Introduction to Neural Networks

Robert Stengel

Robotics and Intelligent Systems, MAE 345, Princeton University, 2017

- Natural and artificial neurons
- Natural and computational neural networks
- Linear network
- Perceptron
- Sigmoid network
- Radial basis function
- Applications of neural networks
- Supervised training
- Left pseudoinverse
- Steepest descent
- Back-propagation

Applications of Computational Neural Networks

- Classification of data sets
- Image processing
- Language interpretation
- Nonlinear function approximation
- Efficient data storage and retrieval
- System identification
- Nonlinear and adaptive control systems

Neurons

- Biological cells with significant electrochemical activity
- ~10-100 billion neurons in the brain
- Inputs from thousands of other neurons
- Output is scalar, but may have thousands of branches

- Afferent (sensor) neurons send signals from organs and the periphery to the central nervous system
- Efferent (motor) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (charge)

Activation Input to Soma Causes Change in Output Potential

- Stimulus from
- Receptors
- Other neurons
- Muscle cells
- Pacemakers (c.g. cardiac sino-atrial node)
- When membrane potential of neuronal cell exceeds a threshold
- Cell is polarized
- Action potential pulse is transmitted from the cell
- Activity measured by amplitude and firing frequency of pulses
- Saltatory conduction along axon
- Myelin Schwann cells insulate axon
- Signal boosted at Nodes of Ranvier
- Cell depolarizes and potential returns to rest

Electrochemical Signaling at Axon Hillock and Synapse

Synaptic Strength Can Be Increased or Decreased by Externalities

- Synapses: learning elements of the nervous system
- Action potentials enhanced or inhibited
- Chemicals can modify signal transfer
- Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
- Short-term
- Long-term

7

Cardiac Pacemaker and EKG Signals

Impulse, Pulse-Train, and Step Response of LTI $2^{\text {nd }}-O r d e r$ Neural Model

Multipolar Neuron

Mathematical Model of Neuron Components

Synapse effects represented by weights

 (gains or multipliers)Neuron firing frequency is modeled by linear gain or nonlinear element

The Neuron Function

- Vector input, u, to a single neuron
- Sensory input or output from upstream neurons
- Linear operation produces scalar, r

$$
r=\mathbf{w}^{T} \mathbf{u}+b
$$

- Add bias, b, for zero adjustment
- Scalar output, u, of a single neuron (or node)
- Scalar linear or nonlinear operation, $\boldsymbol{s}(r)$

$$
u=s(r)
$$

"Shallow" Neural Network

Layered, parallel structure for computation

Input-Output Characteristics of a Neural Network Layer

- Single hidden layer
- Number of inputs $=\boldsymbol{n}$
- $\operatorname{dim}(u)=(n \times 1)$
- Number of nodes $=m$
- $\operatorname{dim}(r)=\operatorname{dim}(b)=\operatorname{dim}(s)=(m \times 1)$

$$
\begin{aligned}
& \mathbf{r}=\mathbf{W} \mathbf{u}+\mathbf{b} \\
& \mathbf{u}=\mathbf{s}(\mathbf{r})
\end{aligned}
$$

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{w}_{1}{ }^{T} \\
\mathbf{w}_{2}{ }^{T} \\
\cdots \\
\mathbf{w}_{n}{ }^{T}
\end{array}\right]=\left[\begin{array}{cccc}
w_{11} & w_{12} & \cdots & w_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
w_{m 1} & w_{m 2} & \cdots & w_{m n}
\end{array}\right]
$$

Two-Layer Network

- Two layers

- Sigmoid hidden layer
- Linear output layer the same
- Input sometimes labeled as layer

$$
\begin{align*}
\mathbf{y} & =\mathbf{u}_{2} \\
& =\mathbf{s}_{2}\left(\mathbf{r}_{2}\right)=\mathbf{s}_{2}\left(\mathbf{W}_{2} \mathbf{u}_{1}+\mathbf{b}_{2}\right) \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{r}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{u}_{0}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right] \tag{15}
\end{align*}
$$

- Node functions may be different, e.g.,
- Number of nodes in each layer need not be

Linear Neural Network

- Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, $\mathrm{y}=\mathrm{Wx}+\mathrm{b}$
- Easy to train (left pseudoinverse, TBD)
- MATLAB symbology

Idealizations of Nonlinear Neuron Input-Output Characteristic

Step function ("Perceptron")

Logistic sigmoid function

Sigmoid with two inputs, one output

Perceptron Neural Network

Where...
R = \# Inputs
S = \# Neurons
Each node is a step function
Weighted sum of features is fed to each node
Each node produces a linear classification of the input space

Single-Layer, Single-Node Perceptron Discriminants

$$
\begin{aligned}
& \text { Perceptron } \\
& \text { Function } \\
&
\end{aligned} u=s\left(\mathbf{w}^{T} \mathbf{x}+b\right)= \begin{cases}1, & \left(\mathbf{w}^{T} \mathbf{x}+b\right)>0 \\
0, & \left(\mathbf{w}^{T} \mathbf{x}+b\right) \leq 0\end{cases}
$$

Two inputs, single step function
Discriminant

$$
\begin{aligned}
& 0=w_{1} x_{1}+w_{2} x_{2}+b \\
& x_{2}=\frac{-1}{w_{2}}\left(w_{1} x_{1}+b\right)
\end{aligned}
$$

$$
\mathbf{x}=\left\lfloor\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\rfloor
$$

Three inputs, single step function

$$
\begin{gathered}
\text { Discriminant } \\
0=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b \\
x_{3}=\frac{-1}{w_{3}}\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{gathered}
$$

Single-Layer, Multi-Node Perceptron Discriminants

$$
\mathbf{u}=\mathbf{s}(\mathbf{W} \mathbf{x}+\mathbf{b})
$$

- Multiple inputs, nodes, and outputs
- More inputs lead to more dimensions in discriminants
- More outputs lead to more discriminants

Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons Classifications of classifications

Open or closed regions

Structure	TYPES OF decision regions	EXCLUSIVE OR PROBLEM	CLASSES WITH MESHED REGIONS	MOST GENERAL REGion Shapes
SINGLE-LAYER	HALF PLANE BOUNDED BY HYPERPLANE			
TWO LAYER	```convex OPEN OR closed mEgIONS```		B	
	ARBITRARY (Complexity Limited BY Number of Nodes)			

Sigmoid Activation Functions

- Alternative sigmoid functions
- Logistic function: 0 to 1
- Hyperbolic tangent: -1 to 1
- Augmented ratio of squares:
$u=s(r)=\tanh r=\frac{1-e^{-2 r}}{1+e^{-2 r}}$ 0 to 1
- Smooth nonlinear functions that limit extreme values in

$$
u=s(r)=\frac{1}{1+e^{-r}}
$$ output

Single-Layer Sigmoid Neural Network

$a=\operatorname{lonsia}(W * n+b)$

Where...

$$
\begin{aligned}
& \text { R = \# Inputs } \\
& S=\text { \# Neurons }
\end{aligned}
$$

Fully Connected Two-Layer (Single-Hidden-Layer) Sigmoid Layer

- Sufficient to approximate any continuous function
- All nodes of one layer connected to all nodes of adjacent layers
- Typical sigmoid network contains
- Single sigmoid hidden layer (nonlinear fit)
- Single linear output layer (scaling)

Typical Output for TwoSigmoid Network

Classification is not limited to linear discriminants

Sigmoid network can approximate a continuous nonlinear function to arbitrary accuracy with a single hidden layer

Thresholded Neural
 Network Output

Threshold gives "yes/no" output

27

Least-Squares Training Example: Single Linear Neuron

- Training set (n members)
- Target outputs, $\mathbf{y}_{\mathrm{T}}(1 \times n)$
- m Features (inputs), $\mathrm{X}(m \times n)$

- Network output, single input

$$
\hat{y}_{j}=r_{j}=\hat{\mathbf{w}}^{T} \mathbf{x}_{j}+\hat{b}
$$

- Quadratic error cost
- Training error

$$
\varepsilon_{j}=\hat{y}_{j}-y_{T}
$$

$$
J=\frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right)^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}{ }^{2}-2 \hat{y}_{j} y_{T}+y_{T}{ }^{2}\right)
$$

Note: This is an introduction to least-squares back-propagation training. Training of a linear neuron more readily accomplished using left pseudoinverse (Lec. 21).

Linear Neuron Gradient

$$
\begin{array}{|c}
\hat{y}_{j}=r_{j}=\mathbf{w}^{T} \mathbf{x}_{j}+b \quad \varepsilon_{j}=\hat{y}_{j}-y_{T} \\
\frac{d \hat{y}_{j}}{d r_{j}}=1
\end{array} \quad J=\frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}{ }^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right)^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}{ }^{2}-2 \hat{y}_{j} y_{T}+y_{T}{ }^{2}\right)
$$

- Training (control) parameter, \mathbf{p}
- Input weights, w ($n \times 1$)
- Bias, b(1×1)
- Optimality condition $\frac{\partial J}{\partial \mathbf{p}}=\mathbf{0}$

$$
\mathbf{p}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{n+1}
\end{array}\right] \triangleq\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]
$$

- Gradient

$$
\frac{\partial J}{\partial \mathbf{p}}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right) \frac{\partial y_{j}}{\partial \mathbf{p}}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right) \frac{\partial y_{j}}{\partial r_{j}} \frac{\partial r_{j}}{\partial \mathbf{p}}
$$

$$
\begin{aligned}
& \text { where } \\
& \frac{\partial r_{j}}{\partial \mathbf{p}}=\left[\begin{array}{llll}
\frac{\partial r_{j}}{\partial p_{1}} & \frac{\partial r_{j}}{\partial p_{2}} & \cdots & \frac{\partial r_{j}}{\partial p_{n+1}}
\end{array}\right]=\frac{\partial\left(\mathbf{w}^{T} \mathbf{x}_{j}+b\right)}{\partial \mathbf{p}}=\left[\begin{array}{ll}
\mathbf{x}_{j}^{T} & 1
\end{array}\right]
\end{aligned}
$$

Steepest-Descent (Back-propagation) Learning for a Single Linear Neuron

Bealprupegwiton

Gradient

$$
\frac{\partial J}{\partial \mathbf{p}}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right)\left[\begin{array}{ll}
\mathbf{x}_{j}{ }^{T} & 1
\end{array}\right]=\frac{1}{2} \sum_{j=1}^{n}\left[\left(\mathbf{w}^{T} \mathbf{x}_{j}+b\right)-y_{T}\right]\left[\begin{array}{ll}
\mathbf{x}_{j}{ }^{T} & 1
\end{array}\right]
$$

Steepest-descent algorithm

$$
\mathbf{p}_{k+1}=\mathbf{p}_{k}-\eta\left(\frac{\partial J}{\partial \mathbf{p}}\right)_{k}^{T} \quad \begin{aligned}
& \eta=\text { learning rate } \\
& k=\text { iteration index(epoch) }
\end{aligned}
$$

Neuron output is discontinuous

$$
\hat{y}=s(r)= \begin{cases}1, & r>0 \\ 0, & r \leq 0\end{cases}
$$

Binary target output
$y_{T}=0$ or 1, for classification

$$
\left(\hat{y}_{j k}-y_{T_{k}}\right)=\left\{\begin{array}{rc}
1, & \hat{y}_{j k}=1, \quad y_{T_{k}}=0 \tag{31}\\
0, & \hat{y}_{j k}=y_{T_{k}} \\
-1, & \hat{y}_{j k}=0, \quad y_{T_{k}}=1
\end{array}\right.
$$

$$
\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k+1}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k}-\eta \sum_{j=1}^{N}\left[\hat{y}_{j k}-y_{T_{k}}\right]\left[\begin{array}{c}
\mathbf{x}_{j} \\
1
\end{array}\right]_{k}
$$

Neuron output is continuous

$$
\begin{aligned}
& \hat{y}=s(r)=\frac{1}{1+e^{-r}} \\
&=s\left(\mathbf{w}^{T} \mathbf{x}+b\right)=\frac{1}{1+e^{-\left(\mathbf{w}^{T} \mathbf{x}+b\right)}}
\end{aligned}
$$

Training Variables for a Single Sigmoid Neuron

Training error and quadratic error cost

$$
\begin{gathered}
\varepsilon_{j}=\hat{y}_{j}-y_{T} \\
J=\frac{1}{2} \sum_{j=1}^{n} \varepsilon_{j}{ }^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}-y_{T}\right)^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\hat{y}_{j}{ }^{2}-2 \hat{y}_{j} y_{T}+y_{T}{ }^{2}\right)
\end{gathered}
$$

Neuron output sensitivity to input

$$
\begin{aligned}
\frac{d \hat{y}}{d r} & =\frac{d s(r)}{d r}=\frac{e^{-r}}{\left(1+e^{-r}\right)^{2}}=e^{-r} s^{2}(r) \\
& =\left[\left(1+e^{-r}\right)-1\right] s^{2}(r)=\left[\frac{1-s(r)}{s(r)}\right] s^{2}(r)
\end{aligned}
$$

Back-Propagation Training of a Single Sigmoid Neuron

Backrompegedion

$$
\frac{\partial J}{\partial \mathbf{p}}=\frac{1}{2} \sum_{j=1}^{N}\left(\hat{y}_{j}-y_{T}\right) \frac{\partial \hat{y}_{j}}{\partial r} \frac{\partial r}{\partial \mathbf{p}}
$$

where

$$
r=\mathbf{w}^{T} \mathbf{x}+b
$$

$$
\frac{d \hat{y}}{d r}=(1-\hat{y}) \hat{y}
$$

$$
\frac{\partial r}{\partial \mathbf{p}}=\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k+1}=\left[\begin{array}{c}
\mathbf{w} \\
b
\end{array}\right]_{k}-\eta \sum_{j=1}^{N}\left\{\left[\hat{y}_{j k}-y_{T_{k}}\right]\left(1-\hat{y}_{k}\right) \hat{y}_{k}\left[\begin{array}{c}
\mathbf{x}_{j} \\
1
\end{array}\right]\right\}_{k}
$$

Radial Basis Function

Unimodal, axially symmetric function, e.g., exponential

$$
s(r)=e^{-|a r|^{n}}, \quad r=\sqrt{\left(\mathbf{x}-\mathbf{x}_{\text {center }}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{\text {center }}\right)}
$$

Network mimics stimulus field of a neuron receptor,

Radial Basis Function Network

Array of RBFs typically centered on a fixed grid

http://en.wikipedia.org/wiki/Radial_basis_function_network

Sigmoid vs. Radial Basis Function Node

- Considerations for selecting the basis function
- Prior knowledge of surface to be approximated
- Global vs. compact support
- Number of neurons required
- Training and untraining issues

Radial basis functions

"Deep" Sigmoid Network

- Multiple hidden and "visible" layers can improve accuracy in image processing and language translation
- Problem of the "vanishing gradient" in training
- One solution: Convolutional neural network of neuron input/output by incremental training
- Pooling or clustering signals between layers (TBD)
- Limited receptive fields for filter (or kernel) nodes
- Node is activated only when input is within pre-determined bounds (see CMAC, Lecture 19)

Supplementary Material

Some Recorded Action Potential Pulse Trains

Impulse, Pulse-Train, and Step Response of a LTI $2^{\text {nd }}-O r d e r$ Neural Model

Microarray Training Set

$\left[\begin{array}{c}\text { Identifier } \\ \mathbf{y}_{T} \\ \mathbf{X}\end{array}\right]=\left[\begin{array}{cccccc}\text { Sample 1 } & \text { Sample } 2 & \text { Sample 3 } & \ldots & \text { Sample n-1 } & \text { Sample n } \\ \text { Tumor } & \text { Tumor } & \text { Tumor } & \ldots & \text { Normal } & \text { Normal } \\ \text { Gene A Level } & \text { Gene A Level } & \text { Gene A Level } & \ldots & \text { Gene A Level } & \text { Gene A Level } \\ \text { Gene B Level } & \text { Gene B Level } & \text { Gene B Level } & \ldots & \text { Gene B Level } & \text { Gene B Level } \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ \text { Gene m Level } & \text { Gene m Level } & \text { Gene m Level } & \ldots & \text { Gene } m \text { Level } & \text { Gene } m \text { Level }\end{array}\right]$

Microarray Training Data

- First row: Target classification
- $2^{\text {nd }}-5^{\text {th }}$ rows: Up-regulated genes
- $6^{\text {th }}-10^{\text {th }}$ rows: Down-regulated genes

```
Lab Analysis of Tissue Samples
    Tumor =[111111111111111111111111111...
            111111111111100000000000000 ...
            00000000];
Normalized Data: Up-Regulated in Tumor
\begin{tabular}{rcccccccccccccccc} 
U22055 \(=\) & {\([138\)} & 68 & 93 & 62 & 30 & 81 & 121 & 7 & 82 & 24 & -2 & -48 & 38 & \(\ldots\) & \\
& 82 & 118 & 55 & 103 & 102 & 87 & 62 & 69 & 14 & 101 & 25 & 47 & 48 & 75 & \(\ldots\) \\
& 59 & 62 & 116 & 54 & 96 & 90 & 130 & 70 & 75 & 74 & 35 & 149 & 97 & 21 & \(\ldots\) \\
& 14 & -51 & -3 & -81 & 57 & -4 & 16 & 28 & -73 & -4 & 45 & -28 & -9 & -13 & \(\ldots\)
\end{tabular}
Normalized Data: Up-Regulated in Normal
\begin{tabular}{ccccccccccccccccc} 
M96839 \(=\) & {\([3\)} & -23 & 3 & 12 & -22 & 0 & 4 & 29 & -73 & 32 & 5 & -13 & -16 & 14 & \(\ldots\) \\
& 2 & 24 & 18 & 19 & 9 & -13 & -20 & -3 & -22 & 6 & -5 & -12 & 9 & 28 & \(\ldots\) \\
& 20 & -9 & 30 & -15 & 18 & 1 & -16 & 12 & -9 & 3 & -35 & 23 & 3 & 5 & \(\ldots\) \\
& 33 & 29 & 47 & 19 & 32 & 34 & 20 & 55 & 49 & 20 & 10 & 36 & 70 & 50 & \(\ldots\)
\end{tabular}
```

Input Layer Hidden Layer Output Layer
$\begin{array}{llllllll}\mathrm{x}=\mathrm{u}_{0} & W_{1} & s_{1}\left(r_{1}\right) & u_{1} & W_{2} & s_{2}\left(r_{2}\right) & u_{2}=\hat{\mathbf{y}}\end{array}$

- ~7000 genes expressed in 62 microarray samples
- Tumor = 1
- Normal = 0
- 8 genes in strong feature set
- 4 with Mean Tumor/Normal $>20: 1$
- 4 with Mean Normal/Tumor $>20: 1$
- and minimum variance within upregulated set

Dukes Stages: A ->B ->C $->\mathrm{D}$

Neural Network Training Results: Tumor/Normal Classification, 8 Genes, 4 Nodes

- Training begins with a random set of weights
- Adjustable parameters
- Learning rate
- Target error
- Maximum \# of epochs
- Non-unique sets of trained weights

Binary network output (0,1) after rounding

Zero classification errors

Neural Network Training Results: Tumor Stage/Normal Classification 8 Genes, 16 Nodes

- Colon cancer classification
- 0 = Normal
- 1 = Adenoma
- 2 = A Tumor
- 3 = \mathbf{B} Tumor
- $4=$ C Tumor
- 5 = D Tumor

Target =

[2133333333
33333333334
44444444555 55555100000 00000000000 000000]

One classification error
Scalar network output with varying magnitude

Classification =
Columns 1 through 13

Two parameter vectors for 2-layer network

$$
\mathbf{p}_{1,2}=\left[\begin{array}{l}
\mathbf{w} \\
b
\end{array}\right]_{1,2}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\ldots \\
p_{n+1}
\end{array}\right]_{1,2}
$$

Training a Sigmoid Network

Output vector

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{u}_{2} \\
& =\mathbf{s}_{2}\left(\mathbf{r}_{2}\right)=\mathbf{s}_{2}\left(\mathbf{W}_{2} \mathbf{u}_{1}+\mathbf{b}_{2}\right) \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{r}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{u}_{0}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right] \\
& =\mathbf{s}_{2}\left[\mathbf{W}_{2} \mathbf{s}_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right]
\end{aligned}
$$

Training a Sigmoid Network

$$
\mathbf{p}_{1,2 k}=\mathbf{p}_{1,2 k}-\eta\left(\frac{\partial J}{\partial \mathbf{p}_{1,2}}\right)_{k}^{T}
$$

where

$$
\frac{\partial J}{\partial \mathbf{p}_{1,2}}=\left(\hat{\mathbf{y}}-\mathbf{y}_{T}\right) \frac{\partial \mathbf{y}}{\partial \mathbf{p}_{1,2}}=\left(\hat{\mathbf{y}}-\mathbf{y}_{T}\right) \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{1,2}} \frac{\partial \mathbf{r}_{1,2}}{\partial \mathbf{p}_{1,2}}
$$

$$
\begin{aligned}
& \mathbf{r}_{1,2}=\mathbf{W}_{1,2} \mathbf{u}_{0,1}+\mathbf{b}_{1,2} \\
& \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{2}}=\mathbf{I} ; \quad \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{1}}=\left[\begin{array}{cccc}
\left(1-\hat{y}_{1}\right) \hat{y}_{1} & 0 & \ldots & 0 \\
0 & \left(1-\hat{y}_{2}\right) \hat{y}_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & 0 \\
0 & 0 & \ldots & \left(1-\hat{y}_{n}\right) \hat{y}_{n}
\end{array}\right] \\
& \frac{\partial \mathbf{r}_{1}}{\partial \mathbf{p}_{1}}=\left[\begin{array}{ll}
\mathbf{x}^{T} & 1
\end{array}\right] ; \frac{\partial \mathbf{r}_{2}}{\partial \mathbf{p}_{2}}=\left[\begin{array}{ll}
\mathbf{u}_{1}^{T} & 1
\end{array}\right]
\end{aligned}
$$

MATLAB Neural Network Toolbox Training Algorithms

```
Backpropagation training functions that use Jacobian derivatives
    These algorithms can be faster but require more memory than gradient
    backpropation. They are also not supported on GPU hardware.
    trainlm - Levenberg-Marquardt backpropagation.
    trainbr - Bayesian Regulation backpropagation.
Backpropagation training functions that use gradient derivatives:
    These algorithms may not be as fast as Jacobian backpropagation.
    They are supported on GPU hardware with the Parallel Computing Toolbox.
    trainbfq - BFGS quasi-Newton backpropagation.
    traincqb - Conjugate gradient backpropagation with Powell-Beale restarts.
    traincgf - Conjugate gradient backpropagation with Fletcher-Reeves updates
    traincap - Conjugate gradient backpropagation with Polak-Ribiere updates.
    traingd - Gradient descent backpropagation.
    traingda - Gradient descent with adaptive Ir backpropagation.
    traingdm - Gradient descent with momentum
    traingdx - Gradient descent w/momentum & adaptive Lr backpropagation.
    trainoss - One step secant backpropagation.
    trainrp - RPROP backpropagation.
    trainscq - Scaled conjugate gradient backpropagation.
Supervised weight/bias training functions
    trainb - Batch training with weight & bias learning rules.
    trainc - Cyclical order weight/bias training.
    trainr - Random order weight/bias training.
    trains - Sequential order weight/bias training.
Unsupervised weight/bias training functions
    trainbu - Unsupervised batch training with weight & bias learning rules.
    trainru - Unsupervised random order weight/bias training.
```


Small, Round Blue-Cell Tumor Classification Example

- Childhood cancers, including

Desmoplastic small, round blue-cell tumors

- Ewing' s sarcoma (EWS)
- Burkitt' s Lymphoma (BL)
- Neuroblastoma (NB)
- Rhabdomyosarcoma (RMS)
cDNA microarray analysis presented by J. Khan, et al., Nature Medicine, 2001, 673-679.
- 96 transcripts chosen from 2,308 probes for training
- 63 EWS, BL, NB, and RMS training samples
- Source of data for my analysis

Overview of Present SRBCT Analysis

- Transcript selection by test
- 96 transcripts, 12 highest and lowest t values for each class
- Overlap with Khan set: 32 transcripts
- Ensemble averaging of genes with highest and lowest t values in each class
- Cross-plot of ensemble averages
- Classification by sigmoidal neural network
- Validation of neural network
- Novel set simulation
- Leave-one-out simulation

Ranking by EWS t Values (Top and Bottom 12)

- 24 transcripts selected from 12 highest and lowest t values for EWS vs. remainder

EWS t Value	BL t Value	NB t Value	RMS t Value
12.04	-6.67	-6.17	-4.79
9.09	-6.75	-5.01	-4.03
8.82	-5.97	-4.91	-4.78
8.17	-4.31	-4.70	-5.48
7.60	-5.82	-2.62	-3.68
6.84	-9.93	0.56	-4.30
6.65	-3.56	-2.72	-4.69
6.54	-4.99	-4.07	-4.84
6.17	-5.61	-5.16	-1.97
5.99	-6.69	-6.63	-1.11
5.93	-6.74	-3.88	-1.21
5.61	-8.05	-2.49	-1.19
-5.04	-1.05	9.65	-0.62
-5.04	-3.31	-3.86	6.83
-5.04	2.64	2.19	0.64
-5.06	-1.45	5.79	0.76
-5.23	-7.27	0.78	5.40
-5.30	-4.11	2.20	3.68
-5.38	-0.42	3.76	0.14
-5.80	0.03	-1.58	5.10
-5.80	-5.56	3.76	3.66
-6.14	0.60	0.66	3.80
-6.39	-0.08	-0.22	4.56
-9.26	-0.13	3.24	2.95

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder

Clustering of SRBCT Ensemble Averages

SRBCT Neural Network

Actual
Class

Neural Network Training Set

Each input row is an ensemble average for a transcript set, normalized in ($-1,+1$)

Identifier	Sample 1 EWS	Sample 2 EWS	Sample 3 EWS	...	Sample 62 RMS	Sample 63 RMS
Target Output						
	EWS(+)Average	EWS(+)Average	EWS(+)Average	...	EWS(+)Average	EWS(+)Average
	EWS(-)Average	EWS(-)Average	EWS(-)Average	...	EWS(-)Average	EWS(-)Average
Transcript Training Set	$B L(+)$ Average	$B L(+)$ Average	$B L(+)$ Average	...	$B L(+)$ Average	$B L(+)$ Average
	BL(-)Average	BL $(-)$ Average	BL(-)Average	...	BL(-)Average	BL(-)Average
	$N B(+)$ Average	$N B(+)$ Average	$N B(+)$ Average	...	$N B(+)$ Average	$N B(+)$ Average
	$N B(-)$ Average	NB(-)Average	NB(-)Average	...	NB(-)Average	NB(-)Average
	RMS(+)Average	RMS(+)Average	RMS(+)Average	...	$R M S(+)$ Average	$R M S(+)$ Average
	RMS(-)Average	RMS(-)Average	RMS(-)Average	...	RMS(-)Average	RMS(-)Average

SRBCT Neural Network Training

- Neural network
- 8 ensemble-average inputs
- various \# of sigmoidal neurons
- 4 linear output neurons
- 4 outputs
- Training accuracy
- Train on all 63 samples
- Test on all 63 samples
- 100\% accuracy

Leave-One-Out Validation of SRBCT Neural Network

- Remove a single sample
- Train on remaining samples (125 times)
- Evaluate class of the removed sample
- Repeat for each of 63 samples
- 6 sigmoids: 99.96\% accuracy (3 errors in 7,875 trials)
- 12 sigmoids: 99.99\% accuracy (1 error in 7,875 trials)

Novel-Set Validation of SRBCT Neural Network

- Network always chooses one of four classes (i.e., "unknown" is not an option)
- Test on 25 novel samples (400 times each)
- 5 EWS
- 5 BL
- 5 NB
- 5 RMS
- 5 samples of unknown class
- 99.96\% accuracy on first 20 novel samples (3 errors in 8,000 trials)
- 0\% accuracy on unknown classes

Observations of SRBCT Classification using Ensemble Averages

- t test identified strong features for classification in this data set
- Neural networks easily classified the four data types
- Caveat: Small, round blue-cell tumors occur in different tissue types
- Ewing' s sarcoma: Bone tissue
- Burkitt’ s Lymphoma: Lymph nodes
- Neuroblastoma: Nerve tissue
- Rhabdomyosarcoma: Soft tissue

Gene expression (i.e., mRNA) level is linked to tissue difference as well as tumor genetics

59

Algebraic Training of a Neural Network

Ferrari, S. and Stengel, R.,
Smooth Function Approximation Using Neural
Networks (pdf), IEEE Trans. Neural Networks, Vol. 16,
No. 1, Jan 2005, pp. 24-38 (with S. Ferrari).

Algebraic Training for Exact Fit to a Smooth Function

- Smooth functions define equilibrium control settings at many operating points
- Neural network required to fit the functions

Ferrari and Stengel

Algorithm for Network Training

Results for Network Training
 45-node example
 Algorithm is considerably faster than search methods

Algorithm:	Time (Scaled):	Flops:	Lines of code (MATLAB $^{\text {(}): ~}$	Epochs:	Final error:
Algebraic	1	2×10^{5}	8	1	0
Levenberg- Marquardt	50	5×10^{7}	150	6	10^{-26}
Resilient Backprop.	150	1×10^{7}	100	150	0.006

