XA(X—=Y)>Y

14




Modus Ponens Rule

Rule of detachment, elimination, definition, or
substitution

— If X'is true and Ximplies Y, then we can infer that Y
Is true

XA(X—=>Y)>Y

— Xis true and Ximplies Y, then (Xis true and X
implies Y) implies that Yis true

Example from Wikipedia:

— If it's raining, I'll meet you at the movie theater.
— It’s raining.

— Therefore, I'll meet you at the movie theater

15



X->Y

Material Implication

Same as “~Xor Y”
X is false does not imply that Yis not true

“If”, not “If and only if”, which is material equivalency

Double negative

- Example:

X: Anyone can be caught in the rain

Y: That person is wet

X->Y,or(ifXY)

Suppose Dave is wet; was he caught in the rain?

Dave went under a sprinkler and got wet; he was
not caught in the rain, but he is wet

Therefore [(false) -> (true)] is true
Material implication does not indicate causality

16



Material Implication (if) vs.
Material Equivalence (iff)

X=Y
“If and only if”: iff

* The truth of X requires the truth of Y
- If: 1 will eat lunch if the E-Quad Café has

tuna salad

- Iff: I will eat lunch if and only if the E-

Quad Café has tuna salad

17



Toward Predicate Calculus

« Sentence

— Series of words forming a grammatically complete expression of
a single thought

— Normally contains (at least) a subject and a predicate

 Predicate

— That which is predicated (or said) of the subject in a proposition

— Second term of a proposition, e.g.,
- Socrates is a man

— The statement made about the subject, e.g.,
- The main verb, its object, and modifiers

18



Predicate Calculus

Extensions to propositional calculus
— Predicates

— Flexible variables, i.e., more states than only true or false

— Quantification
- Conversion of words to numbers
- Introduction of degrees of value
— Inference rules for quantifiers
- First-order logic
- Productive use of predicates, variables, and quantification

Building blocks for expert systems

19



Predicates
- Predicate, P(X)

— A statement (or proposition) about individuals (or
arguments) that is either true or false*

— One argument: — QUEEN OF HEARTS is-red
Example: “is-red” (true)
— LIVE GRASS is-red
— Two arguments: (false)
Example: “is-greater- — SEVEN is-greater-than
than” FOUR

- One-argument predicate, P(X), performs a sort

P(X) / Disjoint Groups
T Faise

True

* also called an atomic formula

20



- A placeholder that is to be filled
with a constant, e.g., X in P(X)

A slot that receives a value

Variable

- A symbolic address for

informatio

n

INFORMATION
TO BE
PROVIDED
SOON

(no executable)

Address [Aoa % View |

——

Unit size:  [Byte _/I [ Format  [Hex

00000000bEEEEBC4: 6e e3 05 08 20 d4 07 08 00 00 00 00 15 69 07 08
00000000bEEEEBAY: 20 a4 07 08 8c 64 10 40 10 a6 00 40 £0 £8 £f bf
00000000bf£££8ed: 4c dS 07 08 18 £9 £ff bf ef 94 05 08 4c dS 07 08
00000000bEEEEBF4: 18 £f bf 16 95 05 08 18 £9 ff bf 5S4 b3 04 08

00000000LEEEFS14: 00 00 00 00 20 £9 £f bf a2 9f 04 08 28 f9 ff bf
00000000bEEEES24: 07 ad 04 08 48 £9 £f bf eb 01 03 40 01 00 00 00
00000000bEEE£934: 74 £9 £f bf 7c £9 £f bf 24 20 01 40 01 00 00 00
00000000LEEEES44: 70 Se 04 08 00 00 00 00 91 9e 04 08 d8 9f 04 08
00000000bEEE£954: 01 00 00 00 74 £9 ££ bf 70 9a 04 08 2c 3e 07 08
00000000LEEEFSE4: 10 a6 00 40 6¢c £9 £f bf 70 26 01 40 01 00 00 00
00000000bEEEESTS: ba fa ££ bf 00 00 00 00 el fa £f bf £9 fa £f bf
00000000bEEE£984: 06 fb £f bf 22 fb £f bf 30 fb £f bf 42 fb ff bf
00000000LEEEESS4: Sd fb £f bf 78 fb £f bf 8b fb £f bf 97 fb £f bf
EEEEOUDDbeEfgﬂ' aS fb £f bf ed fc £f bf £9 fc £f bf 05 £d £f bf

QAONLEEEENL A 4C £3 €€ L& OV _£3 £€ L& N7 £3 £6 L& £ £3 £ErE

Page size: 256 S bytes oK. | \ | / I

Undo changes | Submit changes | cancel | Help |
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Quantification

- “Universal quantifiers say something that is
true for all possible values of a variable.”*

x: variable

(fomll (x) f)

f: formula; specifies scope of x

(fOrall (x) (lf (inst X fire— engine) (color X rea’)))

- Existential quantifiers

— state conditions under which a variable exists
— predicate properties or relationships of one or more variables

(exists (x) f)

(forall (x) (lf (person x) (exists (y)(head —of x y))))

* Charniak and McDermott, 1985 22



Inference Rules for Quantifiers

Well-formed formula (WFF)

— Syntactically correct combination of connectives,
predicates, constants, variables, and quantifiers

Universal Quantification (or Elimination or Instantiation)

— Man(Socrates) -> Mortal(Socrates)
— or “The man, Socrates, is mortal” [“given any”, “for all”’]

Existential Quantification (or Elimination or Instantiation)

— Man(person) -> Happy(person)
— Someone is happy [“there exists at least one”]

Existential Introduction (Generalization)
— Man(Jerry) -> Likes_ice_cream(Jerry)
— Someone likes ice cream [“general to specific” or v.v.]

23



Examples of Sentences

« LISP-like terms and prefix notation

— (catch-object jack-1 block-1) - Jack-1 catches the object called
Block-1

— (inst block-1 block) - Block-1 is an instantiation of a
block

_ lor block-1 blue
(color bloc ue) Block-1 is blue

- With connectives
— (and (color block-1 yellow) (inst - Block-1 is a yellow elephant
block-1 elephant))

— (if (supports block-2 block-1) (on - If block-2 supports block-1,

block-1 block-2)) then block-1 is on block-2

— (if (and (inst clyde elephant) - If clyde is an elephant and an
(color elephant gray)) (color elephant is gray, then clyde is
clyde gray)) gray

24



First-Order Logic

* Further extensions to predicate calculus

 Functions

— Fixed number of arguments
— Rather than returning TRUE or FALSE, functions
return objects, e.qg.,
« “uncle-of” Mary returns John
— Functions of functions, e.g.,

- (father-of (father-of (John)) returns John’ s paternal
grandfather

25




First-Order Logic

- Equals

— Two individuals are equal if and only if (equivalence)
they are indistinguishable under all predicates and
functions

X=Y if and only if

P(X)=PY), F(X)=F{), VPAF

 Axiomatization

— Axioms: necessary relationships between objects in a
domain

— Formal expression in sentences of first-order logic
(emphasis on syntax over semantics)

26



Apollo Guidance Computer Commands

- Display/Keyboard (DSKY)
- Sentence
— Subject and predicate
— Subject is implied
- Astronaut, or
« GNC system
— Sentence describes action to
be taken employing or
involving an object
- Predicate
— Verb + Noun
— Verb = Action

— Noun = Variable or Program
(i.e., the object) —

See http.://www.ibiblio.org/apollo/ for simulation 27
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Numerical Codes for Verbs

| and Nouns in Apollo Guidance

Computer Programs

Verb Code Description Remarks
01 Display 1st component of Octal display of data
on REGISTER 1
02 Display 2nd component of Octal display of data
on REGISTER 1
03 Display 3rd component of Octal display of data
on REGISTER 1
Noun Code Description Scale/Units
01 Specify machine address  XXXXX
02 Specify machine address  XXXXX
03 (Spare)
04 (Spare)
05 Angular error XXX.XX degrees
06 Pitch angle XXX.XX degrees
Heads up-down +/- 00001
07 Change of program or major mode
11 Engine ON enable

28



Verbs and Nouns in
Apollo Guidance
Computer Programs

*  Verbs (Actions)

— Display
— Enter

— Monitor
— Write

— Terminate
— Start

— Change
— Align

— Lock

— Set

— Return
— Test

— Calculate
— Update

« Selected Nouns
(Variables)

Checklist
Self-test ON/OFF
Star number

Failure register
code

Event time
Inertial velocity
Altitude

Latitude

Miss distance
Delta time of burn

Velocity to be
gained

- Selected Programs
(CM)

AGC Idling

Gyro Compassing
LET Abort
Landmark Tracking

Ground Track
Determination

Return to Earth

SPS Minimum
Impulse

CSMW/IMU Align
Final Phase
First Abort Burn

29



Algorithms

Systematic procedures for using *  Flow charts
formulas — Operations
Computer programs contain algorithms — Conditions
. 4 . — Sub-routines
Euclid’ s Algorithm
— Highest common denominator Taks two numbers
(HCD) of 2 numbers

— In example, HCD = 21 !
— Operations based on natural {

Y

numbers (positive integers)
1 = = = Replace
Procedure is completed in a finite Replace

B Divide A by B,
bv C . and store the
y remainder C

™ >
=3
<

number of steps

Y

3654 < 1365 gives remainder 924
1365 + 924 gives remainder 441
924 = 441 gives remainder 42
441 + 42  gives remainder 21

Is C zero?

42 +21 gives remainder 0. and prntow

answer B

30



Some Natural Numbering Systems

Natural numbers: non-negative, whole numbers

Denary (Base 10) Binary (Base 2) Unary (Base 1)
0 0 ?
1 1 1
2 10 11 Other number
3 11 111 systems
4 100 1111 — DNA (Base 4)
5 101 11111 [ATCG]
: 10 octl (Bases
8 1000 11111111 — Hexadecimal
9 1001 111111111 (Base 16)
10 1010 1111111111
11 1011 11111111111 F3
=(15x16")+(3x16°)
Digits Binary Digits Marks — 243
"Bits" (John Tukey)
Two S-finger hands True-False  Chalk and a rock
One 10-finger hand Yes-No Abacus

Present-Absent "Chisenbop"

31



Algorithms are Independent of
Numbering System

Take two numbers
A and B
9
| v
Y
ce Divide A by B,
- Logical algorithms may ReplaceBby G| | andstorethe
deal with objects or
symbols directly
-  For computation, objects or
symbols ultimately are No s
represented by humbers
(e.g., Os and 1s) or alphabet
- Mathematical logical ves
algorithms are independent Siop calcuaton
of the numbering system answer B

32



Towers of Hanoi:
An Axiomatic System

71
&

73
7 4
75

Problem: Move all disks (one at a time) from 1st peg to 3rd
peg without putting a larger disk on a smaller disk

- Objects  Predicates
— Disks: 1,2,3,4,5 — Sorting: DISK, PEG
— Pegs: A,B,C - DISK(A) is FALSE

- PEG(A) is TRUE
— Comparison:
SMALLER

- SMALLER(1,2) is
Barr and Feigenbaum, 1982 TRUE

33



Towers of Hanoi

First axiom

VXYZ (SMALLER(X,Y) A (SMALLER(Y,Z)) — SMALLER(X,Z)

Premise
SMALLER(1,2) A SMALLER(2,3)

Situational constant, S
— lIdentifies state of system after a series of moves

More predicates

— Vertical relationship: ON

« ON(X,Y,S) asserts that disc Xis on disk Yin
situation S

— Nothing on top of disk: FREE
- FREE(X,S) indicates that no disc is on X
34




Towers of Hanoi

Second axiom*
V X S.FREE(X,S)=—3Y.(ON(Y,X.S))

* “For all disks X and situation S, X'is free in situation S if and only if there

does not exist a disk Y such that Yis ON Xin situation S.”

More Predicates
LEGAL (X,Y,S)
MOVE(X,Y,S)
Object of analysis

— Find a situation that is TRUE if a move is legal
and is accomplished

More Axioms
— See Handbook of Al for additional steps

Example of theorem proving, i.e., of theory
that a goal state can be reached

35



Godel’s Incompleteness Theorems
(1931)

http://en.wikipedia.orqg/wiki/Godel’s incompleteness theorems

1st Theorem: “No consistent system of axioms whose theorems can be
listed by an ‘effective procedure’ (e.g., a computer program ...) is capable
of proving all truths about the relations of the natural numbers
(arithmetic).”

“There will always be statements about the natural numbers that are true, but
that are unprovable within the system.”

2"d Theorem: “Such a system cannot demonstrate its own consistency.”
~ “Liar’s Paradox”, replacing “provability” for “truth”

http://mathworld.wolfram.com/Goedelsincompleteness Theorem.html

1st Theorem: “ Informally, Gddel's incompleteness theorem states that all
consistent axiomatic formulations of number theory include undecidable
propositions (Hofstadter 1989).”

2nd Theorem: “If number theory is consistent, then a proof of this fact
does not exist using the methods of first-order predicate calculus.”

36
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Thomas Kuhn: The Structure of
Scientific Revolutions, 1962

= Advances in Science
= Not a steady, cumulative acquisition of knowledge
= Peaceful interludes punctuated by intellectually violent revolutions
= Paradigm
= Pre-Kuhn: A pattern, exemplar, or example (OED, 1483)
= Post-Kuhn: “A collection of procedures or ideas that instruct
scientists, implicitly, what to believe and how to work.” (Horgan, 2012)

= Paradigm Shift

= One world view is replaced by another
= Godel's theorem: for any axiomatic system there exist propositions

that are either undecidable or not provably consistent
= Theory rests on subjective framework
= Propositions are true or false only within the context of a paradigm

http:/blogs.scientificamerican.com/cross-check/2012/05/23/what-thomas-
kuhn-really-thought-about-scientific-truth/
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Next Time:
Computers, Computing,
and Sefs



Supplemendal
Saeeriad
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Enigma and the Bletchley
Park Bombe

26-letter, 3- or 4-rotor encryption Algorithmic decyphering
device used by German military computer designed by Polish
during WWII mathematicians, Alan Turing,
and US Navy

r&E& GGFG%R
| beeﬂﬁﬂ‘e&
[ , 2 metﬂwem =
Rotors /| & i X Bl PRGECLEESE. Bl B
o Lampboard P ‘ S Rl L oy .'?°.

\d._..‘_‘.
_.h_-,'-A. P
o ~

3 : =~Keyboard

"
S = Plugboard se— S Ch i *"f:.
. . %’i

hitp-//en.wikipedia.ora/wiki/Bombe
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Calvin and
Hobbes

NOU KNOW, T
DONT THINK
MATH 'S A
SCENCE. I
THING ITS
A RELIGION .

A RELIGION?

YEAW. ALL THESE EQUATIONS
ARE LIKE MIRACLES, Yo
TAKE TWO NUMBERS AND WUEN
. YOU ADD THEM, THEY MAGICANY
i BECOME ONE NEW NUMBER /
s NO ONE CAN SaY HOW T
S HAPPENS. YOU EITHER BELIENE
T OR You DONT

<<

1Y

TR A e son D DA On LVes L
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s A
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MATLAB Stateflow

 Incorporation of event-driven logic in a
control system

— Simulink operates within the MATLAB
environment

— Stateflow implements logic blocks within
Simulink

42



.................................................................................

Automatic ==

----------------------------------------------------------------------------------

--------------------------------------------------------------------------------

Shifting Example :..m»

- Stateflow block represents
the control logic

« Double-click on block to

--------------------------------------------------------------------------------

reveal the Stateflow logic /
sf_car.mdl 1 .
e
1]
[ Nef— L
le ‘::ﬁno RPM
B | RS
s:;eed Nowt T iyt torue | g
User Inputs gear Vellck
. bake 3 % transmission
= P— CALC_TH transmission speed
shift_logic
th ™m0 gear fg— wvehicle
_th throttie fa— o vehicle mph
allow)
Threshold Calculation &(i:toﬂle)ﬂ
(-
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Stateflow Chart for an
Automatic Transmission

l Event
gear_state up up -t
irst (second L 4 ird 4 up ourth 1 ' ‘
ntry: gear = | ]Q:‘: ertry: gear=2; |qg— p_lentry: gear=3; entry: gear = 41— State action
DOWN DOWN DOWN
," selection_state 2\‘
) during: CALC_TH; ; '
[speed < down_th] . __[stdy_sme ]_;speed > up_th] = —— Condition
' Transition
d <up_th :
[speed > doM w ~—Parallel (AND) state
f“'"’""i”" ]:f ¢ <—+—Exclusive (OR) state
aften(TWAIT tick) aften(TWAIT tick)
[speed <= down_th] [speed >= up_th]
{gear_state DOWYN} {gear_state.UP}

-
................................................................................
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Automatic Shifting Simulation

000 engine RPM O O O vehicle mph (yellow) & throttle %

«|SE| L LM ARBE

e 06 Stateflow (chart) sf_car/shift_logic
File Edit View Simulation Tools Add Help
W SES| SR E=>4 [l > e | RS

< gear_state

first i .
entry: gear= 1; g 2
OWN DOWN

< selection_state
during: _TH

’

[speed < down_th] [speed > up_th]
2 1

000 X| sf_car

[speed < up_th] File Edit View Simulation Format Tools Help

[speed > down_th]

= upshifting
downstifting ? 2 - sf_car.mdl
ater(TWAIT ick) after(TWAIT ick) meelerforaue e e ieaen en

[speed <= down_th] [speed >= up_th] 8 the Simulapion menu
{gear_state DOVN} {gea eUP} : to run the simulation,

Ne

] throthle engine RPM

Engine gear

»
nout  Tout outputforque

User Inputs | — Uehicle
transmission

Brake
% transmission speed
Throttle —

Double-click to

gpen the GUI

and select an down_th R0 vehicle

Rt maneuver speed

up_th vehiclltla mph
ellow

Threshold Calculation & grymrome) %




Combining Discrete-Event
Logic with the Dynamic Model

2
Define the states

-

for modeling each
mode of operation

1
Define the
interface
to Simulink

I

3
Define
state actions
and variables

[

6
Simulate
the chart

5
Decide how to
trigger the chart

4
Define the

transitions
between states

~

7
Debug
the chart

J
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Temperature Control Example

F‘, sf_aircontrol

File Edit View Simulation Format Tools Help

DSE& fBR[(E 4D p spo [omd ] FHESH: REBE®
SWITCH
/\
_L CLOCK
Signal Builder it
—Pp{temp %ai‘flow P airflow
_— ol
160 p——P»{ambient
\ g Scope
Air Controller Ambient Physical Plant
Temperature
Ready 100% | | lode45 4
Stateflow chart Simulink subsystem

See MATLAB Manual, Getting Started, Simulink, for details of model building
(http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/)
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Physical Plant Model

Contents of Physical Plant

r“—',st aircontrol/Physical Plant
File Edt View Simulation Format Tools Help

DSES fBl e 4|2|p sfo |omd ~fHDHRDSH| RERS

D >
0 ’—\

-0.05 L

0.1 |————Pp
Constant1

Multiport
Switch

I X
»
Product p
r >
temp
Integrator

Ready |100% | 1 jode4S 7

Themal Isolation
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Air Control Logic

Contents of Air Controller

Stateflow (chart) sf_aircontrol/Air Controller

File Edit View Simulation Tools Add Help -
FEHS ' mEd e BE)>» I v | HSE BRAO | B

oo S

: FAN1

[temp < 120]
[temp ==120]
+ Speedvalue :
\ ::\du: aiMow = in(FAN1.0n) + in(FAN2.0n),
=
‘ 2
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Temperature Control Simulation

X Xa)

Stateflow (chart) sf_aircontrol/Air Controller

File Edit View Simulation Tools Add Help

A= EIRL Y IR Sl |

ﬁowerOn

D fem

 Speedvalue

 du: sirflow = in(FAN1.0n) + in (FAN2.0n);

.

—\--gw - é
\ :
p d
e 150 H

®
%
i)
2
A 4

|

PowerOff
en:
aitflow = 0;

|

|
z
S

806

X sf_aircontrol

File Edit View Simulation Format Tools Help

@ SYATCH
CLOCK

Signal Builder

Air Controller Ambient
Temperature

airflow

ambient

Physical Plant
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Solving Rubik’ s Cube:

An algorithm
http://www.cs.swarthmore.edu/~knerr/helps/rcube.html|

OFFICIALLY




