Formal Logic, Algorithms, and Incompleteness

Robert Stengel
Robotics and Intelligent Systems MAE 345, Princeton University, 2017

Learning Objectives

- Principles of axiomatic systems and formal logic
- Application of logic in computing machines
- Algorithms and numbering systems
- Gödel's Theorems: What axiomatic systems can't do

X	Y	$X \wedge Y$	$X \vee Y$	$X \rightarrow Y$	$X \equiv Y$	$X \wedge(\neg Y)$
T	T	T	T	T	T	F
T	F	F	T	F	F	T
F	T	F	T	T	F	F
F	F	F	F	T	T	F

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Intelligent Systems

- Perform useful functions driven by desired goals and current knowledge
- Emulate biological and cognitive processes
- Process information to achieve objectives
- Learn by example or from experience
- Adapt functions to a changing environment

```
Should robots be "More like us?"
```

- Semantics: The study of meaning
- Syntax: Orderly or systematic arrangement of parts or elements

Cognitive Paradigms for Intelligent Systems

- Thinking
- Syntax
- Algorithmic behavior
- Comparison
- Reflection
- Consciousness
- Understanding and judgment of truth
- Intelligence
- Flexible response
- Recognition of similarity and contradiction
- Ranking of information
- Synthesis of solutions
- Reasoning

Underlying structure: Logic

Formal Logic

- Deduction
- Shows that a proposition follows from one or more other propositions
- Establishes the validity of a claim or argument

- Reasons from input to rules to output
- Induction
- Infers a general law or principle from the observation of particular instances
- Reasons from input and output to rules

- Inference
- Derivation of conclusions from information, as by
- Deduction
- Induction
- Reasoning from something known or assumed, as by
- Application of rules or meta-rules (i.e., rules about rules)
- Probability and statistics

"Forms of Inference" Lead to "Formulas"

- Formulas
- Symbols
- Operations
- Rules
- Axioms
- Unproved but assumed formulas
- Starting point for proofs of formulas
- Theorems
- Formulas proved to be true based on
- Axioms
- Other theorems
- Algorithms
- Systematic procedures for using formulas
- Calculus
- A system or method of calculation
- A method of assessment

Propositional Calculus - 1

- Proposition: A statement that may be either true or false
- Complete, unanalyzed propositions and combinations
- What can be said -- formal relations and implications -axioms of the system
- Deductive structure: Rules of Inference
- Concern with form or syntax of statements
- Meaning of a statement may not be self-evident; for example,

$$
(2+3),(+23),(23+)
$$

- may be different notations for the same statement

Infix
"Algebraic notation"
$?$

Prefix
"Reverse Polish notation"
1954

Postfix
"Polish notation"
1924

Examples of Propositions

Princeton' s colors are orange and black (true) ... are red and gray (false)

$$
6+6=12 ; 6+7=12
$$

"I have a bridge to sell to you"

Variables and Operators
 (or Sentential Variables and Connectives)

- Sentential variables may be either true or false
- Operators connect sentential (or propositional) variables
- A proposition (or sentence) is a formula containing variables and operators

And	\wedge or $\&$	Conjunction
Or	\vee	Disjunction
Not	\neg or \sim	Negation
Implies	\rightarrow or \supset	Material Implication (If)
Equivalent	\equiv or \leftrightarrow	Material Equivalence (If and onlyif)

Dyadic Operations - 1

- Operations involving two arguments (i.e., sentential variables)
- Arguments of operators = Propositions
- X represents "Socrates is a man"
- Y represents "All men are mortal"
- Examples of formulas or connective expressions [dyadic operations (2 arguments)]

$$
\begin{aligned}
& X \wedge Y \\
& X \vee Y
\end{aligned}
$$

- "Socrates is a man" and "All men are mortal"
- "Socrates is a man" or "All men are mortal"

Dyadic Operations - 2

$$
\begin{array}{l|l}
X \rightarrow Y & \text { • "Socrates is a man"" implies that } \\
X \equiv Y & \text { "All men are mortal" } \\
\text { " "Socrates is a man" is equivalent } \\
\text { to "All men are mortal" }
\end{array}
$$

- $1^{\text {st }}$ argument is the antecedent; $2^{\text {nd }}$ argument is the consequent
- "IF-THEN-ELSE" interpretation of dyadic operations
- If X is true and Y is true, then $X \wedge Y$ is true; else $X \wedge Y$ is false
- If X is true or Y is true, then $X \vee Y$ is true; else $X \vee Y$ is false

Monadic Operations and Syntactic Propositions

- Negation is a monadic (single argument) operation
- If X is true, then $\neg X$ is false
- If X is false, then $\neg X$ is true
- Brackets group propositions to form Syntactic Propositions (i.e., propositions based on propositions)
- Incorporation of negation in dyadic operations:
$X \wedge(\neg Y)$
If \boldsymbol{X} is true and \boldsymbol{Y} is false, then $X \wedge(\neg Y)$ is true; else ...
$X \vee(\neg Y)$ If \boldsymbol{X} is true or \boldsymbol{Y} is false, then ...

Truth Tables for Dyadic Expressions

X	Y	$X \wedge Y$	$X \vee Y$	$X \rightarrow Y$	$X \equiv Y$	$X \wedge(\neg Y)$
T	T	T	T	T	T	F
T	F	F	T	F	F	T
F	T	F	T	T	F	F
F	F	F	F	T	T	F

- Syntactic combinations build sentences
- Tautology (repetitive statement) is always true
- " X implies Y and Z " is the same as " X implies Y and X implies $Z^{\prime \prime}$

$$
(X \rightarrow(Y \wedge Z)) \equiv((X \rightarrow Y) \wedge(X \rightarrow Z))
$$

More Concepts in Propositional Calculus

- Fallacy or Contradiction
- Saying that [X or Y is false is the same as saying that " X is false and Y is false" is false)] is a fallacy or contradiction

$$
\neg(X \vee Y) \equiv \neg(\neg Y \wedge \neg X)
$$

- Liar's paradox: "I am lying." True or false? Sentence refers to its own truth.
- Truth depends on the propositions described by X, Y, and Z

$$
(X \wedge Y) \vee(\neg Y \wedge Z)
$$

- Well-formed formulas (WFFs) make sense and are unambiguous

$$
(X \wedge Y) \vee(\neg Y Y(Z)) \text { Not a } W F F
$$

More Concepts in Propositional Calculus

- Decisions are based on testing the validity of WFFs
- De Morgan's Laws
- Two propositions are jointly true only if neither is false

$$
\begin{aligned}
& \neg(X \wedge Y) \equiv \neg X \vee \neg Y \\
& \neg(X \vee Y) \equiv \neg X \wedge \neg Y
\end{aligned}
$$

- Modus Ponens rule (rule of detachment or elimination)
- If X is true and X implies Y, then we can infer that Y is true

$$
(X \wedge(X \rightarrow Y)) \rightarrow Y
$$

Modus Ponens Rule

- Rule of detachment, elimination, definition, or substitution
- If X is true and X implies Y, then we can infer that Y is true

$$
(X \wedge(X \rightarrow Y)) \rightarrow Y
$$

- X is true and X implies Y, then (X is true and X implies Y) implies that Y is true
- Example from Wikipedia:
- If it's raining, I'll meet you at the movie theater.
- It's raining.
- Therefore, I'll meet you at the movie theater

Material Implication

- $X->Y$
- Same as " $\neg X$ or Y "
- X is false does not imply that Y is not true
- "If", not "If and only if", which is material equivalency
- Double negative
- Example:
- X : Anyone can be caught in the rain
- Y : That person is wet
- X-> Y, or (if $X Y$)
- Suppose Dave is wet; was he caught in the rain?
- Dave went under a sprinkler and got wet; he was not caught in the rain, but he is wet
- Therefore [(false) -> (true)] is true
- Material implication does not indicate causality

Material Implication (if) vs. Material Equivalence (iff)

- $X \equiv Y$
- "If and only if": iff
- The truth of X requires the truth of Y
- If: I will eat lunch if the E-Quad Café has tuna salad
- Iff: I will eat lunch if and only if the EQuad Café has tuna salad

Toward Predicate Calculus

- Sentence
- Series of words forming a grammatically complete expression of a single thought
- Normally contains (at least) a subject and a predicate
- Predicate
- That which is predicated (or said) of the subject in a proposition
- Second term of a proposition, e.g.,
- Socrates is a man
- The statement made about the subject, e.g.,
- The main verb, its object, and modifiers

Predicate Calculus

- Extensions to propositional calculus
- Predicates
- Flexible variables, i.e., more states than only true or false
- Quantification
- Conversion of words to numbers
- Introduction of degrees of value
- Inference rules for quantifiers
- First-order logic
- Productive use of predicates, variables, and quantification
- Building blocks for expert systems

Predicates

- Predicate, $\mathrm{P}(\mathrm{X})$
- A statement (or proposition) about individuals (or arguments) that is either true or false*
- One argument: Example: "is-red"
- Two arguments: Example: "is-greaterthan"
- QUEEN OF HEARTS is-red (true)
- LIVE GRASS is-red (false)
- SEVEN is-greater-than FOUR
- One-argument predicate, $\mathrm{P}(\mathrm{X})$, performs a sort

* also called an atomic formula

Variable

- A placeholder that is to be filled with a constant, e.g., X in $P(X)$
- A slot that receives a value
- A symbolic address for information

Quantification

- "Universal quantifiers say something that is true for all possible values of a variable."*

$$
\begin{aligned}
& (\text { forall }(x) f) \quad \begin{array}{l}
x: \text { variable } \\
f: \text { formula; specifies scope of } x
\end{array} \\
& (\text { forall }(x)(\text { if }(\text { inst } x \text { fire }- \text { engine })(\text { color } x \text { red })))
\end{aligned}
$$

- Existential quantifiers
- state conditions under which a variable exists
- predicate properties or relationships of one or more variables

$$
(\text { exists }(x) f)
$$

$$
(\text { forall }(x)(\text { if }(\text { person } x)(\text { exists }(y)(\text { head }- \text { of } x y))))
$$

Inference Rules for Quantifiers

- Well-formed formula (WFF)
- Syntactically correct combination of connectives, predicates, constants, variables, and quantifiers
- Universal Quantification (or Elimination or Instantiation)
- Man(Socrates) -> Mortal(Socrates)
- or "The man, Socrates, is mortal" ["given any", "for all"]
- Existential Quantification (or Elimination or Instantiation)
- Man(person) -> Happy(person)
- Someone is happy ["there exists at least one"]
- Existential Introduction (Generalization)
- Man(Jerry) -> Likes_ice_cream(Jerry)
- Someone likes ice cream ["general to specific" or v.v.]

Examples of Sentences

- LISP-like terms and prefix notation
- (catch-object jack-1 block-1)
- (inst block-1 block)
- (color block-1 blue)
- With connectives
- (and (color block-1 yellow) (inst block-1 elephant))
- (if (supports block-2 block-1) (on block-1 block-2))
- (if (and (inst clyde elephant) (color elephant gray)) (color clyde gray))
- Jack-1 catches the object called Block-1
- Block-1 is an instantiation of a block
- Block-1 is blue
- Block-1 is a yellow elephant
- If block-2 supports block-1, then block-1 is on block-2
- If clyde is an elephant and an elephant is gray, then clyde is gray

First-Order Logic

- Further extensions to predicate calculus
- Functions
- Fixed number of arguments
- Rather than returning TRUE or FALSE, functions return objects, e.g.,
- "uncle-of" Mary returns John
- Functions of functions, e.g.,
- (father-of (father-of (John)) returns John' s paternal grandfather

First-Order Logic

- Equals
- Two individuals are equal if and only if (equivalence) they are indistinguishable under all predicates and functions

$$
\begin{gathered}
X \equiv Y \quad \text { if and only if } \\
P(X) \equiv P(Y), \quad F(X) \equiv F(Y), \quad \forall P \wedge F
\end{gathered}
$$

- Axiomatization
- Axioms: necessary relationships between objects in a domain
- Formal expression in sentences of first-order logic (emphasis on syntax over semantics)

Apollo Guidance Computer Commands

- Display/Keyboard (DSKY)
- Sentence
- Subject and predicate
- Subject is implied
- Astronaut, or
- GNC system
- Sentence describes action to be taken employing or involving an object
- Predicate
- Verb + Noun
- Verb = Action
- Noun = Variable or Program (i.e., the object)

Numerical Codes for Verbs and Nouns in Apollo Guidance Computer Programs

Verb Code 01	Description Display 1st component of
$\mathbf{0 2}$	Display 2nd component of
03	Display 3rd component of

Remarks
Octal display of data on REGISTER 1
Octal display of data on REGISTER 1
Octal display of data on REGISTER 1

Noun Code	Description	Scale/Units
$\mathbf{0 1}$	Specify machine address	XXXXX
$\mathbf{0 2}$	Specify machine address	XXXXX
$\mathbf{0 3}$	(Spare)	
$\mathbf{0 4}$	(Spare)	
$\mathbf{0 5}$	Angular error	XXX.XX degrees
$\mathbf{0 6}$	Pitch angle	XXX.XX degrees
	Heads up-down	+/- 00001
$\mathbf{0 7}$	Change of program or major mode	
$\mathbf{1 1}$	Engine ON enable	

Verbs and Nouns in Apollo Guidance Computer Programs

- Verbs (Actions)
- Display
- Enter
- Monitor
- Write
- Terminate
- Start
- Change
- Align
- Lock
- Set
- Return
- Test
- Calculate
- Update
- Selected Nouns (Variables)
- Checklist
- Self-test ON/OFF
- Star number
- Failure register code
- Event time
- Inertial velocity
- Altitude
- Latitude
- Miss distance
- Delta time of burn
- Velocity to be gained
- Selected Programs (CM)
- AGC Idling
- Gyro Compassing
- LET Abort
- Landmark Tracking
- Ground Track Determination
- Return to Earth
- SPS Minimum Impulse
- CSM/IMU Align
- Final Phase
- First Abort Burn

Algorithms

- Systematic procedures for using formulas
- Computer programs contain algorithms
- Euclid's Algorithm
- Highest common denominator (HCD) of 2 numbers
- In example, HCD = 21
- Operations based on natural numbers (positive integers)
- Procedure is completed in a finite number of steps

$$
\begin{gathered}
3654 \div 1365 \text { gives remainder } 924 \\
1365 \div 924 \text { gives remainder } 441 \\
924 \div 441 \text { gives remainder } 42 \\
441 \div 42 \quad \text { gives remainder } 21 \\
42 \div 21 \quad \text { gives remainder } 0
\end{gathered}
$$

- Flow charts
- Operations
- Conditions
- Sub-routines

Some Natural Numbering Systems

Natural numbers: non-negative, whole numbers

Denary (Base 10) $\begin{array}{r}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11\end{array}$
Two 5-finger hands One 10-finger hand

Binary (Base 2)
0

Unary (Base 1)
?
1
11
111
1111 11111
111111
1111111
11111111
111111111 1111111111
11111111111

Binary Digits
"Bits" (John Tukey)
True-False
Yes-No
Present-Absent

Chalk and a rock
Abacus
"Chisenbop"

Marks

Other number systems

- DNA (Base 4) [ATCG]
- Octal (Base 8)
- Hexadecimal (Base 16)
$F 3$
$=\left(15 \times 16^{1}\right)+\left(3 \times 16^{0}\right)$
$=243$

$$
=243
$$

Algorithms are Independent of Numbering System

- Logical algorithms may deal with objects or symbols directly
- For computation, objects or symbols ultimately are represented by numbers (e.g., 0s and 1s) or alphabet
- Mathematical logical algorithms are independent of the numbering system

Towers of Hanoi: An Axiomatic System

Problem: Move all disks (one at a time) from $1^{\text {st }}$ peg to $3^{\text {rd }}$ peg without putting a larger disk on a smaller disk

- Objects
- Disks: 1, 2, 3, 4, 5
- Pegs: A, B, C
- Sorting: DISK, PEG
- $\operatorname{DISK}(A)$ is FALSE
- PEG(A) is TRUE
- Comparison: SMALLER
- $\operatorname{SMALLER}(1,2)$ is TRUE

Towers of Hanoi

- First axiom
$\forall X Y Z .(\operatorname{SMALLER}(X, Y) \wedge(\operatorname{SMALLER}(Y, Z)) \rightarrow \operatorname{SMALLER}(X, Z)$
- Premise

SMALLER $(1,2) \wedge \operatorname{SMALLER}(2,3)$

- Situational constant, s
- Identifies state of system after a series of moves
- More predicates
- Vertical relationship: ON
- $\operatorname{ON}(X, Y, S)$ asserts that disc X is on disk Y in situation S
- Nothing on top of disk: FREE
- $\operatorname{FREE}(X, S)$ indicates that no disc is on X

Towers of Hanoi

- Second axiom*
$\forall X S . \operatorname{FREE}(X, S) \equiv \neg \exists Y .(\mathrm{ON}(Y, X, S))$
* "For all disks X and situation S, X is free in situation S if and only if there does not exist a disk Y such that Y is $\mathrm{ON} X$ in situation S.'
- More Predicates
- Acceptable (legal) move: LEGAL (X,Y,S)
- Act of moving disk: $\operatorname{MOVE}(X, Y, S)$
- Object of analysis
- Find a situation that is TRUE if a move is legal and is accomplished
- More Axioms
- See Handbook of Al for additional steps

Example of theorem proving, i.e., of theory that a goal state can be reached

Gödel's Incompleteness Theorems (1931)

http://en.wikipedia.org/wiki/Gödel's_incompleteness_theorems

- $1^{\text {st }}$ Theorem: "No consistent system of axioms whose theorems can be listed by an 'effective procedure’ (e.g., a computer program ...) is capable of proving all truths about the relations of the natural numbers (arithmetic)."
- "There will always be statements about the natural numbers that are true, but that are unprovable within the system."
- $2^{\text {nd }}$ Theorem: "Such a system cannot demonstrate its own consistency."
- ~"Liar’s Paradox", replacing "provability" for "truth"

http://mathworld.wolfram.com/GoedelsIncompletenessTheorem.html

- $1^{\text {st }}$ Theorem: " Informally, Gödel's incompleteness theorem states that all consistent axiomatic formulations of number theory include undecidable propositions (Hofstadter 1989)."
- $2^{\text {nd }}$ Theorem: "If number theory is consistent, then a proof of this fact does not exist using the methods of first-order predicate calculus."

Thomas Kuhn: The Structure of Scientific Revolutions, 1962

- Advances in Science
- Not a steady, cumulative acquisition of knowledge
- Peaceful interludes punctuated by intellectually violent revolutions
- Paradigm
- Pre-Kuhn: A pattern, exemplar, or example (OED, 1483)
- Post-Kuhn: "A collection of procedures or ideas that instruct scientists, implicitly, what to believe and how to work." (Horgan, 2012)
- Paradigm Shift
- One world view is replaced by another
- Gödel's theorem: for any axiomatic system there exist propositions that are either undecidable or not provably consistent
- Theory rests on subjective framework
- Propositions are true or false only within the context of a paradigm
http://blogs.scientificamerican.com/cross-check/2012/05/23/what-thomas-kuhn-really-thought-about-scientific-truth/

Next Time: Computers, Computing, and Sets

Strpmlemsentan Mastervia!

Enigma and the Bletchley Park Bombe

26-letter, 3- or 4-rotor encryption device used by German military during WWII

Algorithmic decyphering computer designed by Polish mathematicians, Alan Turing, and US Navy

Calvin and Hobbes

MATLAB Stateflow

- Incorporation of event-driven logic in a control system
- Simulink operates within the MATLAB environment
- Stateflow implements logic blocks within Simulink

Automatic Shifting Example

- Stateflow block represents the control logic
- Double-click on block to reveal the Stateflow logic

Stateflow Chart for an Automatic Transmission

Automatic Shifting Simulation

Combining Discrete-Event Logic with the Dynamic Model

Temperature Control Example

See MATLAB Manual, Getting Started, Simulink, for details of model building (http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/)

Physical Plant Model

Contents of Physical Plant

Air Control Logic

Contents of Air Controller

Temperature Control Simulation

Solving Rubik' s Cube:

