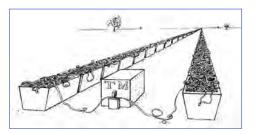
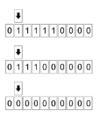
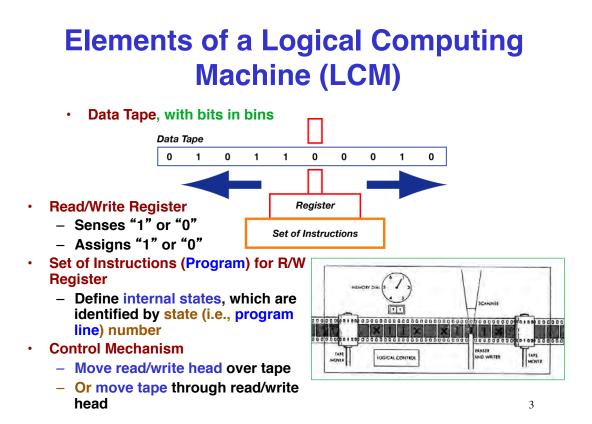

Computers, Computing, and Sets

Robert Stengel

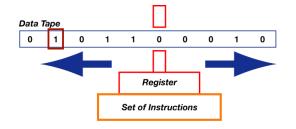
Robotics and Intelligent Systems MAE 345, Princeton University, 2017




Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

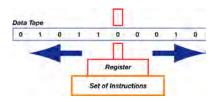


- Abstract representation of programming for a computing device
 - Attempt to give mathematically precise definition to algorithm or mechanical (or effective) procedure
 - Hardware description as a machine is figurative
- Finite number of internal discrete states of the machine
 States = steps or instructions of a program
- · Unlimited amount of external input data on a tape



Operation of a Turing Machine

Execution begins in field of "0"s to the left, with device at State #0

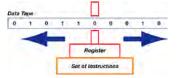

- State #0 instruction moves device to the right until it encounters a "1" in bin (i.e., on the tape)
- Action of device depends on <u>current instruction</u> in a <u>Stored Program</u> (i.e., <u>Set of Instructions</u>)
 - Modifies the bin (or not)
 - Identifies next internal state
 - Moves one bin to right or left

Example of a Turing Machine: Denary (Base 10) Notation for State (Line Number)

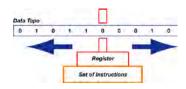
Evenution begins in field	[Program]	[Data]			
• Execution begins in field	Instruction	Register	Next	New Bin	Direction
of "0"s to the left, with	State #	Contents	State	Contents	of Move
device at State #0	0	0	0	0	R
	0	1	13	1	L
State #0 instruction					
	1	0	65	1	R
moves device to the right until it encounters a "1"	1	1	1	0	R
unui il encounters a l					
	2	0	0	1	R (Stop)
Action of device depends	2	1	66	1	L
on stored instructions					
	3	0	37	1	L
 Modifies the bin (or not) 		•••			•••
 Identifies next internal 					
state	210	0	3	1	L
 Moves one bin to right 		•••	•••		
or left	258	1	0	0	R (Stop)
	259	0	97	1	R
	259	1	0	0	R (Stop)
Penrose, 1989					

5

Same Example: Binary-coded Program Line Number and Move Direction


•	Execution begins in field of "0"s to the left, with device at State #0	[Program] [Data] Instruction Register State # Content	s 5	State	New Bin Contents	of Move
		0	0	0	-	-
•	State #0 instruction	0	1	1101	1	0
	moves device to the right	1	0	1000001	1	1
	until it encounters a "1"	1	1	1	0	1
_	Action of device depende	10	0	0	1	1 (Stop)
•	Action of device depends on stored instructions	10	1	1000010	1	0
	 Modifies the bin (or not) 	11	0	100101	1	0
	 Identifies next internal state 		•			
	 Moves one bin to right or left 	11010010	0	11	1	0

Unary, Binary, and Expanded Binary Coding of Data


•	Turing Machine to add "1" to a unary	[Program] Instruction State #	[Data] Register Contents	Next State	New Bin Contents
	number (at right)	0 0	0 1	0 1	0 1
	• On data tape: 01111	1	0	0	1
		1	1	1	1

Binary coding problems

- Notation for terminating binary description of a number
- Definition of space between numbers
- Recognition of de-limiters (e.g., commas) and logical/ arithmetic operators
- Data could be stored in unary format
 - On data tape: 01110

Unary and Expanded Binary Coding of Data

Direction of Move R R

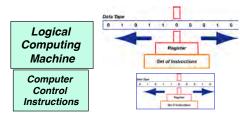
R (Stop) R

- Solution: Expanded Binary Coding
 - Contraction: Unary expression of small numbers, separated by "0"
 - Encode de-limiters and operators as numbers
 - Terminate numbers with commas (as delimiter)

Number Meaning	Expanded Binary Notation
0 Binary "0"	0
1 Binary "1"	10
2 Comma	110
3 Minus Sign	1110
4 Plus Sign	11110

Expanded Binary Coding

Expanded Binary Code:	0	10	0	0	10	110	1	01	0	110	1	0 0	0	1 1 1 0	10	10
	Ι	I	I	I	Ι	1		L	Т	1		I I	Т	1	- 1	I.
Number (code)		1	0	0	1	2		1	1	2		1 0) d	1 1 1 0 3 _	1	1
Meaning (de-code)					9	,			3	,			4	-		3


Number Meaning	Expanded Binary Notation
0 Binary "0"	0
1 Binary "1"	10
2 Comma	110
3 Minus Sign	1110
4 Plus Sign	11110

Expanded Binary Coding and Turing Machines

- Expression of arbitrary denary statement numbers
 - Convert from denary to binary
 - Convert from binary to expanded binary
- Define Turing Machine for operations on expanded binary code

Original:	0	1	13	1	L	
Binary:	0	1	1101	1	0	
De-Limited:	,0,1,1101,1,0,					
Expanded Binary	0001101101011010100101101011011					

Machine code is written in Expanded Binary (or similar) code

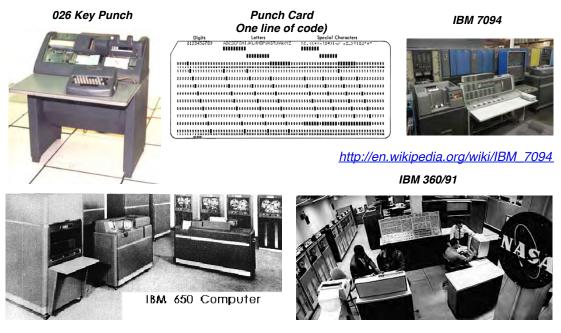
Further Evolution of the Turing Machine

- Universal Turing Machine (Computer Program in "Machine Language")
 - Turing Machine for control of a Turing Machine
 - Instructions on a separate tape or at beginning of data tape
 - 2nd TM with simple code set reads register contents
 - Instruction tape could be modified just like the data tape
 Instruction branches can be conditioned on prior results
 - Self-modifying instruction set possible

Church-Turing Thesis ("Hypothesis", "Conjecture")

- Turing Machine (*LCM*) defines what we mean by an <u>algorithmic</u>, mechanical, effective, or recursive procedure
- LCM can do anything that could be described as a Rule of Thumb or "purely mechanical"

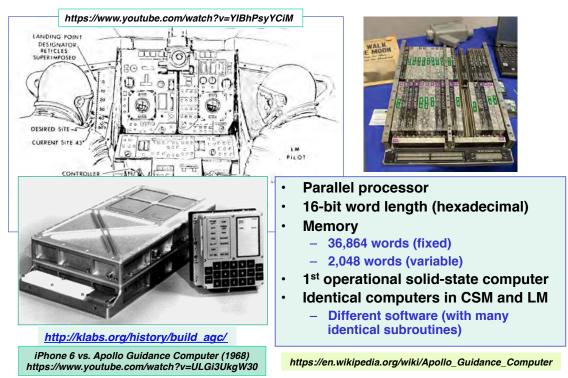
11


Calculation and Computing

Calculation

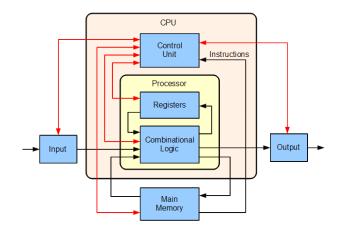
13

Early Computers - IBM


http://en.wikipedia.org/wiki/IBM_650

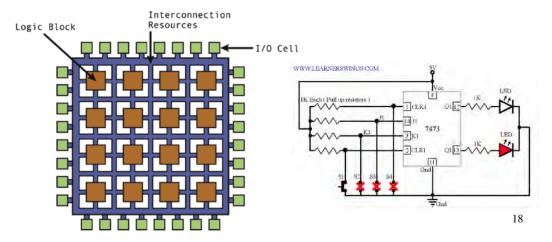
http://en.wikipedia.org/wiki/IBM_360

Early Computers – Punched Card

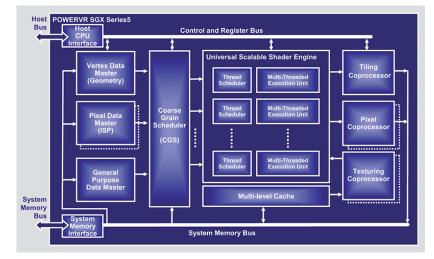

8-0123456789 C-willing	ABCDEFGHIJKLMNOPQF	?/STUVWXYZ #@ .< \$* ,%		
0.0 STATENENT		FORTRAN STATEMENT	10 EX1	FICATION
111 00000	000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000
222 111111	7 8 8 10 11 12 13 14 15 16 17 18 13 20 21 22 23 24 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 27 28 29 30 31 32 32 34 38 38 39 38 49 49 42 43 44 45 46 47 48 48 58 19 12 12 54 56 58 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 50 50 61 62 63 64 65 66 67 60 69 70 71 77 72 74 75 7	11111
		222222222222222222222222222222222222222		
3 3 3 2 2 2 2 2 2 2				LLLL
4 4 4 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3333
555 444444	444444444444444444444444444444444444444	****************************	***************	4444
555555	**************	555555555555555555555555555555555555555	**************	22222
777 666666	866556666666666666666666666666666666666	6555555565656555555555555656565666	566886666666666666666	55555
888 117777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111111111111111111111111111111	11111
999 88888		********************************		
999999	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 9 9 9 9 9 N T7 71 71 10
		Computer Progra		

Apollo Guidance Computer

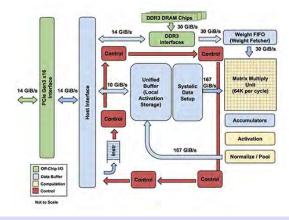
Hardware Architectures Central Processing Unit (CPU)


- Arithmetic Logic Unit (ALU)
- Processor registers (~ cache memory)
- Control unit

17


Hardware Architectures Field-Programmable Gate Array (FPGA)

- Application-Specific Integrated Circuit (ASIC)
- Programmable logic blocks/"gates"
 - Look-up tables, flip-flops (bistable latches), and routing matrix
- Reconfigurable connections
- Data buses, timers, analog components


Hardware Architectures Graphics Processing Unit (GPU)

- Highly parallel structure for rendering images
- Transformation, clipping, texture mapping, shading, and lighting
- · Specialization to vector-matrix operations

Hardware Architectures Tensor Processing Unit (TPU)

- Application-Specific Integrated Circuit (ASIC) for machine learning
- Google TensorFlow symbolic math CISC s/w library
- High-volume, reduced-precision logic (e.g., 256 x 256 8-bit matrix multiply, on-chip memory and accumulators)
- Arrays of arrays of TPU chips ~ 11.5 PFLOPS performance

https://en.wikipedia.org/wiki/Tensor_processing_unit

A Little AGC Digital Autopilot Code (Assembly Language)

i i i i i i i i i i i i i i i i i i i	SION 131 OF AGC PROCRAM LUMI	INARY BY NASA 2021112-	-091 17:53 DEC. 19,1969 LMDAP .025 PAGE 1427 USER'S PAGE NC. 15 E6 S4	
ACCESSION OF ACCES	131 14.1255 10.004 1 131 14.1 14.1257 14.004 1 131 14.20 14.3240 15.427 1 1 131 14.20 14.3240 15.427 1 1 1 131 14.20 14.3240 15.427 1	TCF + 9 TCF + 1 AC - RA EXTEMD 4 EXTEMD 4	ST TEMPI TEMPI TEMPI LEVEL, GO TO DIRECT RATE CONTROL LAST TIME. TEDB YC I TO PURE RATE COMMAND LAST TIME. TO PURE RATE COMMAND LAST TIME. TO PURE RATE COMMAND LAST TIME. TO PURE RATE COMMAND REGR SELUCION CONTROL. X-ATTIVUOE FARCE (SP) ADD LAST ERACH FOR MODEL FOAL DISPLAY CAD P-AXIS ERACH FOR MODEL FOAL DISPLAY TP EDOTP GETOD IF RATE ERROR IS LESS THAN, DEADDAND,	۔ ۔ ج . بیسرد بیسرد - - - - - - - - - - - - - - - - - - -
0631 3 0632 REF 2 L 0633 REF 39 L 0634 REF 3 L 0635 RFF 40 L	AST 1427 16,3322 3 1445 0 16,3723 C 0006 1 AST 1427 16,3324 6 3331 0 AST 1427 16,3325 4 1267 1 AST 1427 16,3326 7 4742 0 AST 1427 16,3327 27 262 1	CA TCP EXTEND BEMF LA3 CS RCSI MASK PBI ADS RCSI	IF TIME IN RATE COMMAND EXCEEDS 4 SEC., T	75. ,14
2 0638 REF 41 L	16,3330 1 3334 1 AST 1427 16,3331 4 6742 0 AST 1427 16,3332 7 1262 1 AST 1427 16,3333 55262 1 AST 1427 16,3333 55262 1 AST 1427 16,3335 0 2006 1 16,3336 7 1550 1	MASK RCSI TS RCSI CS EDO EXTEND	FLAGS FLAGS BIT 10 IS 0.	
• · ·	tp://www.ibiblio.or	g/apollo/assen	nbly_language_manual.html	21

Evolution of Programming

- History of programming languages
 - <u>https://en.wikipedia.org/wiki/</u> <u>History_of_programming_languages</u>
- The song, "99 Bottles of Beer on the Wall", programmed in 1,500 computer languages
 - http://www.99-bottles-of-beer.net/
 - In BASIC:

10 REM BASIC Version of 99 Bottles of beer

20 FOR X=100 TO 1 STEP -1

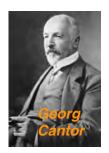
30 PRINT X;"Bottle(s) of beer on the wall,";X;"bottle(s) of beer"

40 PRINT "Take one down and pass it around,"

50 PRINT X-1;"bottle(s) of beer on the wall"

60 NEXT

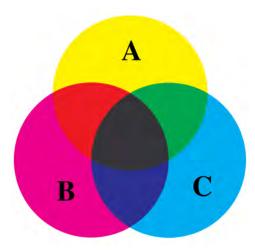
Programming Language Classes

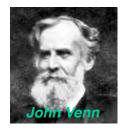

- Expert systems can be programmed in almost any language
- Language is the interface between the programmer and the computer
- Higher-order
 - Lower-order
 - Interpreter
 - Compiler
 - Assembly language
 - » Machine code
- Critical differences
 - Instruction set
 - Execution speed
 - Memory use

- Procedural (e.g., FORTRAN, LISP, MATLAB, Python)
 - Imperative
 - Functional
- Non-Procedural, Querybased Languages (e.g., PROLOG)
 - Declarative
 - Non-Declarative

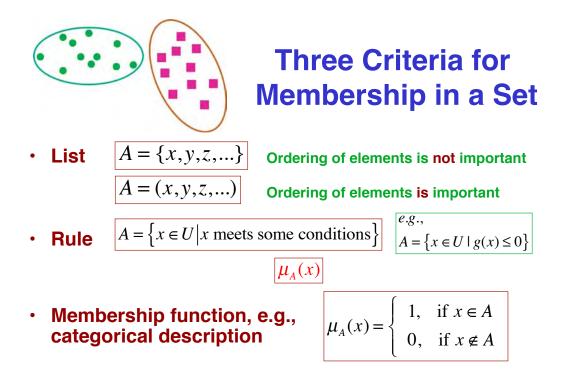
Ultimately, it is all machine code ("0"s and "1"s)

Crisp Sets


Naive (or Intuitive) Set Theory (1870s)



- Deals with the properties of well-defined collections of objects
- Universal set = Universe of discourse = U
 - Contains all elements of possible concern in a particular context
- **A** = a particular set in **U**
 - defined in a list
 - by a rule, or
 - by a membership function describing elements (or members) of the set


25

Venn Diagrams (1881)

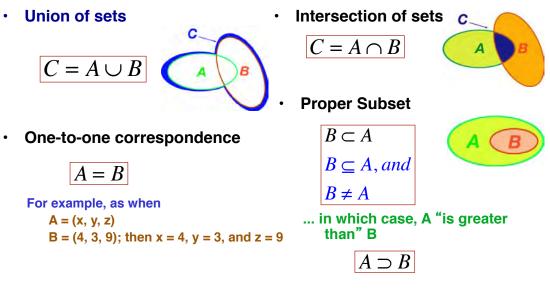
- A: All mammals
- B: All aquatic animals
- C: All gray, hairless objects
- A & B: Whales, dolphin, seals, ...
- B & C: Fish, clams, whales, dolphins, ...
- A, B, &C: Whales, dolphins, ...

27

Membership in a Set

- A = a particular set in U
 - defined in a list or rule, or

- by a membership function describing elements (or members) of the set


• Universal set = guests at a party

Particular sets

- Current graduate students
- Alumni
- Spouses
- Friends of students
- Children
- Same family
- Visitors
- Pilots
- Teachers
- Managers
- Military officers
- Women and men
- US citizens or foreign nationals

Operations on Sets

29

Properties of Sets

•

A'

Complement U A' = U - A**Reflexive property**

•

•

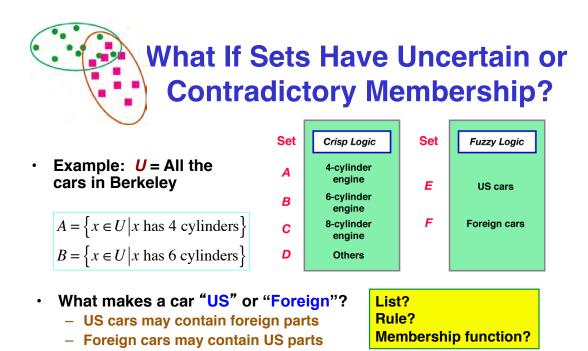
Relationships that bear same _ effect on own set as on other sets

 $A = A, \quad A \ge A, \quad A \le A$ *e.g.*,

- **Transitive property**
 - Two sets bear same relationship to a third set

e.g., if
$$A > B$$
 and $B > C$,
then $A > C$

$$\emptyset = A - A$$
 or $= U - U$


Symmetry property **Relationship of first to second** _ set is the same as second to first set

$$e.g., A = B, B = A$$

Equivalence Reflexivity + Symmetry +

$$A \sim B \text{ or } A \equiv B$$

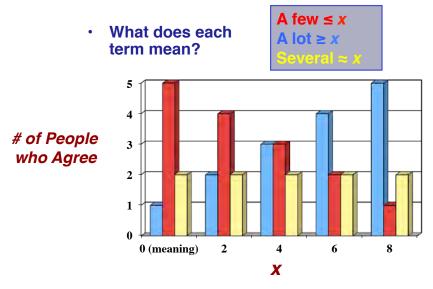
AB

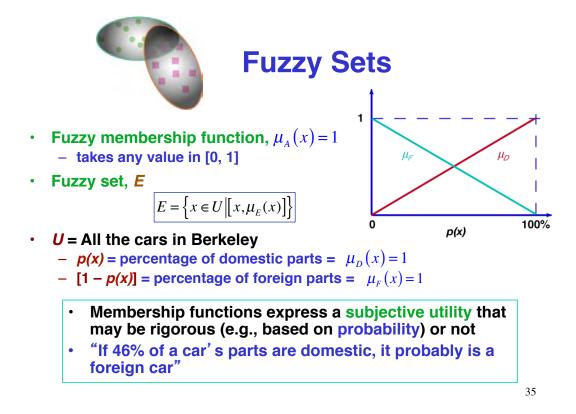
How should we define Sets *E* and *F*?

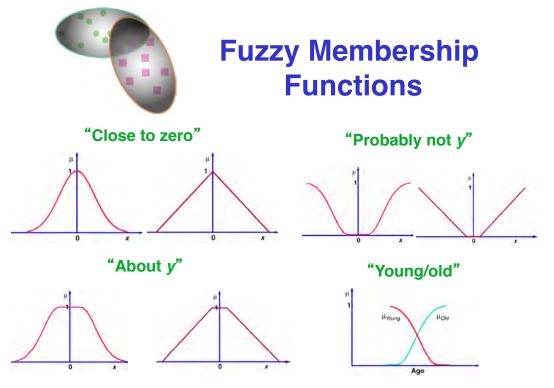
Fuzzy Sets

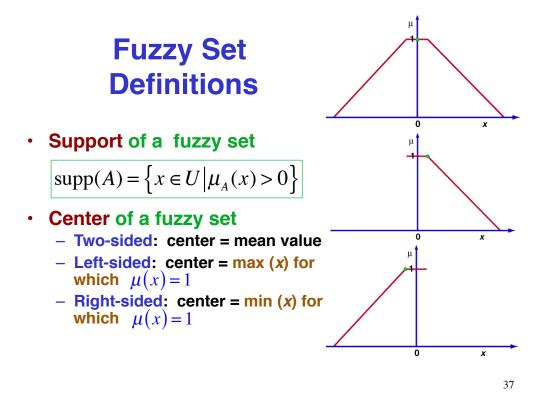
Hard and Soft Thinking

Problem-solving approaches


- Logical / Metaphorical
- Reasonable / Dream-like
- Serious / Humorous
- Definite / Ambiguous
- Consistent / Paradoxical
- Laborious / Playful
- Exact / Approximate
- Real / Fantastic
- Focused / Diffuse
- Analytical / Illogical
- Specific / General
- Mature / Immature
- Crisp / Fuzzy




33


A Notional Fuzzy Experiment

Normalize results so that the maximum is 1 Normalized plots are fuzzy membership functions

Union of sets

 $A \cup B$ if and only if $\mu_{A \cup B}(x) = \max[\mu_A(x), \mu_B(x)] \forall x \in U$

Intersection of sets

 $A \cap B$ if and only if $\mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)] \forall x \in U$

A contains B

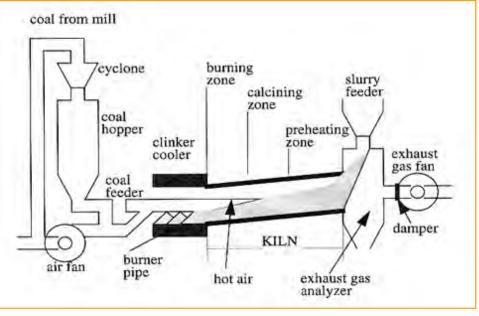
 $A \supset B$ if and only if $\mu_A(x) \ge \mu_B(x) \ \forall \ x \in U$

More Fuzzy Logic Operations

Equivalence of sets

$$A \sim B$$

if and only if $\mu_A(x) = \mu_B(x) \forall x \in U$


Complement of sets

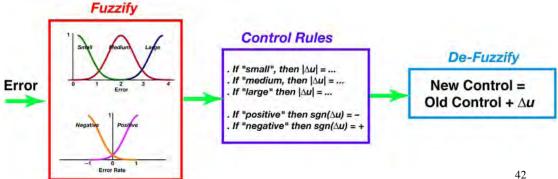
$$A' = U - A$$

if and only if $\mu_{A'}(x) = 1 - \mu_A(x) \forall x \in U$

Fuzzy logic is a generalization of crisp logic based on the definition of the membership function

39

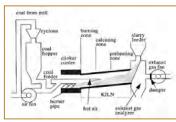
Example: Cement Kiln Control



Cement Kiln Operator's Manual

Case	Condition	Action to be taken	Reason
10	BZ ok	a. Increase air fan speed	To raise back-end temperature and increase oxygen for action 'b'
	OX low		The second second second second
	BE low	b. Increase fuel rate	To maintain burning zone temperature
11	BZ ok	a, Decrease fuel rate speed slightly	To raise oxygen
1	OX low		
	BE ok		the second se
12	BZ ok	a. Reduce fuel rate	To increase oxygen for action 'b'
	OX low	b, Reduce air fan speed	To lower back-end temperature and maintain burning zone temperature
Sec. 1	BE high		and the second
13	BZ ok	a. Increase air fan speed	To raise back-end temperature
11.1	OX ok	b. Increase fuel rate	To maintain burning zone temperature
100	BEok		and the second
14	BZ ok	None. However, do not get overcon	fident
×	OX ok	and keep all conditions under obset	vation
1.1	BE ok		1.20110
15	BZ ok	When oxygen is in upper part of rai	ngè
16.11	OX ok	a. Reduce air fan speed	To reduce back-end temperature
1.1	BE high	When oxygen is in lower part of rai	
	Concerning of the	b. Reduce fuel rate	To raise oxygen for action 'c'
		c. Reduce nir fan speed	To lower back-end temperature and
S	state 5		maintain burning zone temperatur
16	BZ ok	a. Increase air fan speed	To raise back-end temperature
1.1	OX high	b. Increase fuel rate	To maintain burning zone temperature
1 1	1.000		and reduce oxygen
1.00	BE low		
17	BZ ok	a. Reduce air fan speed slightly	To lower oxygen
1.1	OX high		
	BEok		

- Antecedent and consequent are both fuzzy propositions
 - e.g., "If error is small and error rate is negative, then control command is small"
 - What are "small", "medium", and "large"?
- Must "fuzzify" physical error/rate, apply fuzzy rules, and "de-• fuzzify" control command



Mamdani Fuzzy Controller for Cement Kiln

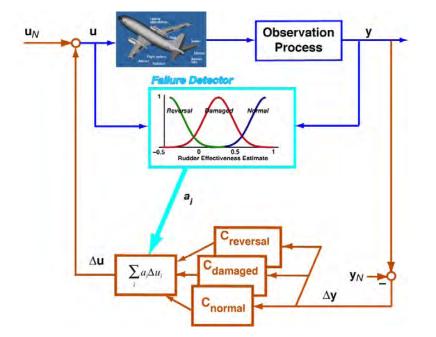
Linguistic Controller

- Antecedents

- BZ: Temperature in burning zone
- OX: Oxygen in exhaust gas
- BE: Temperature at end of kiln
- Consequents
 - CR: Coal feed rate
 - DP: Exhaust damper position
- 27 fuzzy rules, e.g.,

• If BZ is OK and OX is low and BE is low, then set CR to large, and DP to large

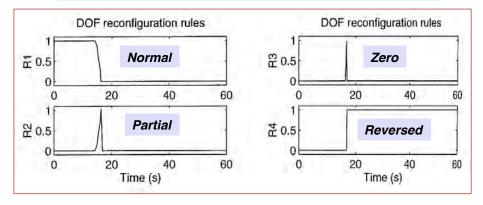
Controller is apparently symbolic, but symbols must have values for computation, i.e., <u>Fuzzy Membership Functions</u>


Probable Cause

- The National Transportation Safety Board determines that the probable cause of the USAir flight 427 accident was
 - a loss of control of the airplane resulting from the movement of the rudder surface to its blowdown limit.
- The rudder surface most likely deflected in a direction opposite to that commanded by the pilots as a result of
 - a jam of the main rudder PCU servo valve secondary slide to the servo valve housing offset from its neutral position and
 - overtravel of the primary slide.

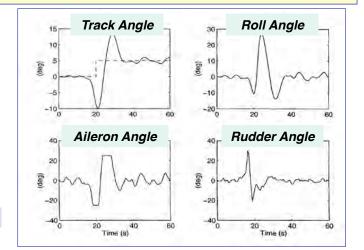
45

Gain-Scheduling (Takagi-Sugeno) Fuzzy Control Systems


(Schramm, Gopisetty, and Stengel, 1998)

Failure Detection for Simulated Rudder Failure

Rudder reversal occurs at t = 10 s
Heading angle change commanded at t = 20 s


Schramm, 1998

47

Simulated Reconfiguration

- Failure detection logic detects nothing until rudder effect is expected
- Once detected, control signal is reversed

Schramm, 1998

Fuzzy Logic ≠ Fuzzy Thinking

- Quantitative approach to reasoning under uncertainty
- "Possibility theory" vs. Probability theory (*Lotfi Zadeh, 1978*)
- Relationship to other uncertainty belief systems of artificial intelligence, e.g.,
 - Bayesian belief network
 - Dempster-Shafer theory
 - Transferable belief model
 - Certainty factors
- Propositions are true or false only within the context of a paradigm

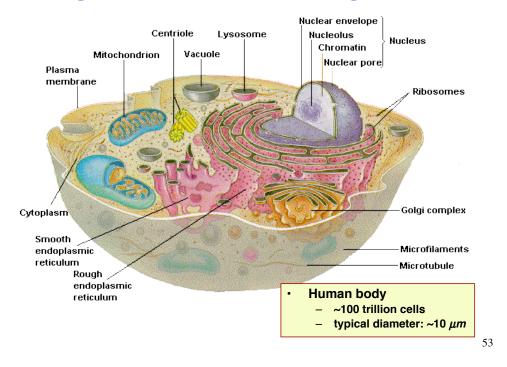
49

Next Time: Probability and Statistics

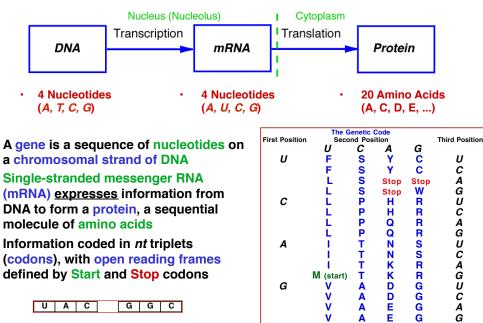
Supplemental Material

51

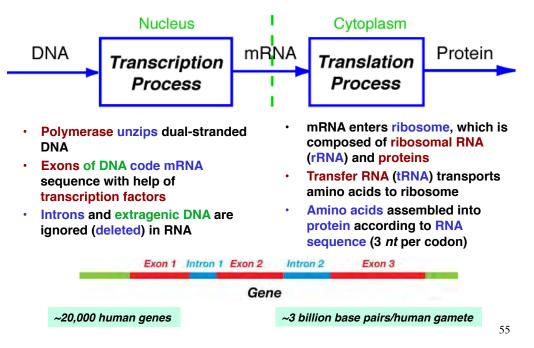
Turing Machine for Euclid's Algorithm

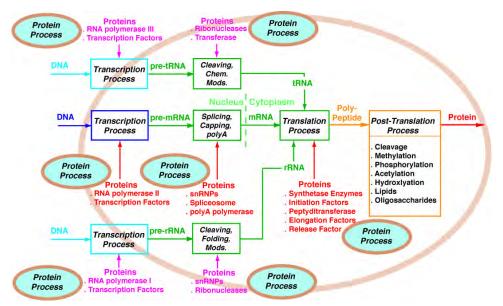

Penrose, R., The Emperor's New Mind, 1989, p. 41

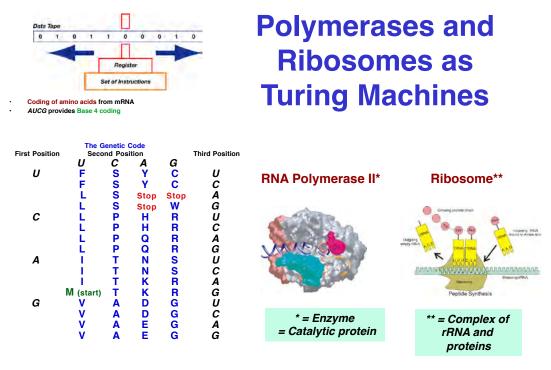
Since we wish to be able to include numerical data as part of our input, we shall want to have a way of describing ordinary numbers (by which I here mean the natural numbers $0, 1, 2, 3, 4, \ldots$) as part of the input. One way to do this might be simply to use a string of n 1s to represent the number n (although this could give us a difficulty with the natural number zero):

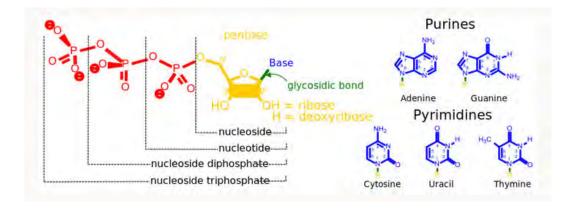

 $1 \rightarrow 1, 2 \rightarrow 11, 3 \rightarrow 111, 4 \rightarrow 1111, 5 \rightarrow 11111, etc.$

This primitive numbering system is referred to (rather illogically) as the *unary* system. Then the symbol 'O' could be used as a space to separate different numbers from one another. It is important that we have such a means of separating numbers from one another since many algorithms act on *sets* of numbers rather than on just single numbers. For example, for Euclid's algorithm, our device would need to act on the *pair* of numbers A and B. Turing machines can be written down, without great difficulty, which effect this algorithm. As an exercise, some dedicated readers might perhaps care to verify that the following explicit description of a Turing machine (which I shall call EUC) does indeed effect Euclid's algorithm when applied to a pair of unary numbers separated by a O:

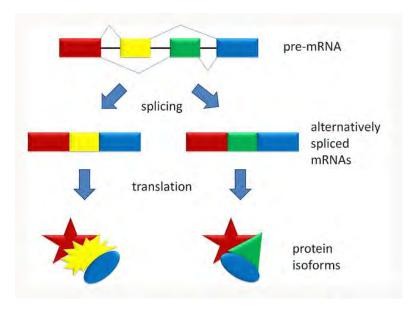

Turing Machines in Biological Cells

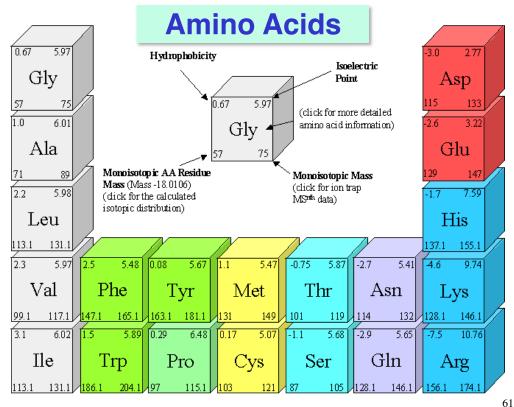

The Central Dogma: Core Process of Protein Production




Block Diagram of the Protein Process

Protein Product	ion is Dynamic				
DNA Transcription MF Process	Cytoplasm Translation Protein Process				
Transcription	Translation				
Transcription Duration: 1'13" File Size: 5.2 MB Contact: wehi-tv@wehi.edu.au	<i>Translation</i> Duration: 2'27" File Size: 11 MB Contact: wehi-tv@wehi.edu.au				
~50 bases/sec	~10 amino acids/sec				




DNA/RNA Molecules

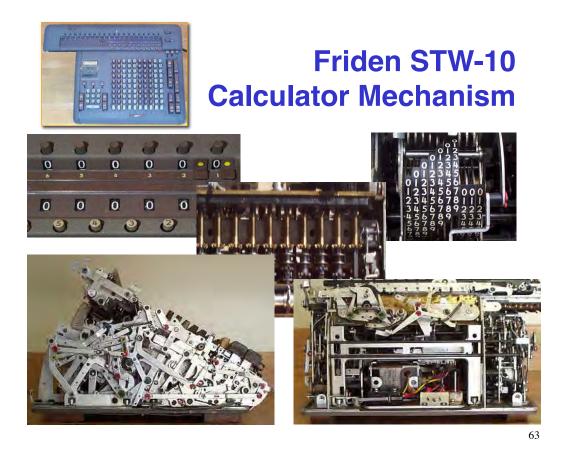
59

Alternative Splicing

IonSource, LLC Copyright 2000-2006

How Do Slide Rules and Calculators Work?

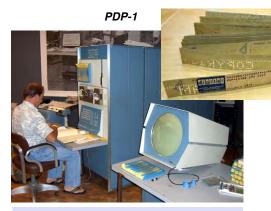
- Abacus
 - Unary number system
 - http://gwydir.demon.co.uk/jo/numbers/machine/abacus.htm


- Mathematical Tables
 - Manual calculations
 - <u>http://en.wikipedia.org/wiki/Mathematical_tables</u>

Slide rule

- Logarithmic scales
- https://www.youtube.com/watch?v=uUzSStVnAHk

- **Mechanical Calculator**
 - Add, subtract, and shift
 - <u>http://en.wikipedia.org/wiki/Mechanical_calculator</u>
 - <u>https://www.youtube.com/watch?v=7S0BETniokI</u>

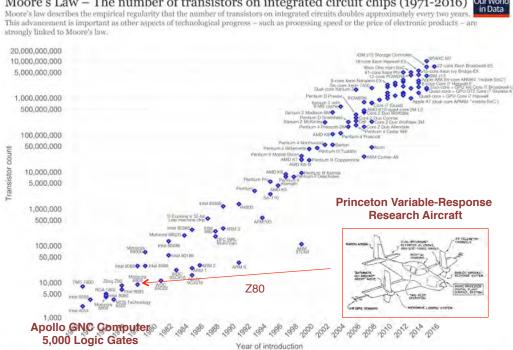


Bi-Quinary Control Panel Lights for the IBM 650

Computation with 10-digit words

Early Computers - DEC SpaceWar

https://en.wikipedia.org/wiki/PDP-1



PDP-6 Time-Sharing

https://en.wikipedia.org/wiki/PDP-6 65

Computer Transistor Counts Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Our Work

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorkInData.org. There you find more visualizations and research on this topic Licensed under CC-BY-SA by the author Max Hoser