Introduction to Neural Networks

Robert Stengel Robotics and Intelligent Systems, MAE 345, Princeton University, 2017

- Natural and artificial neurons
- Natural and computational neural networks
 - Linear network
 - Perceptron
 - Sigmoid network
 - Radial basis function
- Applications of neural networks
- Supervised training
 - Left pseudoinverse
 - Steepest descent
 - Back-propagation

1

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Applications of Computational Neural Networks

- Classification of data sets
- Image processing
- Language interpretation
- Nonlinear function approximation
 - Efficient data storage and retrieval
 - System identification
- Nonlinear and adaptive control systems

Neurons

- Biological cells with significant electrochemical activity
- ~10-100 billion neurons in the brain
- Inputs from thousands of other neurons
- Output is scalar, but may have thousands of branches

- Afferent (sensor) neurons send signals from organs and the periphery to the central nervous system
- Efferent (motor) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (charge)

Activation Input to Soma Causes Change in Output Potential

- Stimulus from
 - Receptors
 - Other neurons
 - Muscle cells
 - Pacemakers (c.g. cardiac sino-atrial node)
- When membrane potential of neuronal cell exceeds a threshold
 - Cell is polarized
 - Action potential pulse is transmitted from the cell
 - Activity measured by amplitude and firing frequency of pulses
 - Saltatory conduction along axon
 - Myelin Schwann cells insulate axon
 - Signal boosted at Nodes of Ranvier
- Cell depolarizes and potential returns to rest

3

Electrochemical Signaling at Axon Hillock and Synapse

Synaptic Strength Can Be Increased or Decreased by Externalities

- Synapses: learning elements of the nervous system
 - Action potentials enhanced or inhibited
 - Chemicals can modify signal transfer
 - Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
 - Short-term
 - Long-term

Cardiac Pacemaker and EKG Signals

Impulse, Pulse-Train, and Step Response of LTI 2nd-Order Neural Model

Multipolar Neuron

Mathematical Model of Neuron Components

Synapse effects represented by weights (gains or multipliers) Neuron firing frequency is modeled by linear gain or nonlinear element

11

The Neuron Function

- Vector input, u, to a single neuron
 Sensory input or output from upstream
 - neurons
- Linear operation produces scalar, *r*
- Add bias, **b**, for zero adjustment
- Scalar output, *u*, of a single neuron (or node)
 - Scalar linear or nonlinear operation, s(r)

$$r = \mathbf{w}^T \mathbf{u} + b$$

$$u = s(r)$$

"Shallow" Neural Network

Two-Layer Network

Two layers

Node functions may be different, e.g.,

- Sigmoid hidden layer
- Linear output layer
- Number of nodes in each layer need not be the same
- Input sometimes labeled as layer

$$\mathbf{y} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2}(\mathbf{r}_{2}) = \mathbf{s}_{2}(\mathbf{W}_{2}\mathbf{u}_{1} + \mathbf{b}_{2})$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

15

16

Linear Neural Network

- Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, y = Wx + b
- Easy to train (left pseudoinverse, TBD)
- MATLAB symbology

Perceptron Neural Network

Each node is a step function Weighted sum of features is fed to each node Each node produces a linear classification of the input space

Weights adjust slopes Biases adjust zero crossing points

19

Single-Layer, Single-Node Perceptron Discriminants

Single-Layer, Multi-Node Perceptron Discriminants

 $\mathbf{u} = \mathbf{s}(\mathbf{W}\mathbf{x} + \mathbf{b})$

- Multiple inputs, nodes, and outputs

 More inputs lead to more dimensions in discriminants
 - More outputs lead to more discriminants

Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons Classifications of classifications Open or closed regions

Sigmoid Activation Functions

Alternative sigmoid functions

- Logistic function: 0 to 1
- Hyperbolic tangent: -1 to 1
- Augmented ratio of squares: 0 to 1
- Smooth nonlinear functions that limit extreme values in output

$$u = s(r) = \frac{1}{1 + e^{-r}}$$

$$u = s(r) = \tanh r = \frac{1 - e^{-2r}}{1 + e^{-2r}}$$

$$u = s(r) = \frac{r^2}{1 + r^2}$$

Single-Layer Sigmoid Neural Network

Where...

R = # Inputs S = # Neurons


```
25
```


Least-Squares Training Example: Single Linear Neuron

<u>Note:</u> This is an introduction to least-squares **back-propagation training**. Training of a linear neuron more readily accomplished using left pseudoinverse (Lec. 21).

Linear Neuron Gradient

$$\varepsilon_{j} = \hat{y}_{j} - y_{T}$$

$$J = \frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T})^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j}^{2} - 2\hat{y}_{j}y_{T} + y_{T}^{2})$$

- Training (control) parameter, p
 Input weights, w (n x 1)
 Bias, b (1 x 1)
- Optimality condition $\frac{\partial J}{\partial \mathbf{p}} = \mathbf{0}$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

Gradient

$$\frac{\partial J}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T}) \frac{\partial y_{j}}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T}) \frac{\partial y_{j}}{\partial r_{j}} \frac{\partial r_{j}}{\partial \mathbf{p}}$$
where

$$\frac{\partial r_{j}}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial r_{j}}{\partial p_{1}} & \frac{\partial r_{j}}{\partial p_{2}} & \dots & \frac{\partial r_{j}}{\partial p_{n+1}} \end{bmatrix} = \frac{\partial (\mathbf{w}^{T} \mathbf{x}_{j} + b)}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}_{j}^{T} & 1 \end{bmatrix}$$

29

Steepest-Descent (Back-propagation) Learning for a Single Linear Neuron

Gradient

$$\frac{\partial J}{\partial \mathbf{p}} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_j - y_T) \begin{bmatrix} \mathbf{x}_j^T & 1 \end{bmatrix} = \frac{1}{2} \sum_{j=1}^{n} \begin{bmatrix} (\mathbf{w}^T \mathbf{x}_j + b) - y_T \end{bmatrix} \begin{bmatrix} \mathbf{x}_j^T & 1 \end{bmatrix}$$

Steepest-descent algorithm

$$\mathbf{p}_{k+1} = \mathbf{p}_k - \eta \left(\frac{\partial J}{\partial \mathbf{p}}\right)_k^T \qquad \begin{array}{c} \eta = \text{ learning rate} \\ k = \text{ iteration index(epoch)} \end{array}$$
30

Neuron output is continuous

$$\hat{y} = s(r) = \frac{1}{1 + e^{-r}}$$
$$= s(\mathbf{w}^T \mathbf{x} + b) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

Training Variables for a Single Sigmoid Neuron

Training error and quadratic error cost

$$\varepsilon_{j} = \hat{y}_{j} - y_{T}$$

$$J = \frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j} - y_{T})^{2} = \frac{1}{2} \sum_{j=1}^{n} (\hat{y}_{j}^{2} - 2\hat{y}_{j} y_{T} + y_{T}^{2})$$

Neuron output sensitivity to input

$$\frac{d\hat{y}}{dr} = \frac{ds(r)}{dr} = \frac{e^{-r}}{\left(1 + e^{-r}\right)^2} = e^{-r}s^2(r)$$
$$= \left[\left(1 + e^{-r}\right) - 1\right]s^2(r) = \left[\frac{1 - s(r)}{s(r)}\right]s^2(r)$$

$$\frac{d\hat{y}}{dr} = \left[1 - s(r)\right]s(r) = \left(1 - \hat{y}\right)\hat{y}$$

Radial Basis Function

Unimodal, axially symmetric function, e.g., exponential

Network mimics stimulus field of a neuron receptor, e.g., retina

Radial Basis Function Network

Array of RBFs typically centered on a fixed grid

http://en.wikipedia.org/wiki/Radial_basis_function_network

35

Sigmoid vs. Radial Basis Function Node

- Considerations for selecting the basis function
 - Prior knowledge of surface to be approximated
 - Global vs. compact support
 - Number of neurons required
 - Training and untraining issues

Radial basis functions

36

"Deep" Sigmoid Network

- Multiple hidden and "visible" layers can improve accuracy in image processing and language translation
- Problem of the "vanishing gradient" in training
- <u>One solution</u>: *Convolutional neural network* of neuron input/output by incremental training
 - Pooling or clustering signals between layers (TBD)
 - Limited receptive fields for filter (or kernel) nodes
 - Node is activated only when input is within pre-determined bounds (see *CMAC*, Lecture 19)

Next Time: More on Neural Networks

Supplementary Material

39

Some Recorded Action Potential Pulse Trains

Impulse, Pulse-Train, and Step Response of a LTI 2nd-Order Neural Model

Microarray Training Set

Gene m Level Gene m Level Gene m Level ...

Gene m Level Gene m Level

Microarray Training Data

- First row: Target classification
- 2nd-5th rows: Up-regulated genes
- 6th-10th rows: Down-regulated genes

Lab Analysis of Tissue Samples																	
Tumor	=[1	1111	111	1111	1111	1111	1111	111	1								
	11	1111	1111	1111	000	0000	000	0000									
	0 0	0000	0 0 0];														
Normalized Data: Up-Regulated in Tumor																	
U22055	=	[138	68	93	62	30	81	121	7	82	24	-2	-48	38			
		82	118	55	103	102	87	62	69	14	101	25	47	48	75		
		59	62	116	54	96	90	130	70	75	74	35	149	97	21		
		14	-51	-3	-81	57	-4	16	28	-73	-4	45	-28	-9	-13		
		25	25	19	-21	3	19	34];									
Normalized Data: Up-Regulated in Normal																	
M96839	=	[3	-23	3	12	-22	0	4	29	-73	32	5	-13	-16	14		
		2	24	18	19	9	-13	-20	-3	-22	6	-5	-12	9	28		
		20	-9	30	-15	18	1	-16	12	-9	3	-35	23	3	5		
		33	29	47	19	32	34	20	55	49	20	10	36	70	50		
		15	45	56	41	31	40];										

43

Neural Network Classification Example

- ~7000 genes expressed in 62 microarray samples
 - Tumor = 1
 - Normal = 0
- 8 genes in strong feature set
 - 4 with Mean Tumor/Normal > 20:1
 - 4 with Mean Normal/Tumor > 20:1
 - and minimum variance within upregulated set

Neural Network Training Results: Tumor/Normal Classification, 8 Genes, 4 Nodes

Binary network output (0,1) after rounding

Zero classification errors

Training begins with a random set
of weights

- **Adjustable parameters**
 - Learning rate
 - Target error
 - Maximum # of epochs
- Non-unique sets of trained weights •

Classification =

Colu	mns	s 1 tł	nrou	gh 1	3							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	mns	5 1 4	thro	ugh	26							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	mns	5 2 7	thro	ugh	39							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	mns	s 40	thro	ugh	52							
1	0	0	0	0	0	0	0	0	0	0	0	0
Columns 53 through 62												
0	0	0	0	0	0	0	0	0	0	2	45	
	Colu 1 Colu 1 Colu 1 Colu 0	Columns 1 1 Columns 1 1 Columns 1 1 Columns 1 0 Columns 0 0	Columns 1 tl 1 1 Columns 14 1 1 Columns 27 1 1 Columns 40 1 0 0 0 0 0 0 0	Columns 1 throu 1 1 1 Columns 14 throu 1 1 1 Columns 27 throu 1 1 1 Columns 27 throu 1 1 1 Columns 40 throu 1 0 0 Columns 53 throu 0 0	Columns 1 through 1 1 1 1 1 Columns 14 through 1 1 1 1 Columns 27 through 1 1 1 1 Columns 27 through 1 1 1 1 Columns 40 through 1 0 0 0 Columns 53 through 0 0 0 0	Columns 1 through 1311111111111111111111111000	Columns 1 through 1311111111111Columns 14 through 2611111Columns 27 through 3911111111111Columns 40 through 521000Columns 53 through 620000	Columns 1 through 131111111Columns 14 through 26111111Columns 27 through 39111111Columns 40 through 52100000Columns 53 through 6200000	Columns 1 through 13 1 1 1 1 1 1 1 1 Columns 14 through 26 1 1 1 1 1 1 1 Columns 14 through 26 1 1 1 1 1 1 1 1 Columns 27 through 39 1 1 1 1 1 1 1 Columns 27 through 39 1 1 1 1 1 1 1 Columns 40 through 52 1 0 0 0 0 0 0 Columns 40 through 52 1 0 0 0 0 0 0 Columns 53 through 62 0 0 0 0 0 0 0	Columns 1 through 1311111111Columns 14 through 2611111111Columns 27 through 3911111111Columns 40 through 521000000Columns 53 through 62000000	Columns 1 through 13 1 <td>Columns 1 through 131100000000000000000000000000000045</td>	Columns 1 through 131100000000000000000000000000000045

3

4

Neural Network Training Results: Tumor Stage/Normal Classification 8 Genes, 16 Nodes

Colon cancer classification • - 0 = Normal -1 = AdenomaScalar network -2 = A Tumoroutput with varying - 3 = B Tumor magnitude – 4 = C Tumor - 5 = D Tumor 8000 Target = Classification = [21333333333 Columns 1 through 13 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 Columns 14 through 26 444444555 4 4 5 4 3 3 3 3 3 3 3 4 55555100000 Columns 27 through 39 000000000000 4 4 4 5 5 5 5 5 5 5 5 1 0 Columns 40 through 52 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Columns 53 through 60 One classification error 46 0 0 0 0 0 0 0 0

Training a Sigmoid Network

Two parameter vectors for 2-layer network

Output vector

$$\hat{\mathbf{y}} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2}(\mathbf{r}_{2}) = \mathbf{s}_{2}(\mathbf{W}_{2}\mathbf{u}_{1} + \mathbf{b}_{2})$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2}[\mathbf{W}_{2} \mathbf{s}_{1}(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

47

MATLAB Neural Network Toolbox Training Algorithms

Backpropaga	ition training functions that use Jacobian derivatives
These alg backpropa	porithms can be faster but require more memory than gradient tion. They are also not supported on GPU hardware.
trainlm	- Levenberg-Marquardt backpropagation.
trainbr	- Bayesian Regulation backpropagation.
Backpropaga	ition training functions that use gradient derivatives
These alg They are	porithms may not be as fast as Jacobian backpropagation. supported on GPU hardware with the Parallel Computing Toolbox.
trainbfg	- BFGS guasi-Newton backpropagation.
traincgb	- Conjugate gradient backpropagation with Powell-Beale restarts.
traincgf	- Conjugate gradient backpropagation with Fletcher-Reeves updates.
traincop	- Conjugate gradient backpropagation with Polak-Ribiere updates.
traingd	 Gradient descent backpropagation.
traingda	 Gradient descent with adaptive lr backpropagation.
traingdm	 Gradient descent with momentum.
traingdx	 Gradient descent w/momentum & adaptive lr backpropagation.
trainoss	- One step secant backpropagation.
trainrp	- RPROP backpropagation.
trainscq	 Scaled conjugate gradient backpropagation.
Supervised	weight/bias training functions
trainb	- Batch training with weight & bias learning rules.
trainc	 Cyclical order weight/bias training.
trainr	- Random order weight/bias training.
trains	 Sequential order weight/bias training.
Unsupervise	d weight/bias training functions
trainbu	- Unsupervised batch training with weight & bias learning rules.
trainru	- Unsupervised random order weight/bias training.

49

Small, Round Blue-Cell Tumor Classification Example

Desmoplastic small, round blue-cell tumors

- Childhood cancers, including
 - Ewing's sarcoma (EWS)
 - Burkitt's Lymphoma (BL)
 - Neuroblastoma (NB)
 - Rhabdomyosarcoma (RMS)
 - cDNA microarray analysis presented by J. Khan, *et al.*, *Nature Medicine*, 2001, 673-679.
 - 96 transcripts chosen from 2,308 probes for training
 - 63 EWS, BL, NB, and RMS training samples
- Source of data for my analysis

Overview of Present SRBCT Analysis

- Transcript selection by t test
 - 96 transcripts, 12 highest and lowest t values for each class
 - Overlap with Khan set: 32 transcripts
- Ensemble averaging of genes with highest and lowest t values in each class
- Cross-plot of ensemble averages
- Classification by sigmoidal neural network
- Validation of neural network
 - Novel set simulation
 - Leave-one-out simulation

51

Ranking by EWS *t* Values (Top and Bottom 12)

24 transcripts selected from 12 highest and lowest t values for EWS vs. remainder

	Sort by EWS t Value	EWS	BL	NB	RMS
Image ID	Transcript Description	t Value	t Value	t Value	t Value
770394	Fc fragment of IgG, receptor, transporter, alpha	12.04	-6.67	-6.17	-4.79
1435862	antigen identified by monoclonal antibodies 12E7, F21 and O13	9.09	-6.75	-5.01	-4.03
377461	caveolin 1, caveolae protein, 22kD	8.82	-5.97	-4.91	-4.78
814260	follicular lymphoma variant translocation 1	8.17	-4.31	-4.70	-5.48
491565	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain	7.60	-5.82	-2.62	-3.68
841641	cyclin D1 (PRAD1: parathyroid adenomatosis 1)	6.84	-9.93	0.56	-4.30
1471841	ATPase, Na+/K+ transporting, alpha 1 polypeptide	6.65	-3.56	-2.72	-4.69
866702	protein tyrosine phosphatase, non-receptor type 13	6.54	-4.99	-4.07	-4.84
713922	glutathione S-transferase M1	6.17	-5.61	-5.16	-1.97
308497	KIAA0467 protein	5.99	-6.69	-6.63	-1.11
770868	NGFI-A binding protein 2 (ERG1 binding protein 2)	5.93	-6.74	-3.88	-1.21
345232	lymphotoxin alpha (TNF superfamily, member 1)	5.61	-8.05	-2.49	-1.19
786084	chromobox homolog 1 (Drosophila HP1 beta)	-5.04	-1.05	9.65	-0.62
796258	sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)	-5.04	-3.31	-3.86	6.83
431397	o, , , , , , , , , , , , , , , , , , ,	-5.04	2.64	2.19	0.64
825411	N-acetylglucosamine receptor 1 (thyroid)	-5.06	-1.45	5.79	0.76
859359	guinone oxidoreductase homolog	-5.23	-7.27	0.78	5.40
75254	cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle)	-5.30	-4.11	2.20	3.68
448386		-5.38	-0.42	3.76	0.14
68950	cyclin E1	-5.80	0.03	-1.58	5.10
774502	protein tyrosine phosphatase, non-receptor type 12	-5.80	-5.56	3.76	3.66
842820	inducible poly(A)-binding protein	-6.14	0.60	0.66	3.80
214572	ESTs	-6.39	-0.08	-0.22	4.56
295985	ESTs	-9.26	-0.13	3.24	2.95

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder

SRBCT Neural Network

Neural Network Training Set

Each input row is an ensemble average for a transcript set, normalized in (-1,+1)

	Identifier	Sample 1	Sample 2	Sample 3	 Sample 62	Sample 63
Target Output		EWS	EWS	EWS	 RMS	RMS
		EWS(+)Average	EWS(+)Average	EWS(+)Average	 EWS(+)Average	EWS(+)Average
		EWS(-)Average	EWS(-)Average	EWS(-)Average	 EWS(-)Average	EWS(-)Average
	Transcript	BL(+)Average	BL(+)Average	BL(+)Average	 BL(+)Average	BL(+)Average
	Training	BL(-)Average	BL(-)Average	BL(-)Average	 BL(-)Average	BL(–)Average
	Set	NB(+)Average	NB(+)Average	NB(+)Average	 NB(+)Average	NB(+)Average
		NB(-)Average	NB(-)Average	NB(-)Average	 NB(-)Average	NB(-)Average
		RMS(+)Average	RMS(+)Average	RMS(+)Average	 RMS(+)Average	RMS(+)Average
		RMS(-)Average	RMS(-)Average	RMS(-)Average	 RMS(-)Average	RMS(-)Average

55

SRBCT Neural Network Training

- Neural network
 - 8 ensemble-average inputs
 - various # of sigmoidal neurons
 - 4 linear output neurons
 - 4 outputs
- Training accuracy
 - Train on all 63 samples
 - Test on all 63 samples
- 100% accuracy

Leave-One-Out Validation of SRBCT Neural Network

- Remove a single sample
- Train on remaining samples (125 times)
- Evaluate class of the removed sample
- Repeat for each of 63 samples
- 6 sigmoids: 99.96% accuracy (3 errors in 7,875 trials)
- 12 sigmoids: 99.99% accuracy (1 error in 7,875 trials)

Novel-Set Validation of SRBCT Neural Network

- Network always chooses one of four classes (i.e., "unknown" is not an option)
- Test on 25 novel samples (400 times each)
 - 5 EWS
 - 5 BL
 - 5 NB
 - 5 RMS
 - 5 samples of unknown class
- 99.96% accuracy on first 20 novel samples (3 errors in 8,000 trials)
- 0% accuracy on unknown classes

Observations of SRBCT Classification using Ensemble Averages

- t test identified strong features for classification in this data set
- Neural networks easily classified the four data types
- Caveat: Small, round blue-cell tumors occur in different tissue types
 - Ewing's sarcoma: Bone tissue
 - Burkitt's Lymphoma: Lymph nodes
 - Neuroblastoma: Nerve tissue
 - Rhabdomyosarcoma: Soft tissue

Gene expression (i.e., mRNA) level is linked to tissue difference as well as tumor genetics

59

Algebraic Training of a Neural Network

Ferrari, S. and Stengel, R.,

Smooth Function Approximation Using Neural Networks (pdf), *IEEE Trans. Neural Networks*, Vol. 16, No. 1, Jan 2005, pp. 24-38 (with S. Ferrari).

Algebraic Training for Exact Fit to a Smooth Function

- Smooth functions define equilibrium control settings at many operating points
- Neural network required to fit the functions

61

Results for Network Training

45-node example Algorithm is considerably faster than search methods

Algorithm:	Time (Scaled):	Flops:	Lines of code (MATLAB®):	Epochs:	Final error:
Algebraic	1	2×10^5	8	1	0
Levenberg- Marquardt	50	5×10^7	150	6	10 ⁻²⁶
Resilient Backprop.	150	1×10^7	100	150	0.006

63