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Learning Objectives
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Probability
•! ... a way of expressing knowledge or belief that 

an event will occur or has occurred

Statistics
•! The science of making effective use of numerical 

data relating to groups of individuals or 
experiments
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 How Do Probability and Statistics 
Relate to Robotics and Intelligent 

Systems?
•! Decision-making under uncertainty
•! Controlling random dynamic processes
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 Concepts and Reality 
(Papoulis)

•! Theory may be exact
–! Deals with averages of phenomena with many 

possible outcomes
–! Based on models of behavior

•! Application can be only approximate
–! Measure of our state of knowledge or belief that 

something may or may not be true
–! Subjective assessment

A :event
P(A) : probability of event
nA :number of times A occurs experimentally
N : total number of trials

P(A) ! nA
N
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Interpretations of Probability 
(Papoulis)

•! Axiomatic Definition (Theoretical interpretation)
–! Probability space, abstract objects (outcomes), and sets 

(events)
–! Axiom 1:  Pr(Ai) " 0
–! Axiom 2:  Pr( certain event ) = 1 = Pr [all events in 

probability space (or universe)]
–! Axiom 3:  Independent events, 

Pr Ai  or Aj( ) = Pr Ai ! Aj( ) = Pr Ai( ) + Pr Aj( )
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–! Axiom 4: Mutually exclusive events,

–! Axiom 5:  Non-mutually exclusive events,

Pr Ai  and Aj( ) = Pr Ai ! Aj( ) = Pr Ai( )Pr Aj( )

Pr Ai  or Aj( ) = Pr Ai( ) + Pr Aj( )! Pr Ai( )Pr Aj( )

Interpretations of Probability 
(Papoulis)

•! Classical ( Favorable outcomes  interpretation)

•! Measure of belief (Subjective interpretation)
–! Pr(Ai) = measure of belief that Ai is true (similar to fuzzy sets)
–! Informal induction precedes deduction
–! Principle of insufficient reason (i.e., total prior ignorance):

•! e.g., if there are 5 event sets, Ai, i = 1 to 5, Pr(Ai) = 1/5 = 0.2

Pr Ai( ) = nAi
N

N is finite
nAi = number of outcomes favorable to Ai
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•! Relative Frequency (Empirical interpretation)

Pr Ai( ) = lim
N!"

nAi
N

#
$%

&
'(

N = number of trials (total)
nAi = number of trials with attribute Ai



Favorable Outcomes Example: Probability 
of Rolling a 7  with Two Dice  

(Papoulis)

•! Proposition 1: 11 possible sums, one of which is 7

Pr Ai( ) = nAi
N

=
1
11

•! Proposition 3: 36 possible outcomes, distinguishing between the 
two dice
–! 6 pairs: 1-6, 2-5, 3-4, 6-1, 5-2, 4-3

•! Proposition 2: 21 possible pairs, not distinguishing between dice
–! 3 pairs: 1-6, 2-5, 3-4

Pr Ai( ) = nAi
N

=
3
21

Pr Ai( ) = nAi
N

=
6
36

Propositions are 
knowable and precise; 
outcome of rolling the 
dice is not. 7

 Steps in a Probabilistic Investigation 
(Papoulis)

1)# Physical (Observation): Determine probabilities, 
Pr(Ai), of various events, Ai, by experiment
•! Experiments cannot be exact

2)# Conceptual (Induction): Assume that Pr(Ai) 
satisfies certain axioms and theorems, allowing 
deductions about other events, Bi, based on Pr(Bi)
•! Build a model

3)# Physical (Deduction):  Make predictions of Bi based 
on Pr(Bi)
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Empirical (or Relative) Frequency of 
Discrete, Mutually Exclusive Events 

in Sample Space

•! N = total number of events
•! ni = number of events with value xi
•! I = number of different values
•! xi = ordered set of hypotheses or values

Pr xi( ) = ni
N

in [0,1]; i = 1 to I

x is a random variable
9

Empirical (or Relative) Frequency of 
Discrete, Mutually Exclusive Events 

in Sample Space

•! Equivalent sets

Ai = x !U x = xi{ } ; i = 1 to I

•! Cumulative probability 
over all sets

Pr Ai( )
i=1

I

! = Pr xi( )
i=1

I

! =
1
N

ni
i=1

I

! = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5

Pr(x)

•! x is a random variable
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Cumulative Probability, Pr(x "/$ a), 
and Discrete Measurements of a 

Continuous Variable

Suppose x represents a continuum of colors
xi is the center of a band in x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

Pr(x)
Cum Pr(x) ! a
Cum Pr(x) " a

Pr xi ± !x / 2( ) = ni / N

Pr xi ± !x / 2( ) = 1
i=1

I

"
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Probability Density Function, pr(x)
Cumulative Distribution Function, 

Pr(x <X)
Probability density function

Pr x < X( ) = pr x( ) dx
!"

X

#

Cumulative distribution function

pr xi( ) = Pr xi ± !x / 2( )
!x
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Pr xi ± !x / 2( ) = pr xi( ) !x
i=1

I

" !x#0
I#$

% #%% pr x( ) dx
&$

$

' = 1
i=1

I

"



Probability Density Function, pr(x) 
Cumulative Distribution Function, 

Pr(x <X)

Pr x < X( ) = pr x( ) dx
!"

X

#
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Random Number Example
Statistical -- not deterministic -- properties prior to actual event

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Random
Random
Deterministic

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

0.18  0.54  0.49  0.49  0.02  0.73  0.88
0.81  0.46  0.84  0.16  0.89  0.30  0.03
0.10  0.20  0.30  0.40  0.50  0.60  0.70

=RAND() =RAND() =RAND() =RAND() =RAND() =RAND() =RAND()
=RAND() =RAND() =RAND() =RAND() =RAND() =RAND() =RAND()

0.1 0.2 0.3 0.4 0.5 0.6 0.7

•! Excel spreadsheet: 2 random rows and one deterministic row
–! [RAND()] generates a uniform random number on each call

1st Trial 2nd Trial 3rd Trial

4th Trial Output for 4th trial

Once the experiment is over, 
the results are determined 14



Properties of 
Random Variables

•! Mode
–! Value of x for which pr(x) is maximum

x = E(x) = x pr x( ) dx
!"

"

#

•! Median
–! Value of x corresponding to 50th percentile
–! Pr(x < median) = Pr(x " median) = 0.5

•! Mean
–! Value of x corresponding to statistical average

•! First moment of x = Expected value of x

Moment arm

Force

15

Expected Values

•! Second central moment of x = Variance
–! Variance from the mean value rather than from zero
–! Smaller value indicates less uncertainty in the value of x

E x ! x( )2"# $% = & x
2 = x ! x( )2 pr x( ) dx

!'

'

(
•! Expected value of a function of x

E f (x)[ ] = f (x) pr x( ) dx
!"

"

#

x = E(x) = x pr x( ) dx
!"

"

#

•! Mean Value is the 
first moment of x

16



Expected Value is a 
Linear Operation

E x1 + x2[ ] = x1 + x2( ) pr x( ) dx
!"

"

#
= x1 pr x( ) dx

!"

"

# + x2 pr x( ) dx
!"

"

# = E x1[ ]+ E x2[ ]

E k x[ ] = k x pr x( ) dx
!"

"

# = k x pr x( ) dx
!"

"

# = k E x[ ]

Expected value of sum of random variables

Expected value of constant times random variable
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Mean Value of a Uniform 
Random Distribution

•! Used in most random number generators 
(e.g., RAND)

•! Bounded distribution
•! Example is symmetric about the mean

pr(x) =

0
1

xmax ! xmin
0

;
x < xmin

xmin < x < xmax
x > xmax

"

#
$
$

%
$
$

x = E(x) = x pr x( ) dx
!"

"

# = x
xmax ! xmin

dx
xmin

xmax#

= 1
2
xmax

2 ! xmin
2

xmax ! xmin
= 1
2
xmax + xmin( )

 

pr x( ) dx
!"

"# =1
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Variance and Standard Deviation of a 
Uniform Random Distribution

Variance

 

xmin = !xmax ! a

E x ! x( )2"# $% =& x
2 = 1

2a
x2 dx

!a

a

' = x3

6a !a

a

= a
2

3

Standard deviation

! x = ! x
2 =

a2

3
=

a
3 19

Gaussian (Normal) Random 
Distribution

pr(x) = 1
2! " x

e
#
x# x( )2

2" x
2

E(x) = x pr x( ) dx
!"

"

# = x

Variance

Units of x and !!x are the same

•! Used in some random number generators (e.g., RANDN)
•! Unbounded, symmetric distribution
•! Defined entirely by its mean and standard deviation

E x ! x( )2"# $% = x ! x( )2 pr x( ) dx
!&

&

' = ( x
2

Mean value; from symmetry

20



Probability of Being Close to the Mean
 (Gaussian Distribution)

pr(x) = 1
2! " x

e
#
x# x( )2

2" x
2•! Probability of being within

Pr x < x +! x( )"# $% & Pr x < x & ! x( )"# $% ' 68%

•! Probability of being within 

•! Probability of being within

Pr x < x + 2! x( )"# $% & Pr x < x & 2! x( )"# $% ' 95%

Pr x < x + 3! x( )"# $% & Pr x < x & 3! x( )"# $% ' 99%

±1! x

±2! x

±3! x
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Experimental Determination of 
Mean and Variance

•! Divisor is (N – 1) rather than N to produce an unbiased estimate
–! Only (N – 1) terms are independent
–! If N is large, the difference is inconsequential

x =
xi

i=1

N

!
N

•! Sample variance for same data set

! x
2 =

xi " x( )2
i=1

N

#
N "1( )

•! Sample mean for N data points, x1, x2, ..., xN

Histogram

•! Distribution is not necessarily Gaussian
–! Prior knowledge: fit histogram to known distribution
–! Hypothesis test: determine best fit (e.g., Rayleigh, binomial, 

Poisson, ... ) 22



Central Limit Theorem
Probability density function of the sum of 2 random variables 

the  convolution of their probability density functions 
(Papoulis, 1990)

y = x1 + x2

pr(y) = pr x1 x2( )!" #$ pr(x2 )dx2
%&

+&

' = pr(y % x2 )pr(x2 )dx2
%&

+&

'

The probability distribution of the sum of variables with any 
distributions approaches a normal distribution as the number 

of variables approaches infinity

23
CLTsim2017.m

Joint Probability (n = 2)

Suppose x can take I values and y can take J values; then, 

Pr(xi ) = 1 ;
i=1

I

! Pr(yj ) = 1
j=1

J

!

If x and y are independent, 

Pr xi , yj( ) = Pr xi ! yj( ) = Pr xi( )Pr yj( )
and

Pr xi , yj( )
j=1

J

"
i=1

I

" = 1

Pr(yj)

Pr(xi)

0.5 0.3 0.2

0.6 0.3 0.18 0.12 0.6

0.4 0.2 0.12 0.08 0.4

0.5 0.3 0.2 1

24



Conditional Probability 
(n = 2)

If x and y are not independent, probabilities are related
Probability that x takes ith value when y takes jth value 

Pr xi | yj( ) = Pr xi , yj( )
Pr yj( )

Similarly 

Pr yj | xi( ) = Pr xi , yj( )
Pr xi( )

Pr xi | yj( ) = Pr xi( )   
iff x and y are independent of each other

Pr yj | xi( ) = Pr yj( )   

iff x and y are independent of each other

Conditional probability does not address causality
25

Applications of 
Conditional Probability 

(n = 2)

Joint probability can be expressed in two ways

Pr xi , yj( ) = Pr yj | xi( )Pr xi( ) = Pr xi | yj( )Pr yj( )
Unconditional probability of each variable is 

expressed by a sum of terms 

Pr xi( ) = Pr xi | yj( ) Pr yj( )!" #$
j=1

J

% Pr yj( ) = Pr yj | xi( )Pr xi( )!" #$
i=1

I

%

26



Bayes s Rule

Bayes s Rule proceeds from the previous results
Probability of x taking the value xi conditioned on 

y taking its jth value  

Pr xi | yj( ) = Pr yj | xi( )Pr xi( )
Pr yj( ) =

Pr yj | xi( )Pr xi( )
Pr yj | xi( )

i=1

I

! Pr xi( )

Pr yj | xi( ) = Pr xi | yj( ) Pr yj( )
Pr xi( ) =

Pr xi | yj( ) Pr yj( )
Pr xi | yj( ) Pr yj( )

j=1

J

!

Thomas Bayes,
1702-1761

... and the converse  
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Multivariate Statistics and 
Propagation of Uncertainty!

28



Inner and Outer Products of Vectors

29

x = a
b

!

"
#

$

%
&; y = c

d
!

"
#

$

%
&

xTy = x• y = a b!" #$
c
d

!

"
%

#

$
& = ac + bd

xyT = x! y = a
b

"

#
$

%

&
' c d"# %& =

ac ad
bc bd

"

#
$

%

&
'

Inner Product

Outer Product

Multivariate Expected Values: Mean 
Value Vector and Covariance Matrix

Covariance matrix of the state

pr(x) = 1
2!( )n /2 P 1/2 e

"
1
2
x"x( )T P"1 x"x( )

Mean value vector of the dynamic state

x = E(x) = x pr x( ) dx
!"

"

# =

x1
x2
...
xn

$

%

&
&
&
&
&

'

(

)
)
)
)
)

 
P ! E x ! x( ) x ! x( )T"# $% = x ! x( ) x ! x( )T pr x( ) dx

!&

&

'
If the state variation is Gaussian, its probability distribution is

dim(x) = n !1

30



State Covariance Matrix is the 
Expected Value of the Outer Product 

of the Variations from the Mean
P = E x ! x( ) x ! x( )T"# $%

=

& x1
2 '12& x1

& x2
... '1n& x1

& xn

'21& x2
& x1

& x2
2 ... '2n& x2

& xn

... ... ... ...
'n1& xn

& x1
'n2& xn

& x2
... & xn

2

"

#

(
(
(
(
(
(

$

%

)
)
)
)
)
)

! x1
2 =Variance of x1

Gaussian probability distribution is totally described 
by its mean value and covariance matrix

pr(x) = 1
2!( )n /2 P 1/2 e

"
1
2
x"x( )T P"1 x"x( )
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!12 = Correlation coefficient for x1 and x2
"1< !ij <1

!12# x1
# x2

= Covariance of x1 and x2

Stochastic Model for Propagating Mean 
Values and Covariances of Variables

LTI discrete-time model with known coefficients

xk+1 = !!xk + ""uk + ##wk , x0 given
Mean and covariance of the state

x0 = E x0[ ] ; P0 = E x0 ! x0[ ] x0 ! x0[ ]T{ }

uk = uk = E uk[ ] ; Uk = 0

Mean of perfectly known control vector

wk = 0 ; Qk = E wk[ ] wk[ ]T{ }
Covariance of the disturbance with zero mean value

xk = E xk[ ] ; Pk = E xk ! xk[ ] xk ! xk[ ]T{ }

32



Mean Value and Covariance 
of the Disturbance

pr(w) = 1
2!( )s /2 Q 1/2 e

"
1
2
w"w( )Q"1 w"w( )

If the disturbance is Gaussian, its probability distribution is

w = E(w) = w pr w( ) dw
!"

"

# =

w1

w2

...
wn

$

%

&
&
&
&
&

'

(

)
)
)
)
)

 
Q ! E w ! w( ) w ! w( )T"# $% = w ! w( ) w ! w( )T pr w( ) dw

!&

&

'

dim(w) = s !1
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Dynamic Model to Propagate 
the Mean Value of the State

E xk+1( ) = E !!xk + ""uk + ##wk( )
If disturbance mean value is zero

xk+1 = !!xk + ""uk + 0, x0  given

34



Dynamic Model to Propagate the 
Covariance of the State

Expected values of cross terms are zero

Pk+1 = E xk+1 ! xk+1[ ] xk+1 ! xk+1[ ]T{ }
= E "" xk ! xk[ ]+ ##uk + $$wk( ) "" xk ! xk[ ]+ ##uk + $$wk( )T%

&
'
(

Pk+1 = E !! xk " xk[ ] xk " xk[ ]T k !!T + 0 + ##wkw
T
k##

T
k{ }

= !!E xk " xk[ ] xk " xk[ ]T k{ }!!T + ##E wkw
T
k( )##T

= !!Pk!!
T + ##Qk##

T , P0  given

35

LTI System Propagation of 
the Mean and Covariance

xk+1 = !!xk + ""uk , x0  given

Pk+1 = !!Pk!!
T + ""Qk""

T , P0  given

36

Propagation of the Mean Value

Propagation of the Covariance

Both propagation equations are linear



Some Non-Gaussian Distributions
•! Binomial Distribution

–! Random variable, x
–! Probability of k successes in n trials
–! Discrete probability distribution 

described by a probability mass 
function, pr(x )

 

pr x( ) = n!
k! n ! k( )! p x( )k 1! p x( )"# $%

n!k
! n

k
&
'(

)
*+
p x( )k 1! p x( )"# $%

n!k

=   probability of exactly k  successes in n trials, in 0,1( )
~  normal distribution for large n

Parameters of the distribution
p x( ) :   probability of occurrence, in 0,1( )

n :number of trials 37

Some Non-Gaussian Distributions
•! Poisson Distribution

–! Probability of a number of 
events occurring in a fixed 
period of time

–! Discrete probability 
distribution described by a 
probability mass function

pr k( ) = ! ke"!

k!

•! Cauchy-Lorentz Distribution
–! Mean and variance are undefined
–! “Fat tails”: extreme values more 

likely than normal distribution
–! Central limit theorem fails

pr x( ) = !
" ! 2 + x # x0( )2$
%

&
'

Pr x( ) = 1
"
tan#1 x # x0

!
(
)*

+
,-
+ 1
2

! =   Average rate of occurrence of event (per unit time)
k =   # of occurrences of the event

pr k( ) =   probability of k  occurrences  (per unit time)
~ normal distribution for large !

38



Some Non-Gaussian Distributions
Bimodal Distributions

Histogram

x = Asin !t +  random phase angle[ ]

•! Bimodal Distribution
–! Two Peaks
–! e.g., concatenation of 2 normal 

distributions with different means

39

•! Random Sine Wave

pr(x) =
1

! A2 " x2

0

#

$
%

&
%

x ' A

x > A

Next Time:!
Machine Learning:!

Classification of Data Sets!

40



SSuupppplleemmeennttaall  MMaatteerriiaall  

41

pr x( )  and pr y( )  given for all x and y in !","( )
pr x, y( ) :   Joint probability density function of x and y

pr x( )dx
!"

"

# = 1; pr y( )dy
!"

"

# = 1; pr x, y( )dxdy
!"

"

#
!"

"

# = 1;

E x( ) = x pr x( )dx
!"

"

# = x

E y( ) = y pr y( )dy
!"

"

# = y

E xy( ) = x y pr x, y( )dxdy
!"

"

#
!"

"

#

Correlation and Independence
!!Probability density functions of two 

random variables, x and y 

!!Expected values of  x and y 
!!Mean values 
!!Covariance 
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pr x, y( ) = pr x( ) pr y( )  at every x and y in !","( )
pr x | y( ) = pr x( ); pr y | x( )= pr y( )

E xy( ) ! E x( )E y( )

Independence (probability) and 
Correlation (expected value)

Correlation 

pr x, y( ) ! pr x( ) pr y( )  for some x and y in "#,#( )
Dependence 

E xy( ) = E x( )E y( )
= x y

x and y are uncorrelated if 

x y pr x, y( )dxdy
!"

"

#
!"

"

# = x pr x( )dx
!"

"

# y pr y( )dy
!"

"

#

x and y are independent if 
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pr x, y( ) = pr x( ) pr y( )  at every x and y in !","( )

x y pr x, y( )dxdy
!"

"

#
!"

"

# = x pr x( )dx
!"

"

# y pr y( )dy
!"

"

# = x y

Which Combinations are Possible?
Independence and 
lack of correlation 

Dependence and lack of 
correlation 

pr x, y( ) ! pr x( ) pr y( )  for some x and y in "#,#( )

x y pr x, y( )dxdy
"#

#

$
"#

#

$ = x pr x( )dx
"#

#

$ y pr y( )dy
"#

#

$ = x y

pr x, y( ) = pr x( ) pr y( )  at every x and y in !","( )

x y pr x, y( )dxdy
!"

"

#
!"

"

#

= x y pr x( ) pr y( )dxdy
!"

"

#
!"

"

# $ x pr x( )dx
!"

"

# y pr y( )dy = x y
!"

"

#

Independence and 
correlation 

Dependence and 
correlation 

pr x, y( ) ! pr x( ) pr y( )  for some x and y in "#,#( )

x y pr x, y( )dxdy
"#

#

$
"#

#

$ ! x pr x( )dx
"#

#

$ y pr y( )dy
"#

#

$ = x y

44



Correlation, Orthogonality, and 
Dependence of Two Random Variables

If two variables are 
uncorrelated

E(xy) = E(x)E(y)

Two variables are 
orthogonal if

E(xy) = 0

Two variables are 
independent if

pr(x, y) = pr(x)pr(y)

Given independent x and y

E g x( )h y( )!" #$ = E g(x)[ ]E h(y)[ ]

Still no notion of causality 

45

Example
2nd-order LTI system

xk =
xk
yk

!

"
#
#

$

%
&
&
=

x1k
x2k

!

"
#
#

$

%
&
&

w =
w1
w2

!

"
#
#

$

%
&
&
; Q =

'w1
2 0

0 'w2
2

!

"

#
#

$

%

&
&

xk+1 = !!xk + ""wk , x0 = 0

Gaussian disturbance, wk, with independent, 
uncorrelated components

xk+1 = !!xk + ""w
Propagation of state mean and covariance

Pk+1 = !!Pk!!
T + ""Q""T , P0 = 0

Off-diagonal elements of P and Q express correlation
46



Example

Independence and lack of 
correlation in state 

Dependence and lack of 
correlation in nonlinear output 

Independent dynamics 
and correlation in state 

Dependence and 
correlation in state 

xk+1 = !!xk + ""w

Pk+1 = !!Pk!!
T + ""Q""T , P0 = 0

!! = a 0
0 b

"

#
$

%

&
'; (( = c 0

0 d
"

#
$

%

&
' !! = a 0

0 a
"

#
$

%

&
'; x0 ( 0; w = w; )) = c

c
"

#
$

%

&
'

!! = a b
c d

"

#
$

%

&
'; (( = e 0

0 f
"

#
$
$

%

&
'
'

!! = a b
c d

"

#
$

%

&
'; (( = e 0

0 f
"

#
$
$

%

&
'
'

z =
x1

x2
2

"

#
$
$

%

&
'
'
;    Conjecture (t.b.d.)
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2nd-Order Example of 
Uncertainty Propagation

Position and Velocity

48

xk+1
vk+1

!

"
#
#

$

%
&
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LTI Dynamic System with Random Disturbance
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Propagation of the Mean Value

Propagation of the Covariance
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