Computers, Computing, and Sets

Robert Stengel

Robotics and Intelligent Systems MAE 345, Princeton University, 2017

Learning Objectives

- Principles of Turing Machine
- Evolution of Calculators and Computers

- Programming
- Crisp Sets
- Properties of collections of objects
- Fuzzy Sets and Control Systems
- Effects of uncertainty or imprecision

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Turing Machine (Logical Computing Machine)

- Abstract representation of programming for a computing device
- Attempt to give mathematically precise definition to algorithm or mechanical (or effective) procedure
- Hardware description as a machine is figurative
- Finite number of internal discrete states of the machine
- States = steps or instructions of a program
- Unlimited amount of external input data on a tape

Elements of a Logical Computing Machine (LCM)

- Data Tape, with bits in bins

- Set of Instructions (Program) for R/W Register
- Define internal states, which are identified by state (i.e., program line) number
- Control Mechanism
- Move read/write head over tape

- Or move tape through read/write head

Operation of a Turing Machine

Execution begins in field of " 0 "s to the left, with device at State \#0

- State \#0 instruction moves device to the right until it encounters a " 1 " in bin (i.e., on the tape)
- Action of device depends on current instruction in a Stored Program (i.e., Set of Instructions)
- Modifies the bin (or not)
- Identifies next internal state
- Moves one bin to right or left

Example of a Turing Machine: Denary (Base 10) Notation for State (Line Number)

- Execution begins in field
of " 0 "s to the left, with
device at State \#0
- State \#0 instruction moves device to the right until it encounters a " 1 "
- Action of device depends on stored instructions
- Modifies the bin (or not)
- Identifies next internal state
- Moves one bin to right or left
[Program]
Instruction
State $\#$
0
0

1
1
2
2
3
\ldots

210
\ldots
258
259
259
\(\left.$$
\begin{array}{rrrr}\text { [Data] } \\
\text { Register } \\
\text { Contents }\end{array}
$$ \quad $$
\begin{array}{r}\text { Next } \\
\text { State }\end{array}
$$ \quad $$
\begin{array}{r}\text { New Bin } \\
\text { Contents }\end{array}
$$ \begin{array}{r}Direction

of Move\end{array}\right]\)| $\mathbf{0}$ |
| ---: |
| $\mathbf{1}$ |

Penrose, 1989

[Program] [Data]				
Instruction State \#	n Register	Next	New Bin	Direction
	Contents	State	Contents	of Move
	0	$0 \quad 0$)	$0 \quad 1$
	0	1101		10
	1	01000001		1
	1	11		$0 \quad 1$
	10	$0 \quad 0$)	11 (Stop)
	10	11000010		0
	11	0100101		0
...	\cdots
1101001		$0 \quad 11$		0

Unary, Binary, and Expanded Binary Coding of Data

- Turing Machine to

 add "1" to a unary number (at right)- On data tape: 01111

[Program]	[Data]			
Instruction	Register	Next	New Bin	Direction
State \#	Contents	State	Contents	of Move
0	0	0	0	R
0	1	1	1	R
1	0	0	1	\mathbf{R} (Stop)
1	1	1	1	R

- Binary coding problems
- Notation for terminating binary description of a number
- Definition of space between numbers
- Recognition of de-limiters (e.g., commas) and logical/ arithmetic operators
- Data could be stored in unary format
- On data tape: 01110

Unary and Expanded Binary Coding of Data

- Solution: Expanded Binary Coding
- Contraction: Unary expression of small numbers, separated by "0"
- Encode de-limiters and operators as numbers
- Terminate numbers with commas (as delimiter)

Number Meaning	Expanded Binary Notation	
0 Binary "0"	0	
1 Binary "1"	10	
2 Comma	110	
3 Minus Sign	1110	
4 Plus Sign	11110	

Expanded Binary Coding

| Expanded Binary Code: | 0100010 | \|110|1 | 1010 | 110 | 10001 | 1110 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | । ।1। । | 1 | 1 I | I | 111 | I | | I | |
| Number (code) | 1001 | 2 | 11 | 2 | 100 | 3 | | 1 | |
| Meaning (de-code) | 9 | | 3 | | | - | | | |

Number Meaning	Expanded Binary	
	Notation	0
0 Binary "0"	0	
1 Binary "1"	10	
2 Comma	110	
3 Minus Sign	1110	
4 Plus Sign	11110	

Expanded Binary Coding and Turing Machines

- Expression of arbitrary denary statement numbers
- Convert from denary to binary
- Convert from binary to expanded binary
- Define Turing Machine for operations on expanded binary code

Original:	0	1	13	1	L
Binary:	0	1	1101	1	0
De-Limited:	$, 0,1,1101,1,0$,				
Expanded Binary	00011011010110101001011010110110				

Machine code is written in Expanded Binary (or similar) code

- Universal Turing Machine (Computer Program in "Machine Language")
- Turing Machine for control of a Turing Machine
- Instructions on a separate tape or at beginning of data tape
- $2^{\text {nd }}$ TM with simple code set reads register contents
- Instruction tape could be modified just like the data tape
- Instruction branches can be conditioned on prior results
- Self-modifying instruction set possible
- Church-Turing Thesis ("Hypothesis", "Conjecture")
- Turing Machine (LCM) defines what we mean by an algorithmic, mechanical, effective, or recursive procedure
- LCM can do anything that could be described as a Rule of Thumb or "purely mechanical"

Calculation and Computing

Calculation

13

Early Computers - IBM

Early Computers - Punched Card

Apollo Guidance Computer

http://klabs.org/history/build agc/
iPhone 6 vs. Apollo Guidance Computer (1968) https://www.youtube.com/watch?v=ULGi3UkgW30

- Parallel processor
- 16-bit word length (hexadecimal)
- Memory
- 36,864 words (fixed)
- 2,048 words (variable)
- $1^{\text {st }}$ operational solid-state computer - Identical computers in CSM and LM
- Different software (with many identical subroutines)

Hardware Architectures
 Central Processing Unit (CPU)

- Arithmetic Logic Unit (ALU)

- Processor registers (~ cache memory)
- Control unit

Hardware Architectures
 Field-Programmable Gate Array (FPGA)

- Application-Specific Integrated Circuit (ASIC)
- Programmable logic blocks/"gates"
- Look-up tables, flip-flops (bistable latches), and routing matrix
- Reconfigurable connections
- Data buses, timers, analog components

Hardware Architectures Graphics Processing Unit (GPU)

- Highly parallel structure for rendering images
- Transformation, clipping, texture mapping, shading, and lighting
- Specialization to vector-matrix operations

Hardware Architectures Tensor Processing Unit (TPU)

- Application-Specific Integrated Circuit (ASIC) for machine learning
- Google TensorFlow symbolic math CISC s/w library
- High-volume, reduced-precision logic (e.g., 256×2568-bit matrix multiply, on-chip memory and accumulators)
- Arrays of arrays of TPU chips ~ 11.5 PFLOPS performance

A Little AGC Digital Autopilot Code (Assembly Language)

Evolution of Programming

- History of programming languages
- https://en.wikipedia.org/wiki/ History of programming languages
- The song, "99 Bottles of Beer on the Wall", programmed in 1,500 computer languages
- http://www.99-bottles-of-beer.net/
- In BASIC:

10 REM BASIC Version of 99 Bottles of beer 20 FOR X=100 TO 1 STEP - 1
30 PRINT X;"Bottle(s) of beer on the wall,";X;"bottle(s) of beer" 40 PRINT "Take one down and pass it around,"
50 PRINT X-1;"bottle(s) of beer on the wall"
60 NEXT

Programming Language Classes

- Expert systems can be programmed in almost any language
- Language is the interface between the programmer and the computer
- Higher-order
- Lower-order
- Interpreter
- Compiler
- Assembly language " Machine code
- Critical differences
- Instruction set
- Execution speed
- Memory use
- Procedural (e.g., FORTRAN, LISP, MATLAB, Python)
- Imperative
- Functional
- Non-Procedural, Querybased Languages (e.g., PROLOG)
- Declarative
- Non-Declarative

Ultimately, it is all machine code ("0"s and "1"s) ${ }_{23}$

Crisp Sets

Naive (or Intuitive) Set Theory (1870s)

- Deals with the properties of well-defined collections of objects
- Universal set = Universe of discourse = U
- Contains all elements of possible concern in a particular context
- $A=$ a particular set in U
- defined in a list
- by a rule, or
- by a membership function describing elements (or members) of the set

- A: All mammals
- B: All aquatic animals
- C: All gray, hairless objects
- A \& B: Whales, dolphin, seals, ...
- B \& C: Fish, clams, whales, dolphins, ...
- A, B, \&C: Whales, dolphins, ...

Three Criteria for Membership in a Set

- List $\begin{array}{rrr}A=\{x, y, z, \ldots\} & \text { Ordering of elements is not important } \\ & A=(x, y, z, \ldots) & \text { Ordering of elements is important }\end{array}$
- Rule
$A=\{x \in U \mid x$ meets some conditions $\}$
e.g.,
$\mu_{A}(x)$

$$
A=\{x \in U \mid g(x) \leq 0\}
$$

$$
\mu_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
$$

Membership in a Set

- $A=$ a particular set in U
- defined in a list or rule, or
- by a membership function describing elements (or members) of the set
- Universal set = guests at a party
- Particular sets
- Current graduate students
- Alumni
- Spouses
- Friends of students
- Children
- Same family
- Visitors
- Pilots
- Teachers
- Managers
- Military officers

- Women and men
- US citizens or foreign nationals

Operations on Sets

- Union of sets

- Intersection of sets
$C=A \cap B$

- Proper Subset
- One-to-one correspondence

$$
A=B
$$

For example, as when

$$
\begin{aligned}
& A=(x, y, z) \\
& B=(4,3,9) ; \text { then } x=4, y=3 \text {, and } z=9
\end{aligned}
$$

$B \subset A$
$B \subseteq A$, and
$B \neq A$

29

Properties of Sets

- Complement

$$
A^{\prime}=U-A
$$

- Empty (null) set

$$
\varnothing=A-A \text { or }=U-U
$$

- Reflexive property
- Relationships that bear same effect on own set as on other sets

$$
\text { e.g., } \quad A=A, \quad A \geq A, \quad A \leq A
$$

- Transitive property

- Two sets bear same relationship to a third set

$$
\begin{aligned}
& \text { e.g., if } A>B \text { and } B>C, \\
& \text { then } A>C
\end{aligned}
$$

- Equivalence
- Reflexivity + Symmetry + Transitivity

$$
A \sim B \text { or } A \equiv B
$$

What If Sets Have Uncertain or Contradictory Membership?

- Example: U=All the cars in Berkeley
$A=\{x \in U \mid x$ has 4 cylinders $\}$
$B=\{x \in U \mid x$ has 6 cylinders $\}$

	Set	Set
	Crisp Logic	Fuzzy Logic
4-cylinder engine	E	US cars
B	6-cylinder	
engine		
8-cylinder		
engine		
D	F	Foreign cars
Others		

- What makes a car "US" or "Foreign"?
- US cars may contain foreign parts
- Foreign cars may contain US parts

```
List?
Rule?
Membership function?
```

How should we define Sets E and F ?

Fuzzy Sets

Hard and Soft Thinking

- Problem-solving approaches
- Logical / Metaphorical
- Reasonable / Dream-like
- Serious / Humorous
- Definite / Ambiguous
- Consistent / Paradoxical
- Laborious/Playful
- Exact / Approximate
- Real/Fantastic
- Focused/Diffuse
- Analytical / Illogical
- Specific / General
- Mature / Immature
- Crisp / Fuzzy

A Notional Fuzzy Experiment

Normalize results so that the maximum is 1 Normalized plots are fuzzy membership functions

Fuzzy Sets

- Fuzzy membership function, $\mu_{A}(x)=1$
- takes any value in [0, 1]
- Fuzzy set, E

$$
E=\left\{x \in U \mid\left[x, \mu_{E}(x)\right]\right\}
$$

- $\boldsymbol{U}=$ All the cars in Berkeley

- $\boldsymbol{p}(\boldsymbol{x})=$ percentage of domestic parts $=\mu_{D}(x)=1$
$-[1-p(x)]=$ percentage of foreign parts $=\mu_{F}(x)=1$
- Membership functions express a subjective utility that may be rigorous (e.g., based on probability) or not
- "If 46\% of a car's parts are domestic, it probably is a foreign car"

Fuzzy Membership Functions

"Close to zero"

"About y "

Fuzzy Set Definitions

- Two-sided: center = mean value
- Left-sided: center $=\max (x)$ for which $\mu(x)=1$
- Right-sided: center $=$ min (x) for which $\mu(x)=1$

- Support of a fuzzy set

$$
\operatorname{supp}(A)=\left\{x \in U \mid \mu_{A}(x)>0\right\}
$$

- Center of a fuzzy set

Fuzzy Logic Operations

Union of sets
$A \cup B$
if and only if $\mu_{A \cup B}(x)=\max \left[\mu_{A}(x), \mu_{B}(x)\right] \forall x \in U$
Intersection of sets
$A \cap B$
if and only if $\mu_{A \cap B}(x)=\min \left[\mu_{A}(x), \mu_{B}(x)\right] \forall x \in U$

A contains B

$$
A \supset B
$$

if and only if $\mu_{A}(x) \geq \mu_{B}(x) \forall x \in U$

More Fuzzy Logic Operations

Equivalence of sets

$A \sim B$
if andonly if $\mu_{A}(x)=\mu_{B}(x) \forall x \in U$

Complement of sets

$A^{\prime}=U-A$
if and only if $\mu_{A^{\prime}}(x)=1-\mu_{A}(x) \forall x \in U$

Fuzzy logic is a generalization of crisp logic based on the definition of the membership function

Example: Cement Kiln Control

Cement Kiln Operator's Manual

Case	Condition	Action to be taken	Reason
10	BZ okOX JowBE low	a. Increase air fan speed	To raise back-end temperature and increase oxygen for action 'b'
		b. Increase fuel rate	
11	BZ ok OX low	a, Decrease fuel rate speed slightly	To raise oxygen
	BE ok BZ ok		
12	OX low	a. Reduce fuel rate b. Reduce air fan speed	To increase oxygen for action 'b' To lower back-end temperature and maintain burning zone temperature
13	BE high BZ ok	a. Increase air fan speed b. Increase fuel rate	To raise back-end temperature To maintain burning zone temperature
	OX ok BE ok		
14	BZ ok	None. However, do not get overcor and keep all conditions under obset	fident vation
	OX ok		
15	BZ ok	When oxygen is in upper part of rangea. Reduce air fan speed	ge
	OX ok BE high		To reduce back-end temperature
		b. Reduce fuel rate	To raise oxygen for action ' c '
		c. Reduce air fan speed	To lower back-end temperature and maintain burning zone temperatur
16	BZ ok OX high	a. Increase air fan speed b. Increase fuel rate	To raise back-end temperature To maintain burving zone temperature and reduce oxygen
	OX high		
17	BE low BZ ok	a. Reduce air fan speed slightly	To lower oxygen
	OX high BE ok		

Linguistic (Mamdani) Fuzzy Control Systems (after Schramm)

- Antecedent and consequent are both fuzzy propositions
- e.g., "If error is small and error rate is negative, then control command is small"
- What are "small", "medium", and "large"?
- Must "fuzzify" physical error/rate, apply fuzzy rules, and "defuzzify" control command

Fuzzify

Mamdani Fuzzy Controller for Cement Kiln

- Linguistic Controller

- Antecedents
- BZ: Temperature in burning zone
- OX: Oxygen in exhaust gas
- BE: Temperature at end of kiln
- Consequents
- CR: Coal feed rate

- DP: Exhaust damper position
- 27 fuzzy rules, e.g.,

Low
Large

- If $B Z$ is $O K$ and $O X$ is low and $B E$ is low, then set $C R$ to large, and DP to large

Controller is apparently symbolic, but symbols must have values for computation,
i.e., Fuzzy Membership Functions

Probable Cause

- The National Transportation Safety Board determines that the probable cause of the USAir flight 427 accident was
- a loss of control of the airplane resulting from the movement of the rudder surface to its blowdown limit.
- The rudder surface most likely deflected in a direction opposite to that commanded by the pilots as a result of - a jam of the main rudder PCU servo valve secondary slide to the servo valve housing offset from its neutral position and
- overtravel of the primary slide.

Gain-Scheduling (TakagiSugeno) Fuzzy Control Systems

(Schramm, Gopisetty, and Stengel, 1998)

Failure Detection for Simulated Rudder Failure

- Rudder reversal occurs at $t=10 \mathbf{s}$
- Heading angle change commanded at $t=20 \mathrm{~s}$

Schramm, 1998

Simulated Reconfiguration

- Failure detection logic detects nothing until rudder effect is expected
- Once detected, control signal is reversed

Fuzzy Logic \neq Fuzzy Thinking

- Quantitative approach to reasoning under uncertainty
- "Possibility theory" vs. Probability theory (Lotfi Zadeh, 1978)
- Relationship to other uncertainty belief systems of artificial intelligence, e.g.,
- Bayesian belief network
- Dempster-Shafer theory
- Transferable belief model
- Certainty factors
- Propositions are true or false only within the context of a paradigm

Next Time: Probability and Statistics

Supplemental Material

Turing Machine for Euclid's Algorithm

Penrose, R., The Emperor's New Mind, 1989, p. 41

Since we wish to be able to include numerical data as part of our input, we shall want to have a way of describing ordinary numbers (by which I here mean the natural numbers $0,1,2,3,4, \ldots$) as part of the input. One way to do this might be simply to use a string of n ls to represent the number n (although this could give us a difficulty with the natural number zero):
$1 \rightarrow 1,2 \rightarrow 11,3 \rightarrow 111,4 \rightarrow 1111,5 \rightarrow 11111$, etc.
This primitive numbering system is referred to (rather illogically) as the unary system. Then the symbol ' O ' could be used as a space to separate different numbers from one another. It is important that we have such a means of separating numbers from one another since many algorithms act on sets of numbers rather than on just single numbers. For example, for Euclid's algorithm, our device would need to act on the pair of numbers A and B . Turing machines can be written down, without great difficulty, which effect this algorithm. As an exercise, some dedicated readers might perhaps care to verify that the following explicit description of a Turing machine (which I shall call EUC) does indeed effect Euclid's algorithm when applied to a pair of unary numbers separated by a 0 :
$00 \rightarrow 00 \mathrm{R}, \quad 01 \rightarrow 11 \mathrm{~L}, \quad 10 \rightarrow 101 \mathrm{R}, \quad 11 \rightarrow 11 \mathrm{~L}, \quad 100 \rightarrow 10100 \mathrm{R}$,
$101 \rightarrow 110 \mathrm{R}, \quad 110 \rightarrow 1000 \mathrm{R}, \quad 111 \rightarrow 111 \mathrm{R}, \quad 1000 \rightarrow 1000 \mathrm{R}, \quad 1001 \rightarrow 101 \mathrm{OR}_{\mathrm{R}}$, $1010 \rightarrow 1110 \mathrm{~L}, \quad 1011 \rightarrow 110 \mathrm{~L}_{\mathrm{L}} . \quad 1100 \rightarrow 1100 \mathrm{~L}, \quad 1101 \rightarrow 11 \mathrm{~L} . \quad 1110 \rightarrow 1110 \mathrm{~L}$. $1111 \rightarrow 10001 \mathrm{~L} . \quad 10000 \rightarrow 10010 \mathrm{~L}, \quad 10001 \rightarrow 10001 \mathrm{~L} . \quad 10010 \rightarrow 100 \mathrm{R}$. $10011 \rightarrow 1$ L L.$\quad 10100 \rightarrow 0$ STOP. $\quad 10101 \rightarrow 10101 \mathrm{R}$.

Turing Machines in Biological Cells

53

The Central Dogma:
 Core Process of Protein Production

- A gene is a sequence of nucleotides on a chromosomal strand of DNA
- Single-stranded messenger RNA (mRNA) expresses information from DNA to form a protein, a sequential molecule of amino acids
- Information coded in nt triplets (codons), with open reading frames defined by Start and Stop codons

First Position	The Genetic Code			Third Position	
	\boldsymbol{U}	C	A	G	
\boldsymbol{U}	F	S	Y	C	U
	F	S	Y	C	C
	L	S	Stop	Stop	A
C	L	S	Stop	W	G
	L	P	H	R	U
	L	P	H	R	C
	L	P	Q	R	A
A	L	P	Q	R	G
	,	T	N	S	U
	I	T	N	S	C
	I	T	K	R	A
	M (start)	T	K	R	G
G	V	A	D	G	\boldsymbol{U}
	V	A	D	G	C
	V	A	E	G	A
	V	A	E	G	G

System View of The Core Process

Block Diagram of the Protein Process

Protein Production is Dynamic

Coding of amino acids from mRNA
AUCG provides Base 4 coding

Polymerases and Ribosomes as Turing Machines

RNA Polymerase II*

Ribosome**

** $=$ Complex of rRNA and proteins

DNA/RNA Molecules

Alternative Splicing

61

How Do Slide Rules and Calculators Work?

- Abacus
- Unary number system
- http://gwydir.demon.co.uk/jo/numbers/machine/abacus.htm
- Mathematical Tables
- Manual calculations
- http://en.wikipedia.org/wiki/Mathematical tables

- Slide rule

- Logarithmic scales
- https://www.youtube.com/watch?v=uUzSStVnAHk
- Mechanical Calculator
- Add, subtract, and shift
- http://en.wikipedia.org/wiki/Mechanical_calculator
- https://www.youtube.com/watch?v=7SOBETniokI

Bi-Quinary Control Panel Lights for the IBM 650

Computation with 10-digit words

Early Computers - DEC

Computer Transistor Counts

Moore's Law - The number of transistors on integrated circuit chips (1971-2016)

OurWorld in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years,
This advancement is important as other aspects of techuologieal progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law,

