Probability and Statistics

Robert Stengel

Robotics and Intelligent Systems MAE 345
Princeton University, 2017

Learning Objectives

- Concepts and reality
- Interpretations of probability
- Measures of probability
- Scalar uniform, Gaussian, and non-Gaussian distributions
- Probability density and mass functions
- Expected values
- Bayes' s Law
- Central Limit Theorem
- Propagation of the state's probability distribution

Probability

- ... a way of expressing knowledge or belief that an event will occur or has occurred

Statistics

- The science of making effective use of numerical data relating to groups of individuals or experiments

How Do Probability and Statistics Relate to Robotics and Intelligent Systems?

- Decision-making under uncertainty
- Controlling random dynamic processes

Concepts and Reality

(Papoulis)

- Theory may be exact
- Deals with averages of phenomena with many possible outcomes
- Based on models of behavior
- Application can be only approximate
- Measure of our state of knowledge or belief that something may or may not be true
- Subjective assessment

A $:$ event$P(A):$ probability of event$n_{A}:$ number of times A occurs experimentally$N:$ total number of trials$P(A)$	

Interpretations of Probability

(Papoulis)

- Axiomatic Definition (Theoretical interpretation)
- Probability space, abstract objects (outcomes), and sets (events)
- Axiom 1: $\operatorname{Pr}\left(A_{i}\right) \geq 0$
- Axiom 2: $\operatorname{Pr}($ "certain event") $=1=\operatorname{Pr}[$ all events in probability space (or universe)]
- Axiom 3: Independent events,

$$
\operatorname{Pr}\left(A_{i} \text { and } A_{j}\right)=\operatorname{Pr}\left(A_{i} \cap A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)
$$

- Axiom 4: Mutually exclusive events,

$$
\operatorname{Pr}\left(A_{i} \text { or } A_{j}\right)=\operatorname{Pr}\left(A_{i} \cup A_{j}\right)=\operatorname{Pr}\left(A_{i}\right)+\operatorname{Pr}\left(A_{j}\right)
$$

- Axiom 5: Non-mutually exclusive events,

$$
\operatorname{Pr}\left(A_{i} \text { or } A_{j}\right)=\operatorname{Pr}\left(A_{i}\right)+\operatorname{Pr}\left(A_{j}\right)-\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)
$$

Interpretations of Probability

 (Papoulis)- Relative Frequency (Empirical interpretation)

$$
\operatorname{Pr}\left(A_{i}\right)=\lim _{N \rightarrow \infty}\left(\frac{n_{A_{i}}}{N}\right) \quad \begin{aligned}
& N=\text { number of trials (total) } \\
& n_{A i}=\text { number of trials with attribute } A_{i}
\end{aligned}
$$

- Classical ("Favorable outcomes" interpretation)

$$
\operatorname{Pr}\left(A_{i}\right)=\frac{n_{A_{i}}}{N} \quad \begin{aligned}
& N \text { is finite } \\
& n_{A i}=\text { number of outcomes "favorable to" } A_{i}
\end{aligned}
$$

- Measure of belief (Subjective interpretation)
$-\operatorname{Pr}\left(\boldsymbol{A}_{i}\right)=$ measure of belief that $\boldsymbol{A}_{\boldsymbol{i}}$ is true (similar to fuzzy sets)
- Informal induction precedes deduction
- Principle of insufficient reason (i.e., total prior ignorance):
- e.g., if there are 5 event sets, $A_{i}, i=1$ to $5, \operatorname{Pr}\left(A_{i}\right)=1 / 5=0.2$

Favorable Outcomes Example: Probability of Rolling a " 7 " with Two Dice

 (Papoulis)- Proposition 1: 11 possible sums, one of which is 7

$$
\operatorname{Pr}\left(A_{i}\right)=\frac{n_{A_{i}}}{N}=\frac{1}{11}
$$

- Proposition 2: 21 possible pairs, not distinguishing between dice
- 3 pairs: 1-6, 2-5, 3-4

$$
\operatorname{Pr}\left(A_{i}\right)=\frac{n_{A_{i}}}{N}=\frac{3}{21}
$$

- Proposition 3: 36 possible outcomes, distinguishing between the two dice
- 6 pairs: 1-6, 2-5, 3-4, 6-1, 5-2, 4-3

$$
\operatorname{Pr}\left(A_{i}\right)=\frac{n_{A_{i}}}{N}=\frac{6}{36}
$$

Propositions are knowable and precise; outcome of rolling the dice is not.

Steps in a Probabilistic Investigation (Papoulis)

1) Physical (Observation): Determine probabilities, $\operatorname{Pr}\left(A_{i}\right)$, of various events, A_{i}, by experiment

- Experiments cannot be exact

2) Conceptual (Induction): Assume that $\operatorname{Pr}\left(A_{i}\right)$ satisfies certain axioms and theorems, allowing deductions about other events, B_{i}, based on $\operatorname{Pr}\left(B_{i}\right)$

- Build a model

3) Physical (Deduction): Make predictions of B_{i} based on $\operatorname{Pr}\left(B_{i}\right)$

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

$$
\operatorname{Pr}\left(x_{i}\right)=\frac{n_{i}}{N} \quad \text { in }[0,1] ; \quad i=1 \text { to } I
$$

- $N=$ total number of events
- $n_{i}=$ number of events with value x_{i}
- I= number of different values
- $x_{i}=$ ordered set of hypotheses or values

x is a random variable

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

- x is a random variable
- Equivalent sets
$A_{i}=\left\{x \in U \mid x=x_{i}\right\} \quad ; \quad i=1$ to I
- Cumulative probability over all sets

$$
\sum_{i=1}^{I} \operatorname{Pr}\left(A_{i}\right)=\sum_{i=1}^{I} \operatorname{Pr}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{I} n_{i}=1
$$

Cumulative Probability, $\operatorname{Pr}(x \geq 1 \leq a)$, and Discrete Measurements of a Continuous Variable

Suppose x represents a continuum of colors x_{i} is the center of a band in x $\operatorname{Pr}\left(x_{i} \pm \Delta x / 2\right)=n_{i} / N$ $\sum_{i=1}^{I} \operatorname{Pr}\left(x_{i} \pm \Delta x / 2\right)=1$

Probability Density Function, $\operatorname{pr}(x)$
 Cumulative Distribution Function, $\operatorname{Pr}(x<X)$

Probability density function

$$
\operatorname{pr}\left(x_{i}\right)=\frac{\operatorname{Pr}\left(x_{i} \pm \Delta x / 2\right)}{\Delta x}
$$

$$
\sum_{i=1}^{I} \operatorname{Pr}\left(x_{i} \pm \Delta x / 2\right)=\sum_{i=1}^{I} \operatorname{pr}\left(x_{i}\right) \Delta x \underset{\substack{\Delta x \rightarrow 0 \\ I \rightarrow \infty}}{ } \int_{-\infty}^{\infty} \operatorname{pr}(x) d x=1
$$

Cumulative distribution function

$$
\operatorname{Pr}(x<X)=\int_{-\infty}^{X} \operatorname{pr}(x) d x
$$

Probability Density Function, pr(x) Cumulative Distribution Function, $\operatorname{Pr}(x<x)$

Pren

Random Number Example

Statistical -- not deterministic -- properties prior to actual event

- Excel spreadsheet: 2 random rows and one deterministic row
- [RAND()] generates a uniform random number on each call

Output for $4^{\text {th }}$ trial
$\begin{array}{llllllllll}0.18 & 0.54 & 0.49 & 0.49 & 0.02 & 0.73 & 0.88\end{array}$ $\begin{array}{lllllllll}0.81 & 0.46 & 0.84 & 0.16 & 0.89 & 0.30 & 0.03\end{array}$
$\begin{array}{lllllllllllllllll}0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70\end{array}$
Once the experiment is over, the results are determined

Properties of Random Variables

- Mode
- Value of x for which $\operatorname{pr}(x)$ is maximum
- Median
- Value of x corresponding to $50^{\text {th }}$ percentile
- $\operatorname{Pr}(x<$ median $)=\operatorname{Pr}(x \geq$ median $)=0.5$
- Mean
- Value of x corresponding to statistical average
- First moment of $x=$ Expected value of x

$$
\bar{x}=E(x)=\int_{-\infty}^{\infty} x \operatorname{pr}(x) d x
$$

Expected Values

- Mean Value is the first moment of x

$$
\bar{x}=E(x)=\int_{-\infty}^{\infty} x \operatorname{pr}(x) d x
$$

- Second central moment of $x=$ Variance
- Variance from the mean value rather than from zero
- Smaller value indicates less uncertainty in the value of \boldsymbol{x}

$$
E\left[(x-\bar{x})^{2}\right]=\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-\bar{x})^{2} \operatorname{pr}(x) d x
$$

- Expected value of a function of x

$$
E[f(x)]=\int_{-\infty}^{\infty} f(x) \operatorname{pr}(x) d x
$$

Expected Value is a Linear Operation

Expected value of sum of random variables

$$
\begin{aligned}
E\left[x_{1}+x_{2}\right] & =\int_{-\infty}^{\infty}\left(x_{1}+x_{2}\right) \operatorname{pr}(x) d x \\
& =\int_{-\infty}^{\infty} x_{1} \operatorname{pr}(x) d x+\int_{-\infty}^{\infty} x_{2} \operatorname{pr}(x) d x=E\left[x_{1}\right]+E\left[x_{2}\right]
\end{aligned}
$$

Expected value of constant times random variable

$$
E[k x]=\int_{-\infty}^{\infty} k x \operatorname{pr}(x) d x=k \int_{-\infty}^{\infty} x \operatorname{pr}(x) d x=k E[x]
$$

Mean Value of a Uniform Random Distribution

- Used in most random number generators (e.g., RAND)
- Bounded distribution
- Example is symmetric about the mean

$$
\int_{-\infty}^{\infty} \operatorname{pr}(x) d x=1
$$

$$
\operatorname{pr}(x)=\left\{\begin{array}{ccc}
0 & & x<x_{\min } \\
\frac{1}{x_{\max }-x_{\min }} & ; & x_{\min }<x<x_{\max } \\
0 & x>x_{\max } \\
\hline
\end{array}\right.
$$

$$
\begin{aligned}
\bar{x} & =E(x)=\int_{-\infty}^{\infty} x \operatorname{pr}(x) d x=\int_{x_{\min }}^{x_{\max }} \frac{x}{x_{\max }-x_{\min }} d x \\
& =\frac{1}{2} \frac{x_{\max }^{2}-x_{\min }^{2}}{x_{\max }-x_{\min }}=\frac{1}{2}\left(x_{\max }+x_{\min }\right)
\end{aligned}
$$

Variance and Standard Deviation of a Uniform Random Distribution

Variance

$$
\begin{gathered}
x_{\min }=-x_{\max } \triangleq a \\
E\left[(x-\bar{x})^{2}\right]=\sigma_{x}^{2}=\frac{1}{2 a} \int_{-a}^{a} x^{2} d x=\left.\frac{x^{3}}{6 a}\right|_{-a} ^{a}=\frac{a^{2}}{3}
\end{gathered}
$$

Standard deviation

$$
\begin{equation*}
\sigma_{x}=\sqrt{\sigma_{x}^{2}}=\sqrt{\frac{a^{2}}{3}}=\frac{a}{\sqrt{3}} \tag{19}
\end{equation*}
$$

Gaussian (Normal) Random Distribution

- Used in some random number generators (e.g., RANDN)
- Unbounded, symmetric distribution
- Defined entirely by its mean and standard deviation

$$
\operatorname{pr}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{x}} e^{-\frac{(x-\bar{x})^{2}}{2 \sigma_{x}^{2}}}
$$

Mean value; from symmetry

$$
E(x)=\int_{\text {Variance }}^{\infty} x \operatorname{pr}(x) d x=\bar{x}
$$

$$
E\left[(x-\bar{x})^{2}\right]=\int_{-\infty}^{\infty}(x-\bar{x})^{2} \operatorname{pr}(x) d x=\sigma_{x}^{2}
$$

Probability of Being Close to the Mean
 (Gaussian Distribution)

- Probability of being within $\pm 1 \sigma_{x}$

$$
\operatorname{Pr}\left[x<\left(\bar{x}+\sigma_{x}\right)\right]-\operatorname{Pr}\left[x<\left(\bar{x}-\sigma_{x}\right)\right] \neq 68 \%
$$

- Probability of being within $\pm 2 \sigma_{x}$

$$
\operatorname{Pr}\left[x<\left(\bar{x}+2 \sigma_{x}\right)\right]-\operatorname{Pr}\left[x<\left(\bar{x}-2 \sigma_{x}\right)\right] \neq 95 \%
$$

- Probability of being within $\pm 3 \sigma_{x}$

Experimental Determination of Mean and Variance

- Sample mean for N data points, $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{N}}$

$$
\bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

- Sample variance for same data set

$$
\sigma_{x}^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{(N-1)}
$$

- Divisor is $(N-1)$ rather than N to produce an unbiased estimate
- Only ($N-1$) terms are independent
- If \mathbf{N} is large, the difference is inconsequential
- Distribution is not necessarily Gaussian
- Prior knowledge: fit histogram to known distribution
- Hypothesis test: determine best fit (e.g., Rayleigh, binomial, Poisson, ...)

Central Limit Theorem

Probability density function of the sum of 2 random variables the convolution of their probability density functions (Papoulis, 1990)

$$
\begin{gathered}
y=x_{1}+x_{2} \\
p r(y)=\int_{-\infty}^{+\infty} p r\left[x_{1}\left(x_{2}\right)\right] \operatorname{pr}\left(x_{2}\right) d x_{2}=\int_{-\infty}^{+\infty} p r\left(y-x_{2}\right) p r\left(x_{2}\right) d x_{2}
\end{gathered}
$$

The probability distribution of the sum of variables with any distributions approaches a normal distribution as the number of variables approaches infinity

Joint Probability ($n=2$)

Suppose x can take I values and y can take J values; then,

$$
\sum_{i=1}^{I} \operatorname{Pr}\left(x_{i}\right)=1 \quad ; \quad \sum_{j=1}^{J} \operatorname{Pr}\left(y_{j}\right)=1
$$

If x and y are independent,

$\operatorname{Pr}\left(y_{j}\right)$							
	$\mathbf{0 . 5}$					$\mathbf{0 . 3}$	$\mathbf{0 . 2}$
$\operatorname{Pr}\left(x_{i}\right)$	0.6	0.3	0.18	0.12			
			0.6				
	0.4	0.2	0.12	0.08			
		0.5	0.3	0.2			

Conditional Probability

$$
(n=2)
$$

If \boldsymbol{x} and \boldsymbol{y} are not independent, probabilities are related Probability that x takes $i^{\text {th }}$ value when y takes $j^{\text {th }}$ value

$$
\operatorname{Pr}\left(x_{i} \mid y_{j}\right)=\frac{\operatorname{Pr}\left(x_{i}, y_{j}\right)}{\operatorname{Pr}\left(y_{j}\right)}
$$

Similarly

$$
\operatorname{Pr}\left(y_{j} \mid x_{i}\right)=\frac{\operatorname{Pr}\left(x_{i}, y_{j}\right)}{\operatorname{Pr}\left(x_{i}\right)}
$$

$\operatorname{Pr}\left(x_{i} \mid y_{j}\right)=\operatorname{Pr}\left(x_{i}\right)$
iff x and y are independent of each other

$$
\operatorname{Pr}\left(y_{j} \mid x_{i}\right)=\operatorname{Pr}\left(y_{j}\right)
$$ iff x and y are independent of each other

Conditional probability does not address causality

Applications of Conditional Probability

$$
(n=2)
$$

Joint probability can be expressed in two ways

$$
\operatorname{Pr}\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(y_{j} \mid x_{i}\right) \operatorname{Pr}\left(x_{i}\right)=\operatorname{Pr}\left(x_{i} \mid y_{j}\right) \operatorname{Pr}\left(y_{j}\right)
$$

Unconditional probability of each variable is expressed by a sum of terms

$$
\operatorname{Pr}\left(x_{i}\right)=\sum_{j=1}^{J}\left[\operatorname{Pr}\left(x_{i} \mid y_{j}\right) \operatorname{Pr}\left(y_{j}\right)\right] \quad \operatorname{Pr}\left(y_{j}\right)=\sum_{i=1}^{I}\left[\operatorname{Pr}\left(y_{j} \mid x_{i}\right) \operatorname{Pr}\left(x_{i}\right)\right]
$$

Bayes' s Rule

Bayes's Rule proceeds from the previous results Probability of x taking the value x_{i} conditioned on y taking its $j^{\text {th }}$ value

$$
\begin{gathered}
\operatorname{Pr}\left(x_{i} \mid y_{j}\right)=\frac{\operatorname{Pr}\left(y_{j} \mid x_{i}\right) \operatorname{Pr}\left(x_{i}\right)}{\operatorname{Pr}\left(y_{j}\right)}=\frac{\operatorname{Pr}\left(y_{j} \mid x_{i}\right) \operatorname{Pr}\left(x_{i}\right)}{\sum_{i=1}^{L} \operatorname{Pr}\left(y_{j} \mid x_{i}\right) \operatorname{Pr}\left(x_{i}\right)} \\
\ldots \text { and the converse } \\
\operatorname{Pr}\left(y_{j} \mid x_{i}\right)=\frac{\operatorname{Pr}\left(x_{i} \mid y_{j}\right) \operatorname{Pr}\left(y_{j}\right)}{\operatorname{Pr}\left(x_{i}\right)}=\frac{\operatorname{Pr}\left(x_{i} \mid y_{j}\right) \operatorname{Pr}\left(y_{j}\right)}{\sum_{j=1}^{\sum_{i}} \operatorname{Pr}\left(x_{i} \mid y_{j}\right) \operatorname{Pr}\left(y_{j}\right)}
\end{gathered}
$$

Multivariate Statistics and Propagation of Uncertainty

Inner and Outer Products of Vectors

$$
\mathbf{x}=\left[\begin{array}{l}
a \\
b
\end{array}\right] ; \quad \mathbf{y}=\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

Multivariate Expected Values: Mean Value Vector and Covariance Matrix

Mean value vector of the dynamic state
$\overline{\mathbf{x}}=E(\mathbf{x})=\int_{-\infty}^{\infty} \mathbf{x} \operatorname{pr}(\mathbf{x}) d \mathbf{x}=\left[\begin{array}{c}\bar{x}_{1} \\ \bar{x}_{2} \\ \ldots \\ \bar{x}_{n}\end{array}\right]$

$$
\operatorname{dim}(\mathbf{x})=n \times 1
$$

Covariance matrix of the state

$$
\mathbf{P} \triangleq E\left[(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{T}\right]=\int_{-\infty}^{\infty}(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{T} \operatorname{pr}(\mathbf{x}) d \mathbf{x}
$$

If the state variation is Gaussian, its probability distribution is

$$
\operatorname{pr}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\mathbf{P}|^{1 / 2}} e^{-\frac{1}{2}(x-\bar{x})^{\tau} \mathbf{P}^{-1}(x-\bar{x})}
$$

State Covariance Matrix is the Expected Value of the Outer Product of the Variations from the Mean

\mathbf{P}	$=E\left[(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{T}\right]$
	$=\left[\begin{array}{cccc\|}\sigma_{x_{1}}{ }^{2} & \rho_{12} \sigma_{x_{1}} \sigma_{x_{2}} & \ldots & \rho_{1 n} \sigma_{x_{1}} \sigma_{x_{n}} \\ \rho_{21} \sigma_{x_{2}} \sigma_{x_{1}} & \sigma_{x_{2}}{ }^{2} & \ldots & \rho_{2 n} \sigma_{x_{2}} \sigma_{x_{n}} \\ \ldots & \ldots & \ldots & \ldots \\ \rho_{n 1} \sigma_{x_{n}} \sigma_{x_{1}} & \rho_{n 2} \sigma_{x_{n}} \sigma_{x_{2}} & \ldots & \sigma_{x_{n}}{ }^{2}\end{array}\right]$

$$
\begin{gathered}
\sigma_{x_{1}}^{2}=\text { Variance of } x_{1} \\
\rho_{12}=\text { Correlation coefficient for } x_{1} \text { and } x_{2} \\
-1<\rho_{i j}<1 \\
\rho_{12} \sigma_{x_{1}} \sigma_{x_{2}}=\text { Covariance of } x_{1} \text { and } x_{2}
\end{gathered}
$$

Gaussian probability distribution is totally described by its mean value and covariance matrix

$$
\operatorname{pr}(\mathbf{x})=\frac{1}{(2 \pi)^{1 / 2}|\mathbf{P}|^{1 / 2}} e^{-\frac{1}{2}(x-\bar{x})^{\tau} \mathbf{P}^{p-1}(x-\bar{x})}
$$

Stochastic Model for Propagating Mean Values and Covariances of Variables

LTI discrete-time model with known coefficients

$$
\mathbf{x}_{k+1}=\boldsymbol{\Phi} \mathbf{x}_{k}+\Gamma \mathbf{u}_{k}+\Lambda \mathbf{w}_{k}, \quad \mathbf{x}_{0} \quad \text { given }
$$

Mean and covariance of the state

$$
\overline{\mathbf{x}}_{0}=E\left[\mathbf{x}_{0}\right] ; \quad \mathbf{P}_{0}=E\left\{\left[\mathbf{x}_{0}-\overline{\mathbf{x}}_{0}\right]\left[\mathbf{x}_{0}-\overline{\mathbf{x}}_{0}\right]^{T}\right\}
$$

$$
\overline{\mathbf{x}}_{k}=E\left[\mathbf{x}_{k}\right] ; \quad \mathbf{P}_{k}=E\left\{\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]^{T}\right\}
$$

Covariance of the disturbance with zero mean value

$$
\overline{\mathbf{w}}_{k}=\mathbf{0} ; \mathbf{Q}_{k}=E\left\{\left[\mathbf{w}_{k}\right]\left[\mathbf{w}_{k}\right]^{T}\right\}
$$

Mean of perfectly known control vector

$$
\mathbf{u}_{k}=\overline{\mathbf{u}}_{k}=E\left[\mathbf{u}_{k}\right] ; \quad \mathbf{U}_{k}=\mathbf{0}
$$

Mean Value and Covariance of the Disturbance

$$
\overline{\mathbf{w}}=E(\mathbf{w})=\int_{-\infty}^{\infty} \mathbf{w} \operatorname{pr}(\mathbf{w}) d \mathbf{w}=\left[\begin{array}{c}
\overline{\mathbf{w}}_{1} \\
\overline{\mathbf{w}}_{2} \\
\ldots \\
\overline{\mathbf{w}}_{n}
\end{array}\right]
$$

$$
\mathbf{Q} \triangleq E\left[(\mathbf{w}-\overline{\mathbf{w}})(\mathbf{w}-\overline{\mathbf{w}})^{T}\right]=\int_{-\infty}^{\infty}(\mathbf{w}-\overline{\mathbf{w}})(\mathbf{w}-\overline{\mathbf{w}})^{T} \operatorname{pr}(\mathbf{w}) d \mathbf{w}
$$

If the disturbance is Gaussian, its probability distribution is

$$
\operatorname{pr}(\mathbf{w})=\frac{1}{(2 \pi)^{s / 2}|\mathbf{Q}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{w}-\overline{\mathbf{w}}) \mathbf{Q}^{-1}(\mathbf{w}-\overline{\mathbf{w}})}
$$

Dynamic Model to Propagate the Mean Value of the State

$$
E\left(\mathbf{x}_{k+1}\right)=E\left(\boldsymbol{\Phi} \mathbf{x}_{k}+\Gamma \mathbf{u}_{k}+\Lambda \mathbf{w}_{k}\right)
$$

If disturbance mean value is zero

$$
\overline{\mathbf{x}}_{k+1}=\boldsymbol{\Phi} \overline{\mathbf{x}}_{k}+\Gamma \overline{\mathbf{u}}_{k}+0, \quad \overline{\mathbf{x}}_{0} \text { given }
$$

Dynamic Model to Propagate the Covariance of the State

$$
\begin{aligned}
\mathbf{P}_{k+1} & =E\left\{\left[\mathbf{x}_{k+1}-\overline{\mathbf{x}}_{k+1}\right]\left[\mathbf{x}_{k+1}-\overline{\mathbf{x}}_{k+1}\right]^{T}\right\} \\
& =E\left[\left(\boldsymbol{\Phi}\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]+\Gamma \mathbf{u}_{k}+\Lambda \mathbf{w}_{k}\right)\left(\boldsymbol{\Phi}\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]+\Gamma \mathbf{u}_{k}+\Lambda \mathbf{w}_{k}\right)^{T}\right]
\end{aligned}
$$

Expected values of cross terms are zero

$$
\begin{aligned}
\mathbf{P}_{k+1} & =E\left\{\boldsymbol{\Phi}\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]_{k}^{T} \boldsymbol{\Phi}^{T}+0+\boldsymbol{\Lambda} \mathbf{w}_{k} \mathbf{w}^{T}{ }_{k} \boldsymbol{\Lambda}^{T}{ }_{k}\right\} \\
& =\boldsymbol{\Phi} E\left\{\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right]^{T}{ }_{k}\right\} \boldsymbol{\Phi}^{T}+\boldsymbol{\Lambda} E\left(\mathbf{w}_{k} \mathbf{w}^{T}{ }_{k}\right) \boldsymbol{\Lambda}^{T} \\
& =\boldsymbol{\Phi} \mathbf{P}_{k} \boldsymbol{\Phi}^{T}+\boldsymbol{\Lambda} \mathbf{Q}_{k} \boldsymbol{\Lambda}^{T}, \quad \mathbf{P}_{0} \text { given }
\end{aligned}
$$

LTI System Propagation of the Mean and Covariance

Propagation of the Mean Value

$$
\overline{\mathbf{x}}_{k+1}=\boldsymbol{\Phi} \overline{\mathbf{x}}_{k}+\Gamma \overline{\mathbf{u}}_{k}, \quad \overline{\mathbf{x}}_{0} \text { given }
$$

Propagation of the Covariance

$$
\mathbf{P}_{k+1}=\boldsymbol{\Phi} \mathbf{P}_{k} \boldsymbol{\Phi}^{T}+\boldsymbol{\Lambda} \mathbf{Q}_{k} \boldsymbol{\Lambda}^{T}, \quad \mathbf{P}_{0} \text { given }
$$

[^0]
Some Non-Gaussian Distributions

- Binomial Distribution
- Random variable, x
- Probability of \boldsymbol{k} successes in \boldsymbol{n} trials
- Discrete probability distribution described by a probability mass function, $\operatorname{pr}(x)$

$\operatorname{pr}(x)=\frac{n!}{k!(n-k)!} p(x)^{k}[1-p(x)]^{n-k} \triangleq\binom{n}{k} p(x)^{k}[1-p(x)]^{n-k}$
$=$ probability of exactly k successes in n trials, in $(0,1)$
\sim normal distribution for large n
Parameters of the distribution
$p(x):$ probability of occurrence, in $(0,1)$
$n:$ number of trials

37

Some Non-Gaussian Distributions

- Poisson Distribution
- Probability of a number of events occurring in a fixed period of time
- Discrete probability distribution described by a probability mass function

$$
\operatorname{pr}(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

$$
\begin{aligned}
\lambda & =\text { Average rate of occurrence of event (per unit time) } \\
k & =\text { \# of occurrences of the event } \\
\operatorname{pr}(k) & =\text { probability of } k \text { occurrences (per unit time) } \\
& \sim \text { normal distribution for large } \lambda
\end{aligned}
$$

- Cauchy-Lorentz Distribution

- Mean and variance are undefined
- "Fat tails": extreme values more likely than normal distribution
- Central limit theorem fails

$$
\begin{aligned}
& \operatorname{pr}(x)=\frac{\gamma}{\pi\left[\gamma^{2}+\left(x-x_{0}\right)^{2}\right]} \\
& \operatorname{Pr}(x)=\frac{1}{\pi} \tan ^{-1}\left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
\end{aligned}
$$

Some Non-Gaussian Distributions Bimodal Distributions

- Bimodal Distribution
- Two Peaks
- e.g., concatenation of 2 normal distributions with different means

- Random Sine Wave
$x=A \sin [\omega t+$ random phase angle $]$

$$
\operatorname{pr}(x)=\left\{\begin{array}{cc}
\frac{1}{\pi \sqrt{A^{2}-x^{2}}} & |x| \leq A \\
0 & |x|>A
\end{array}\right.
$$

Next Time:
 Machine Learning:
 Classification of Data Sets

Supplemental Material

Correlation and Independence

- Probability density functions of two random variables, \boldsymbol{x} and \boldsymbol{y}

$$
\begin{aligned}
& \operatorname{pr}(x) \text { and } \operatorname{pr}(y) \text { given for all } x \text { and } y \text { in }(-\infty, \infty) \\
& \operatorname{pr}(x, y): \text { Joint probability density function of } x \text { and } y \\
& \int_{-\infty}^{\infty} \operatorname{pr}(x) d x=1 ; \quad \int_{-\infty}^{\infty} \operatorname{pr}(y) d y=1 ; \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \operatorname{pr}(x, y) d x d y=1 ;
\end{aligned}
$$

- Expected values of x and y
- Mean values
- Covariance

$$
\begin{aligned}
& E(x)=\int_{-\infty}^{\infty} x p r(x) d x=\bar{x} \\
& E(y)=\int_{-\infty}^{\infty} y \operatorname{pr}(y) d y=\bar{y} \\
& E(x y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p r(x, y) d x d y
\end{aligned}
$$

Independence (probability) and Correlation (expected value)

\boldsymbol{x} and \boldsymbol{y} are independent if

$$
\begin{aligned}
& \operatorname{pr}(x, y)=\operatorname{pr}(x) \operatorname{pr}(y) \text { at every } x \text { and } y \text { in }(-\infty, \infty) \\
& \operatorname{pr}(x \mid y)=\operatorname{pr}(x) ; \quad \operatorname{pr}(y \mid x)=\operatorname{pr}(y)
\end{aligned}
$$

Dependence

$$
\operatorname{pr}(x, y) \neq \operatorname{pr}(x) \operatorname{pr}(y) \text { for some } x \text { and } y \text { in }(-\infty, \infty)
$$

x and y are uncorrelated if

$$
\begin{aligned}
E(x y) & =E(x) E(y) \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p r(x, y) d x d y=\int_{-\infty}^{\infty} x p r(x) d x \int_{-\infty}^{\infty} y p r(y) d y \\
& =\bar{x} \bar{y}
\end{aligned}
$$

Correlation

$$
E(x y) \neq E(x) E(y)
$$

Which Combinations are Possible?

Independence and lack of correlation

$$
\begin{aligned}
& \quad \operatorname{pr}(x, y)=\operatorname{pr}(x) \operatorname{pr}(y) \text { at every } x \text { and } y \text { in }(-\infty, \infty) \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x, y) d x d y=\int_{-\infty}^{\infty} x \operatorname{pr}(x) d x \int_{-\infty}^{\infty} y \operatorname{pr}(y) d y=\bar{x} \bar{y}
\end{aligned}
$$

Dependence and lack of correlation
$\operatorname{pr}(x, y) \neq \operatorname{pr}(x) \operatorname{pr}(y)$ for some x and y in $(-\infty, \infty)$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x, y) d x d y=\int_{-\infty}^{\infty} x \operatorname{pr}(x) d x \int_{-\infty}^{\infty} y \operatorname{pr}(y) d y=\bar{x} \bar{y}$

Independence and correlation

Dependence and correlation

$$
\begin{aligned}
& \text { pr }(x, y) \neq \operatorname{pr}(x) \operatorname{pr}(y) \text { for some } x \text { and } y \text { in }(-\infty, \infty) \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \operatorname{pr}(x, y) d x d y \neq \int_{-\infty}^{\infty} x \operatorname{pr}(x) d x \int_{-\infty}^{\infty} y \operatorname{pr}(y) d y=\bar{x} \bar{y}
\end{aligned}
$$

Correlation, Orthogonality, and Dependence of Two Random Variables

If two variables are uncorrelated

$$
E(x y)=E(x) E(y)
$$

Two variables are orthogonal if

$$
E(x y)=0
$$

Two variables are independent if

$$
\operatorname{pr}(x, y)=\operatorname{pr}(x) \operatorname{pr}(y) \quad E[g(x) h(y)]=E[g(x)] E[h(y)]
$$

Given independent x and y

Still no notion of causality

Exดทดใ $\mathbf{x}_{k}=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]=\left[\begin{array}{l}x_{1_{k}} \\ x_{2_{k}}\end{array}\right]$
$2^{\text {nd }}-$ order LTI system

$$
\mathbf{x}_{k+1}=\boldsymbol{\Phi} \mathbf{x}_{k}+\Lambda \mathbf{w}_{k}, \quad \mathbf{x}_{0}=\mathbf{0}
$$

Gaussian disturbance, \mathbf{w}_{k}, with independent, uncorrelated components

$$
\overline{\mathbf{w}}=\left[\begin{array}{c}
\bar{w}_{1} \\
\bar{w}_{2}
\end{array}\right] ; \mathbf{Q}=\left[\begin{array}{cc}
\sigma_{w_{1}}^{2} & 0 \\
0 & \sigma_{w_{2}}^{2}
\end{array}\right]
$$

Propagation of state mean and covariance

$$
\begin{gathered}
\overline{\mathbf{x}}_{k+1}=\boldsymbol{\Phi} \overline{\mathbf{x}}_{k}+\boldsymbol{\Lambda} \overline{\mathbf{w}} \\
\mathbf{P}_{k+1}=\boldsymbol{\Phi} \mathbf{P}_{k} \boldsymbol{\Phi}^{T}+\boldsymbol{\Lambda} \mathbf{Q} \boldsymbol{\Lambda}^{T}, \quad \mathbf{P}_{0}=0
\end{gathered}
$$

$$
\begin{gathered}
\overline{\mathbf{x}}_{k+1}=\boldsymbol{\Phi} \overline{\mathbf{x}}_{k}+\boldsymbol{\Lambda} \overline{\mathbf{w}} \\
\mathbf{P}_{k+1}=\boldsymbol{\Phi} \mathbf{P}_{k} \boldsymbol{\Phi}^{T}+\boldsymbol{\Lambda} \mathbf{Q} \mathbf{\Lambda}^{T}, \quad \mathbf{P}_{0}=0
\end{gathered}
$$

Independence and lack of correlation in state

Example

Independent dynamics and correlation in state

$$
\boldsymbol{\Phi}=\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right] ; \quad \boldsymbol{\Lambda}=\left[\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right]
$$

$$
\boldsymbol{\Phi}=\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right] ; \quad \overline{\mathbf{x}}_{0} \neq \mathbf{0} ; \quad \overline{\mathbf{w}}=\bar{w} ; \quad \mathbf{\Lambda}=\left[\begin{array}{l}
c \\
c
\end{array}\right]
$$

Dependence and lack of correlation in nonlinear output

$$
\begin{aligned}
& \mathbf{\Phi}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] ; \quad \Lambda=\left[\begin{array}{ll}
e & 0 \\
0 & f
\end{array}\right] \\
& \mathbf{z}=\left[\begin{array}{l}
x_{1} \\
x_{2}^{2}
\end{array}\right] ; \quad \text { Conjecture (t.b.d.) }
\end{aligned}
$$

Dependence and correlation in state

$$
\boldsymbol{\Phi}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] ; \quad \mathbf{\Lambda}=\left[\begin{array}{cc}
e & 0 \\
0 & f
\end{array}\right]
$$

$2^{\text {nd }}$-Order Example of Uncertainty Propagation

Position and Velocity

LTI Dynamic System with Random Disturbance
$\left[\begin{array}{c}x_{k+1} \\ v_{k+1}\end{array}\right]=\left[\begin{array}{ll}\phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22}\end{array}\right]\left[\begin{array}{l}x_{k} \\ v_{k}\end{array}\right]+\left[\begin{array}{l}\gamma_{1} \\ \gamma_{2}\end{array}\right] u_{k}+\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right] w_{k}$

Propagation of the Mean Value

$$
\left[\begin{array}{c}
\bar{x}_{k+1} \\
\bar{v}_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{k} \\
\bar{v}_{k}
\end{array}\right]+\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2}
\end{array}\right] \bar{u}_{k}
$$

Propagation of the Covariance

$$
\left[\begin{array}{ll}
p_{x x_{k+1}} & p_{x v_{k+1}} \\
p_{v x_{k+1}} & p_{v v_{k+1}}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{array}\right]\left[\begin{array}{ll}
p_{x x_{k}} & p_{x v_{k}} \\
p_{v x_{k}} & p_{v v_{k}}
\end{array}\right]\left[\begin{array}{ll}
\phi_{11} & \phi_{21} \\
\phi_{12} & \phi_{22}
\end{array}\right]+\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \sigma_{w_{k}}^{2}\left[\begin{array}{ll}
\lambda_{1} & \lambda_{2}
\end{array}\right]
$$

[^0]: Both propagation equations are linear

