Probability and Statistics

Robert Stengel Robotics and Intelligent Systems MAE 345 Princeton University, 2017

Learning Objectives

- Concepts and reality
 - Interpretations of probability
 - Measures of probability
- Scalar uniform, Gaussian, and non-Gaussian distributions
 - Probability density and mass functions
 - Expected values
- Bayes's Law
- Central Limit Theorem
- Propagation of the state's probability distribution

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Probability

 ... a way of expressing knowledge or belief that an event will occur or has occurred

Statistics

 The science of making effective use of numerical data relating to groups of individuals or experiments

How Do Probability and Statistics Relate to Robotics and Intelligent Systems?

- Decision-making under uncertainty
- Controlling random dynamic processes

3

4

Concepts and Reality

(Papoulis)

- Theory may be exact
 - Deals with averages of phenomena with many possible outcomes
 - Based on models of behavior
- Application can be only approximate
 - Measure of our state of knowledge or belief that something may or may not be true
 - Subjective assessment

Interpretations of Probability

(Papoulis)

- Axiomatic Definition (Theoretical interpretation)
 - Probability space, abstract objects (outcomes), and sets (events)
 - $\underline{\text{Axiom 1}}: \Pr(A_i) \ge 0$
 - <u>Axiom 2</u>: Pr("certain event") = 1 = Pr [all events in probability space (or universe)]
 - Axiom 3: Independent events,

$$\Pr(A_i \text{ and } A_j) = \Pr(A_i \cap A_j) = \Pr(A_i) \Pr(A_j)$$

<u>Axiom 4</u>: Mutually exclusive events,

$$\Pr(A_i \text{ or } A_j) = \Pr(A_i \cup A_j) = \Pr(A_i) + \Pr(A_i)$$

<u>Axiom 5</u>: Non-mutually exclusive events,

$$\Pr(A_i \text{ or } A_j) = \Pr(A_i) + \Pr(A_j) - \Pr(A_i)\Pr(A_j)$$

(Papoulis)

Relative Frequency (Empirical interpretation)

$$\Pr(A_i) = \lim_{N \to \infty} \left(\frac{n_{A_i}}{N}\right)$$

N = number of trials (total) n_{Ai} = number of trials with attribute A_i

Classical ("Favorable outcomes" interpretation)

$$\Pr(A_i) = \frac{n_{A_i}}{N}$$

N is finite n_{Ai} = number of outcomes "favorable to" A_i

- Measure of belief (Subjective interpretation)
 - $Pr(A_i) = \underline{measure of belief}$ that A_i is true (similar to fuzzy sets)
 - Informal induction precedes deduction
 - Principle of insufficient reason (i.e., total prior ignorance):
 - e.g., if there are 5 event sets, A_i , i = 1 to 5, $Pr(A_i) = 1/5 = 0.2$

Favorable Outcomes Example: Probability of Rolling a "7" with Two Dice

(Papoulis)

• Proposition 1: 11 possible sums, one of which is 7

$$\Pr\left(A_i\right) = \frac{n_{A_i}}{N} = \frac{1}{11}$$

Proposition 2: 21 possible pairs, not distinguishing between dice
 3 pairs: 1-6, 2-5, 3-4

$$\Pr\left(A_{i}\right) = \frac{n_{A_{i}}}{N} = \frac{3}{21}$$

- Proposition 3: 36 possible outcomes, distinguishing between the two dice
 - 6 pairs: 1-6, 2-5, 3-4, 6-1, 5-2, 4-3

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{6}{36}$$

Propositions are knowable and precise; outcome of rolling the dice is not.

Steps in a Probabilistic Investigation (Papoulis)

- Physical (Observation): Determine probabilities, Pr(A_i), of various events, A_i, by experiment
 - Experiments cannot be exact
- Conceptual (Induction): Assume that Pr(A_i) satisfies certain axioms and theorems, allowing deductions about other events, B_i, based on Pr(B_i)
 - Build a model
- Physical (*Deduction*): Make predictions of *B_i* based on Pr(*B_i*)

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

$$\Pr(x_i) = \frac{n_i}{N} \quad \text{in } [0,1]; \quad i = 1 \text{ to } I$$

- **N** = total number of events
- n_i = number of events with value x_i
- *I* = number of different values
- x_i = ordered set of hypotheses or values

x is a random variable

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

• **x** is a random variable

Equivalent sets

$$A_i = \{x \in U \mid x = x_i\}$$
; $i = 1$ to i

 Cumulative probability over all sets

$$\sum_{i=1}^{I} \Pr(A_i) = \sum_{i=1}^{I} \Pr(x_i) = \frac{1}{N} \sum_{i=1}^{I} n_i = 1$$

Cumulative Probability, Pr(*x* ≥/≤ *a*), and Discrete Measurements of a Continuous Variable

Suppose x represents a continuum of colors x_i is the center of a band in x

Probability Density Function, pr(x) Cumulative Distribution Function, Pr(x < X)

Probability density function

$$\operatorname{pr}(x_i) = \frac{\operatorname{Pr}(x_i \pm \Delta x / 2)}{\Delta x}$$

$$\sum_{i=1}^{I} \Pr\left(x_i \pm \Delta x / 2\right) = \sum_{i=1}^{I} \Pr\left(x_i\right) \Delta x \xrightarrow{\Delta x \to 0}_{I \to \infty} \int_{-\infty}^{\infty} \Pr\left(x\right) dx = 1$$

Cumulative distribution function

$$\Pr(x < X) = \int_{-\infty}^{X} \Pr(x) \, dx$$

Probability Density Function, pr(x) **Cumulative Distribution Function**, Pr(x < X)

Random Number Example

• Mode

- Value of x for which pr(x) is maximum

Median

- Value of x corresponding to 50th percentile
- $Pr(x < median) = Pr(x \ge median) = 0.5$
- Mean
 - Value of x corresponding to statistical average
- First moment of x = Expected value of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$

"Moment arm"

15

Expected Values

• Mean Value is the first moment of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$

- Second central moment of x = Variance
 - Variance from the mean value rather than from zero
 - Smaller value indicates less uncertainty in the value of x

$$E\left[\left(x-\overline{x}\right)^{2}\right] = \sigma_{x}^{2} = \int_{-\infty}^{\infty} \left(x-\overline{x}\right)^{2} \operatorname{pr}(x) dx$$

• Expected value of a function of x

$$E[f(x)] = \int_{-\infty}^{\infty} f(x) \operatorname{pr}(x) dx$$

$$= \int_{-\infty}^{\infty} x_1 \operatorname{pr}(x) dx + \int_{-\infty}^{\infty} x_2 \operatorname{pr}(x) dx = E[x_1] + E[x_2]$$

Expected value of constant times random variable

$$E[kx] = \int_{-\infty}^{\infty} kx \operatorname{pr}(x) dx = k \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = k E[x]$$

17

Mean Value of a Uniform Random Distribution

• Used in most random number generators (e.g., RAND) • Bounded distribution • Example is symmetric about the mean $\int_{-\infty}^{\infty} pr(x) dx = 1$ x_{min} x_{max}

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \int_{x_{\min}}^{x_{\max}} \frac{x}{x_{\max} - x_{\min}} dx$$
$$= \frac{1}{2} \frac{x_{\max}^2 - x_{\min}^2}{x_{\max} - x_{\min}^2} = \frac{1}{2} (x_{\max} + x_{\min})$$

Variance and Standard Deviation of a Uniform Random Distribution

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{a^2}{3}} = \frac{a}{\sqrt{3}}$$

19

Gaussian (Normal) Random Distribution

- Used in some random number generators (e.g., RANDN)
- Unbounded, symmetric distribution
- Defined entirely by its mean and standard deviation

$$pr(x) = \frac{1}{\sqrt{2\pi} \sigma_x} e^{-\frac{(x-\overline{x})^2}{2\sigma_x^2}}$$

Mean value; from symmetry

$$E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \overline{x}$$

Variance

$$E[(x-\overline{x})^2] = \int_{-\infty}^{\infty} (x-\overline{x})^2 \operatorname{pr}(x) dx = \sigma_x^2$$

Units of **x** and σ_x are the same

Probability of Being Close to the Mean (Gaussian Distribution)

Experimental Determination of Mean and Variance

• Sample mean for *N* data points, $x_1, x_2, ..., x_N$

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Sample variance for same data set

$$\sigma_x^2 = \frac{\sum_{i=1}^N (x_i - \overline{x})^2}{(N-1)}$$

- Divisor is (N 1) rather than N to produce an unbiased estimate
 - Only (N-1) terms are independent
 - If N is large, the difference is inconsequential
- Distribution is not necessarily Gaussian
 - Prior knowledge: fit histogram to known distribution
 - Hypothesis test: determine best fit (e.g., Rayleigh, binomial, Poisson, ...)

Central Limit Theorem

Probability density function of the sum of 2 random variables the convolution of their probability density functions (Papoulis, 1990)

$$y = x_1 + x_2$$

$$pr(y) = \int_{-\infty}^{+\infty} pr[x_1(x_2)] pr(x_2) dx_2 = \int_{-\infty}^{+\infty} pr(y - x_2) pr(x_2) dx_2$$

The probability distribution of the sum of variables with any distributions approaches a normal distribution as the number of variables approaches infinity

Joint Probability (n = 2)

Suppose x can take I values and y can take J values; then,

$$\sum_{i=1}^{J} \Pr(\mathbf{x}_{i}) = 1 \quad ; \quad \sum_{j=1}^{J} \Pr(\mathbf{y}_{j}) = 1$$

If x and y are independent,

$$\Pr(\mathbf{x}_{i}, \mathbf{y}_{j}) = \Pr(\mathbf{x}_{i} \land \mathbf{y}_{j}) = \Pr(\mathbf{x}_{i})\Pr(\mathbf{y}_{j})$$

and
$$\sum_{i=1}^{I}\sum_{j=1}^{J}\Pr(\mathbf{x}_{i}, \mathbf{y}_{j}) = 1$$

		0.5	0.3	0.2	
$r(x_i)$	0.6	0.3	0.18	0.12	0.6
	0.4	0.2	0.12	0.08	0.4
		0.5	0.3	0.2	1

 $Pr(y_i)$

If x and y are *not independent*, probabilities are related Probability that x takes *i*th value when y takes *j*th value

$$\Pr(\mathbf{x}_i \mid \mathbf{y}_j) = \frac{\Pr(\mathbf{x}_i, \mathbf{y}_j)}{\Pr(\mathbf{y}_j)}$$

$$\Pr(\mathbf{y}_j \mid \mathbf{x}_i) = \frac{\Pr(\mathbf{x}_i, \mathbf{y}_j)}{\Pr(\mathbf{x}_i)}$$

 $\Pr\left(\mathbf{x}_i \mid \mathbf{y}_j\right) = \Pr\left(\mathbf{x}_i\right)$

iff x and y are independent of each other

 $\Pr(y_j \mid x_i) = \Pr(y_j)$

iff x and y are independent of each other

Conditional probability does not address causality

25

Joint probability can be expressed in two ways

$$\Pr(\mathbf{x}_i, \mathbf{y}_j) = \Pr(\mathbf{y}_j | \mathbf{x}_i) \Pr(\mathbf{x}_i) = \Pr(\mathbf{x}_i | \mathbf{y}_j) \Pr(\mathbf{y}_j)$$

<u>Unconditional</u> probability of each variable is expressed by a sum of terms

$$\Pr(\mathbf{x}_i) = \sum_{j=1}^{J} \left[\Pr(\mathbf{x}_i \mid \mathbf{y}_j) \Pr(\mathbf{y}_j) \right]$$

$$\Pr(\mathbf{y}_{j}) = \sum_{i=1}^{I} \left[\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i}) \right]$$

Bayes's Rule

Bayes' s Rule proceeds from the previous results Probability of x taking the value x_i conditioned on y taking its j^{th} value

$$\boxed{\Pr\left(x_{i} \mid y_{j}\right) = \frac{\Pr\left(y_{j} \mid x_{i}\right)\Pr\left(x_{i}\right)}{\Pr\left(y_{j}\right)} = \frac{\Pr\left(y_{j} \mid x_{i}\right)\Pr\left(x_{i}\right)}{\sum_{i=1}^{l}\Pr\left(y_{j} \mid x_{i}\right)\Pr\left(x_{i}\right)}}$$

... and the converse

$$\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) = \frac{\Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) \Pr(\mathbf{y}_{j})}{\Pr(\mathbf{x}_{i})} = \frac{\Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) \Pr(\mathbf{y}_{j})}{\sum_{j=1}^{J} \Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) \Pr(\mathbf{y}_{j})}$$

27

Multivariate Statistics and Propagation of Uncertainty

Inner and Outer Products of Vectors

$$\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}; \quad \mathbf{y} = \begin{bmatrix} c \\ d \end{bmatrix}$$

Inner Product
$$\mathbf{x}^{T} \mathbf{y} = \mathbf{x} \bullet \mathbf{y} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = ac + bd$$

	Outer Product		
$\mathbf{x}\mathbf{y}^{T} = \mathbf{x} \otimes \mathbf{y} = \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c & d \end{bmatrix}$	$\left] = \left[\begin{array}{c} ac \\ bc \end{array} \right]$	ad bd

Multivariate Expected Values: Mean Value Vector and Covariance Matrix

Mean value vector of the dynamic state

$$\overline{\mathbf{x}} = E(\mathbf{x}) = \int_{-\infty}^{\infty} \mathbf{x} \operatorname{pr}(\mathbf{x}) d\mathbf{x} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \dots \\ \overline{x}_n \end{bmatrix} \quad \operatorname{dim}(\mathbf{x}) = n \times 1$$

Covariance matrix of the state

$$\mathbf{P} \triangleq E\left[\left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T} \operatorname{pr}(\mathbf{x}) d\mathbf{x}$$

If the state variation is Gaussian, its probability distribution is

State Covariance Matrix is the Expected Value of the <u>Outer Product</u> of the Variations from the Mean

$$\mathbf{P} = E\left[\left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T}\right]$$
$$= \begin{bmatrix} \sigma_{x_{1}}^{2} & \rho_{12}\sigma_{x_{1}}\sigma_{x_{2}} & \dots & \rho_{1n}\sigma_{x_{1}}\sigma_{x_{n}} \\ \rho_{21}\sigma_{x_{2}}\sigma_{x_{1}} & \sigma_{x_{2}}^{2} & \dots & \rho_{2n}\sigma_{x_{2}}\sigma_{x_{n}} \\ \dots & \dots & \dots & \dots \\ \rho_{n1}\sigma_{x_{n}}\sigma_{x_{1}} & \rho_{n2}\sigma_{x_{n}}\sigma_{x_{2}} & \dots & \sigma_{x_{n}}^{2} \end{bmatrix}$$

 $\sigma_{x_1}^2 = Variance of x_1$

 $\rho_{12} = Correlation \ coefficient \ for \ x_1 \ and \ x_2$ $-1 < \rho_{ij} < 1$ $\rho_{12}\sigma_{x_1}\sigma_{x_2} = Covariance \ of \ x_1 \ and \ x_2$

Gaussian probability distribution is totally described by its mean value and covariance matrix

$$\mathbf{pr}(\mathbf{x}) = \frac{1}{\left(2\pi\right)^{n/2} \left|\mathbf{P}\right|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{P}^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$
31

Stochastic Model for Propagating Mean Values and Covariances of Variables

LTI discrete-time model with known coefficients

$$\mathbf{x}_{k+1} = \mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k + \mathbf{\Lambda}\mathbf{w}_k, \quad \mathbf{x}_0 \quad given$$

Mean and covariance of the state

$$\overline{\mathbf{x}}_{0} = E[\mathbf{x}_{0}]; \quad \mathbf{P}_{0} = E\{[\mathbf{x}_{0} - \overline{\mathbf{x}}_{0}][\mathbf{x}_{0} - \overline{\mathbf{x}}_{0}]^{T}\}$$

$$\overline{\mathbf{x}}_{k} = E[\mathbf{x}_{k}]; \quad \mathbf{P}_{k} = E\left\{\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]^{T}\right\}$$

Covariance of the disturbance with zero mean value

$$\overline{\mathbf{w}}_{k} = \mathbf{0}; \quad \mathbf{Q}_{k} = E\left\{\left[\mathbf{w}_{k}\right]\left[\mathbf{w}_{k}\right]^{T}\right\}$$

Mean of perfectly known control vector

$$\mathbf{u}_k = \overline{\mathbf{u}}_k = E[\mathbf{u}_k]; \quad \mathbf{U}_k = \mathbf{0}$$

Mean Value and Covariance of the Disturbance

 $\overline{\mathbf{w}} = E(\mathbf{w}) = \int_{-\infty}^{\infty} \mathbf{w} \operatorname{pr}(\mathbf{w}) d\mathbf{w} = \begin{bmatrix} \overline{\mathbf{w}}_{1} \\ \overline{\mathbf{w}}_{2} \\ \dots \\ \overline{\mathbf{dim}(\mathbf{w}) = s \times 1} \end{bmatrix}$

$$\mathbf{Q} \triangleq E\left[\left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T} \operatorname{pr}(\mathbf{w}) d\mathbf{w}$$

If the disturbance is Gaussian, its probability distribution is

$$\operatorname{pr}(\mathbf{w}) = \frac{1}{\left(2\pi\right)^{s/2}} \left|\mathbf{Q}\right|^{1/2}} e^{-\frac{1}{2}(\mathbf{w}-\overline{\mathbf{w}})\mathbf{Q}^{-1}(\mathbf{w}-\overline{\mathbf{w}})}$$

33

Dynamic Model to Propagate the Mean Value of the State

$$E(\mathbf{x}_{k+1}) = E(\mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k + \mathbf{\Lambda}\mathbf{w}_k)$$

If disturbance mean value is zero

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi}\overline{\mathbf{x}}_k + \mathbf{\Gamma}\overline{\mathbf{u}}_k + 0, \quad \overline{\mathbf{x}}_0 \text{ given}$$

Dynamic Model to Propagate the Covariance of the State

$$\mathbf{P}_{k+1} = E\left\{ \left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1} \right] \left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1} \right]^T \right\}$$
$$= E\left[\left(\mathbf{\Phi} \left[\mathbf{x}_k - \overline{\mathbf{x}}_k \right] + \mathbf{\Gamma} \mathbf{u}_k + \mathbf{\Lambda} \mathbf{w}_k \right) \left(\mathbf{\Phi} \left[\mathbf{x}_k - \overline{\mathbf{x}}_k \right] + \mathbf{\Gamma} \mathbf{u}_k + \mathbf{\Lambda} \mathbf{w}_k \right)^T \right]$$

Expected values of cross terms are zero

$$\mathbf{P}_{k+1} = E\left\{\mathbf{\Phi}\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]^{T}_{k}\mathbf{\Phi}^{T} + 0 + \mathbf{\Lambda}\mathbf{w}_{k}\mathbf{w}^{T}_{k}\mathbf{\Lambda}^{T}_{k}\right\}$$
$$= \mathbf{\Phi}E\left\{\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right]^{T}_{k}\right\}\mathbf{\Phi}^{T} + \mathbf{\Lambda}E\left(\mathbf{w}_{k}\mathbf{w}^{T}_{k}\right)\mathbf{\Lambda}^{T}$$
$$= \mathbf{\Phi}\mathbf{P}_{k}\mathbf{\Phi}^{T} + \mathbf{\Lambda}\mathbf{Q}_{k}\mathbf{\Lambda}^{T}, \quad \mathbf{P}_{0} \text{ given}$$

35

LTI System Propagation of the Mean and Covariance

Propagation of the Mean Value

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi}\overline{\mathbf{x}}_k + \mathbf{\Gamma}\overline{\mathbf{u}}_k, \quad \overline{\mathbf{x}}_0 \text{ given}$$

Propagation of the Covariance

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q}_k \mathbf{\Lambda}^T, \quad \mathbf{P}_0 \text{ given}$$

Both propagation equations are *linear*

Some Non-Gaussian Distributions

Binomial Distribution

- Random variable, x
- Probability of k successes in n trials
- Discrete probability distribution described by a probability mass function, pr(x)

$$\operatorname{pr}(x) = \frac{n!}{k!(n-k)!} p(x)^{k} \left[1 - p(x)\right]^{n-k} \triangleq \begin{pmatrix} n \\ k \end{pmatrix} p(x)^{k} \left[1 - p(x)\right]^{n-k}$$

= probability of exactly k successes in n trials, in (0,1)

~ normal distribution for large n

Parameters of the distribution p(x): probability of occurrence, in (0,1) *n*:number of trials

37

Some Non-Gaussian Distributions

- Probability of a number of events occurring in a fixed period of time
- Discrete probability distribution described by a probability mass function

 λ = Average rate of occurrence of event (per unit time)

k = # of occurrences of the event

pr(k) = probability of k occurrences (per unit time)~ normal distribution for large λ

Cauchy-Lorentz Distribution

 $\operatorname{pr}(k) = \frac{\lambda^{k} e^{-\lambda}}{k}$

- Mean and variance are undefined
- <u>"Fat tails"</u>: extreme values more likely than normal distribution
- Central limit theorem fails

Next Time: Machine Learning: Classification of Data Sets

SUPPLEMENTAL MATERIAL

Correlation and Independence

Probability density functions of two random variables, x and y

 $pr(x) \text{ and } pr(y) \text{ given for all } x \text{ and } y \text{ in } (-\infty,\infty)$ pr(x,y): Joint probability density function of x and y $\int_{-\infty}^{\infty} pr(x)dx = 1; \quad \int_{-\infty}^{\infty} pr(y)dy = 1; \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} pr(x,y)dx dy = 1;$ • **Expected values of x and y**• Mean values
• Covariance $E(x) = \int_{-\infty}^{\infty} x pr(x)dx = \overline{x}$ $E(y) = \int_{-\infty}^{\infty} y pr(y)dy = \overline{y}$ $E(xy) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y pr(x,y)dx dy$

Independence (probability) and Correlation (expected value)

x and y are independent if $pr(x,y) = pr(x) pr(y) \text{ at every } x \text{ and } y \text{ in } (-\infty,\infty)$ $pr(x|y) = pr(x); \quad pr(y|x) = pr(y)$ Dependence $pr(x,y) \neq pr(x) pr(y) \text{ for some } x \text{ and } y \text{ in } (-\infty,\infty)$ x and y are uncorrelated if E(xy) = E(x)E(y) $= \overline{x} \overline{y}$ $\int_{-\infty}^{\infty} xy pr(x,y) dx dy = \int_{-\infty}^{\infty} x pr(x) dx \int_{-\infty}^{\infty} y pr(y) dy$ Correlation

Which Combinations are Possible?

 $E(xy) \neq E(x)E(y)$

Correlation, Orthogonality, and Dependence of Two Random Variables

If two variables are uncorrelated	
E(xy) = E(x)E(y))

Two variables are orthogonal if

 $E(\mathbf{x}\mathbf{y}) = \mathbf{0}$

Two variables are independent if

Given <u>independent</u> **x** and **y**

$$\operatorname{pr}(x, y) = \operatorname{pr}(x)\operatorname{pr}(y)$$

$$E[g(\mathbf{x})h(\mathbf{y})] = E[g(\mathbf{x})]E[h(\mathbf{y})]$$

Still no notion of <u>causality</u>

45

2nd-order LTI system

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Lambda} \mathbf{w}_k, \quad \mathbf{x}_0 = \mathbf{0}$$

Gaussian disturbance, **w**_k, with independent, uncorrelated components

$$\overline{\mathbf{w}} = \begin{bmatrix} \overline{w}_1 \\ \overline{w}_2 \end{bmatrix}; \quad \mathbf{Q} = \begin{bmatrix} \sigma_{w_1}^2 & 0 \\ 0 & \sigma_{w_2}^2 \end{bmatrix}$$

Propagation of state mean and covariance

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi}\overline{\mathbf{x}}_k + \mathbf{\Lambda}\overline{\mathbf{w}}$$
$$\mathbf{P}_{k+1} = \mathbf{\Phi}\mathbf{P}_k\mathbf{\Phi}^T + \mathbf{\Lambda}\mathbf{Q}\mathbf{\Lambda}^T, \quad \mathbf{P}_0 = 0$$

Off-diagonal elements of P and Q express correlation

$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi}\overline{\mathbf{x}}_k + \mathbf{\Lambda}\overline{\mathbf{w}}$ $\mathbf{P}_{k+1} = \mathbf{\Phi}\mathbf{P}_k\mathbf{\Phi}^T + \mathbf{\Lambda}\mathbf{Q}\mathbf{\Lambda}^T, \mathbf{P}_0 = 0$	Example
Independence and lack of correlation in <u>state</u>	Independent dynamics and correlation in <u>state</u>
$\mathbf{\Phi} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}; \mathbf{\Lambda} = \begin{bmatrix} c & 0 \\ 0 & d \end{bmatrix} \qquad \mathbf{\Phi} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}; \overline{\mathbf{x}}_0 \neq 0; \overline{\mathbf{w}} = \overline{w}; \mathbf{\Lambda} = \begin{bmatrix} c \\ c \end{bmatrix}$
Dependence and lack of correlation in <u>nonlinear</u> output	Dependence and correlation in <u>state</u>

$\mathbf{\Phi} = \begin{bmatrix} a \\ c \end{bmatrix}$	$\begin{bmatrix} b \\ d \end{bmatrix}; \mathbf{\Lambda} = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$	
$\mathbf{z} = \begin{bmatrix} x_1 \\ x_2^2 \end{bmatrix}$]; Conjecture (t.b.d.))

47

2nd-Order Example of Uncertainty Propagation Position and Velocity

LTI Dynamic System with Random Disturbance

Propagation of the Mean Value

$$\begin{bmatrix} \overline{x}_{k+1} \\ \overline{v}_{k+1} \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} \overline{x}_k \\ \overline{v}_k \end{bmatrix} + \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} \overline{u}_k$$

Propagation of the Covariance

Γ	$p_{xx_{k+1}}$	$p_{xv_{k+1}}$]_[ϕ_{11}	ϕ_{12}	$\int p_{xx_k}$	p_{xv_k}	ϕ_{11}	ϕ_{21}]_[λ_1	$\int \sigma^2 [$	a	2
L	$p_{vx_{k+1}}$	$p_{vv_{k+1}}$		ϕ_{21}	ϕ_{22}	$\int p_{vx_k}$	p_{vv_k}	$\int \phi_{12}$	ϕ_{22}]'[λ_2		<i>n</i> ₁	n_2