Information, Search, and Expert Systems

Robert Stengel Robotics and Intelligent Systems MAE 345 Princeton University, 2017

- Communication/Information Theory
 - Wiener vs. Shannon
 - Entropy
- Finding Decision Rules in Data
 - ID3 Algorithm
- Graph and Tree Search
- Expert Systems
 - Forward and Backward Chaining
 - Bayesian Belief Network
 - Explanation

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. <u>http://www.princeton.edu/~stengel/MAE345.html</u>

"Communication Theory" or "Information Theory"?

- Prodigy at Harvard, professor at MIT
 - Cybernetics
 - Feedback control
 - Communication theory

Dark Hero Of The Information Age: In Search of Norbert Wiener, the Father of Cybernetics, Flo Conway and Jim Siegelman, 2005. Basic Books

- University of Michigan, MIT (student), Bell Labs, MIT (professor)
 - Boolean algebra
 - Cryptography, telecommunications
 - Information theory

The Information: A History, A Theory, A Flood, James Gleick, 2011, Pantheon.

Communication: Separating Signals from Noise

Signal-to-Noise Ratio, SNR

$$SNR = \frac{Signal \ Power}{Noise \ Power} \triangleq \frac{S}{N}$$
$$= \frac{\sigma_{signal}^{2}}{\sigma_{noise}^{2}} (zero-mean), \text{ e.g.}, \frac{watts}{watts}$$

SNR often expressed in decibels

$$SNR(dB) = 10 \log_{10} \frac{Signal \ Power}{Noise \ Power} = 10 \log_{10} \frac{\left(Signal \ Amplitude\right)^{2}}{\left(Noise \ Amplitude\right)^{2}}$$
$$= 20 \log_{10} \frac{Signal \ Amplitude}{Noise \ Amplitude} = S(dB) - N(dB)$$

Communication: Bit Rate Capacity of a Noisy Analog Channel

Early Codes: How Many Bits?

Information

Ralph Hartley's Definition of Information (1928)

 $H = \log_{10} S^n = n \log_{10} S$ S = # possible denary symbolsn = # transmitted symbols

• Claude Shannon, 1948: *Self-Information*, $I(x_A)$, contained in observation of Event *A*, x_A , depends on probability of occurrence, $Pr(x_A)$:

$$\mathbb{I}(x_A) = fcn \Big[\Pr(x_A) \Big]$$

- 1) Information increases as uncertainty decreases
- 2) $I(x_A) \ge 0$: Information is positive or zero

8th bit?

Parity check

- 3) If $Pr(x_A) = 1$ or 0, $I(x_A) = 0$: No information in observation if x_A is certain or not present
- 4) For observations of independent events, x_A and x_B , *Joint-Information* must be additive

$$\mathbb{I}(x_A, x_B) = \mathbb{I}(x_A) + \mathbb{I}(x_B)$$

Information

• From (4),

$$\therefore fcn \Big[\Pr(x_A, x_B) \Big] = fcn \Big[\Pr(x_A) \Big] fcn \Big[\Pr(x_B) \Big] \\ = fcn \Big[\Pr(x_A) \Big] + fcn \Big[\Pr(x_B) \Big]$$

- What function has these properties?
- Shannon's answer: the logarithm
- From (1),

$$\mathbb{I}(x_i) = \log\left[1/\Pr(x_i)\right] = -\log\left[\Pr(x_i)\right]$$

Mean value of self-information is the expected value

$$E\left[\mathbb{I}(x_A)\right] = -\lim_{N \to \infty} \left(\frac{n_A}{N}\right) \log\left(\frac{n_A}{N}\right) = -\Pr(x_A) \log\left[\Pr(x_A)\right]$$

Entropy as a Measure of Information

- Prior result true in any numbering system
- Expressing Self-Information in *bits* (or "shannons"),

$$E\left[\mathbb{I}(x_A)\right] = -\Pr(x_A)\log_2\left[\Pr(x_A)\right]$$

• Given I distinct events, the *entropy** of set of events is

$$H \triangleq \sum_{i=1}^{I} E\left[\mathbb{I}(x_i)\right] = -\sum_{i=1}^{I} \Pr(x_i) \log_2\left[\Pr(x_i)\right] \text{ bits}$$

- Entropy indicates the *degree of uncertainty* associated with the process
- The greater the uncertainty, the higher the required channel capacity for transmission

Entropy of Two Events with Binary Frequencies of Occurrence

- -Pr(i) log₂Pr(i) represents the channel capacity (i.e., average number of bits) required to portray the ith event
- Frequencies of occurrence estimate probabilities of each event (#1 and #2)

$$Pr(\#1) = \frac{n(\#1)}{N}$$

$$Pr(\#2) = \frac{n(\#2)}{N} = 1 - \frac{n(\#1)}{N}$$

$$\log_2 Pr(\#1 \text{ or } \#2) \le 0$$

Combined entropy

$$H = H_{\#1} + H_{\#2}$$

= -Pr(#1) log₂ Pr(#1) - Pr(#2) log₂ Pr(#2)

11

Entropy of Two Events with Binary Frequencies of Occurrence

	Entropie	s for 128 Trials			
	Pr(#1)	- # of Bits(#1)	Pr(#2)	- # of Bits(#2)	Entropy
n	n/N	log₂(n/N)	1 - n/N	log₂(1 - n/N)	Н
1	0.008	-7	0.992	-0.011	<u>0.06</u> 6
2	0.016	-6	0.984	-0.023	0.116
4	0.031	-5	0.969	-0.046	0.201
8	0.063	-4	0.938	-0.093	0.337
16	0.125	-3	0.875	-0.193	0.544
32	0.25	-2	0.75	-0.415	0.811
64	0.50	-1	0.50	-1	1
96	0.75	-0.415	0.25	-2	0.811
112	0.875	-0.193	0.125	-3	0.544
120	0.938	-0.093	0.063	-4	0.337
124	0.969	-0.046	0.031	-5	0.201
126	0.984	-0.023	0.016	-6	0.116
127	0.992	-0.011	0.008	-7	0.066

Entropy of a fair coin flip = 1

Accurate Detection of Events Depends on Their Probability of Occurrence

Signals Rounded to Their Intended Values

Accurate Detection of Events Depends on Their Probability of Occurrence – and the Noise in the Signal

- Recognize when no result can be deduced
- Exclude irrelevant factors
- Iterative Dichotomizer*: the ID3 Algorithm
 - Build an efficient decision tree from a fixed set of examples (supervised learning)

*<u>Dichotomy</u>: Division into two (usually contradictory) parts or opinions

Quinlan, 1986

15

Fuzzy Ball-Game Training Set

		Attributes			Decisions
Case #	Forecast	Temperature	Humidity	Wind	Play Ball?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Low	Weak	Yes
6	Rain	Cool	Low	Strong	No
7	Overcast	Cool	Low	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Low	Weak	Yes
10	Rain	Mild	Low	Weak	Yes
11	Sunny	Mild	Low	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Low	Weak	Yes
14	Rain	Mild	High	Strong	No

Parameters of the ID3 Algorithm

Decisions, e.g., Play ball or don't play ball D = Number of possible decisions

Decision: Yes, no

17

Parameters of the ID3 Algorithm

- Attributes, e.g., Temperature, humidity, wind, weather forecast
 - *M* = Number of attributes to be considered in making a decision
 - I_m = Number of values that the *i*th attribute can take
 - Temperature: Hot, mild, cool
 - Humidity: High, low
 - Wind: Strong, weak
 - Forecast: Sunny, overcast, rain
- Training trials, e.g., all the games attempted last month
 - N = Number of training trials
 - n(i) = Number of examples with i^{th} attribute

Best Decision is Related to Entropy and the Probability of Occurrence

- High entropy
 - Signal provides <u>low coding</u> precision of distinct events
 - Differences can be coded with <u>few bits</u>
- Low entropy
 - More complex signal structure
 - Detecting differences requires many bits
- Best classification of events when *H* = 1...
 - but that may not be achievable

Са	se # Fo 1 S 2 S 3 O 4 R 5 R 6 R 7 O 8 S 9 S 10 R 11 S 12 O 13 O	orecast unny unny vovercast tain tain tain vovercast unny unny tain unny buny tain tain vovercast vorecast vorecast vorecast vorecast tain	Temperature Hot Hot Ocol Cool Cool Mild Mild Mild Mild Hot	Humidity High High Low Low Low Low Low Low Low Low Low Low	Wind Weak Strong Weak Weak Strong Strong Weak Weak Strong Strong Weak	Play Ba No No Yes Yes Yes No Yes Yes Yes Yes Yes Yes	Decision-Making Parameters for ID3
	13 O 14 R)vercast Iain	Hot Mild	Low High	Weak Strong	Yes No	

*H*_{*D*} = Entropy of all possible decisions

$$H_D = -\sum_{d=1}^{D} \Pr(d) \log_2 \Pr(d)$$

 G_i = Information "gain" (or contribution) of i^{th} attribute

$$G_{i} = H_{D} + \sum_{i_{m}=1}^{M} \Pr(i_{m}) \sum_{i_{d}=1}^{D} \left[\Pr(i_{d}) \log_{2} \Pr(i_{d}) \right]$$

 $\Pr(i_d) = n(i_d) / N(d): \text{ Probability that } i^{th} \text{ attribute depends on } d^{th} \text{ decision}$ $\sum_{i=1}^{I_m} \Pr(i) \sum_{d=1}^{D} \left[\Pr(i_d) \log_2 \Pr(i_d) \right]: \text{ Mutual information of } i \text{ and } d$

Decision Tree Produced by ID3 Algorithm

•

- Typical Root Attribute gains, G_i Therefore • - Forecast: 0.246 - Choose Forecast as root - Temperature: 0.029 Ignore Temperature _ - Humidity: 0.151 Choose Humidity and Wind as _ branches - Wind: 0.048 Forecast Ove ast Wind Humidity Yes No Yes Yes Evaluating remaining gains, •
 - Sunny branches to Humidity
 - Overcast = Yes
 - Rain branches to Wind

Graph and Tree Search

Search for Best Solution

Typical textbook problems

- Prove theorem
- Solve puzzle (e.g., Tower of Hanoi)
- Find sequence of chess moves to win a game
- Find shortest path between points (e.g., Traveling salesman problem)
- Find sequence of symbolic transformations that solve problem (e.g., Mathematica)

Curse of Dimensionality

- Feasible search paths may grow without bound
 - Possible combinatorial explosion
 - Checkers: 5 x <u>10²⁰ possible moves</u>
 - Chess: 10¹²⁰ moves
 - Protein folding: ?
- Limiting search complexity
 - Redefine search space
 - Employ heuristic (i.e., pragmatic) rules
 - Establish restricted search range
 - Invoke decision models that have worked in the past

Tree Structures for Search

- Single path between root and any node
- Path between adjacent nodes = arc
- Root node
 - no precursors
- Leaf node
 - no successors
 - possible terminator

Directions of Search

- Forward chaining
 - Reason from premises to actions
 - Data-driven: draw conclusions from facts
- Backward chaining
 - Reason from actions to premises
 - Goal-driven: find facts that support hypotheses

Strategies for Search

Realistic assessment

- Not necessary to consider all 10¹²⁰ possible moves to play good chess
- Forward and backward chaining, but not 10¹²⁰ evaluations

Search categories

- Blind search
- Heuristic search
- Probabilistic search
- Optimization
 - Search forward from opening?
 - Search backward from end game?
 - Both?

29

"Blind" Tree Search

- Node expansion
 - Begin at root
 - Find all successors to node

- Depth-first forward search
 - Expand nodes descended from most recently expanded node
 - Consider other paths only after reaching node with no successors
- Breadth-first forward search
 - Expand nodes in order of proximity to start node
 - Consider all sequences of arc number n (from root node) before considering any of number (n + 1)
 - Exhaustive, but guaranteed to find the shortest path to a terminator

AND/OR Graph Search

- A node is "solved" if
 - It is a leaf node with a satisfactory goal state
 - It provides a <u>satisfactory goal state</u> and has "AND nodes" as successors
 - It has "OR nodes" as successors and at least one leaf provides a <u>satisfactory goal state</u>.
- Goal: Solve the root node

Heuristic Search

- For large problems, blind search typically leads to combinatorial explosion
- If optimal search (Lecture 12) is intractable, search for feasible (approximately optimal) solutions
- Employ heuristic knowledge about quality of possible paths
 - Decide which node to expand next
 - Discard (or *prune*) nodes that are unlikely to be fruitful
- Ordered or best-first search
 - Always expand "most promising" node

Shortest Path Routing

- <u>Example</u>: Double-Bucket Dijkstra algorithm
 - Forward and backward search
 - Data stored in a "heap" (value-ordered tree)
 - Length of heap update path is logarithmic in number of leaves
- Also see Lecture 5 slides

Heuristic Dynamic Programming: A* and D* Search

- Forward search through given nodes
- Each arc bears an incremental cost
- Cost, J, estimated at kth instant =
 - Cost accrued to k
 - Remaining cost to reach final point, k_f
- Goal: minimize estimated cost by choice of remaining arcs
- Choose arc_{k+1} , arc_{k+2} accordingly
- Use heuristics to estimate remaining cost

Expert Systems

35

Expert Systems: Using Signals to Make Decisions

- Program that exhibits intelligent behavior
- Program that uses rules to evaluate information
- Program meant to emulate an expert or group of experts making decisions in a specific domain of knowledge (or *universe of discourse*)
- Program that chains algorithms to derive conclusions from evidence

Functions of Expert Systems

- Design
 - Conceive the form and substance of a new device, object, system, or procedure
- Diagnosis
 - Determine the nature or cause of an observed condition
- Instruction
 - Impart knowledge or skill
- Interpretation
 - Explain or analyze observations
- Monitoring
 - Observe a process, compare actual with expected observations, and indicate system status

- Negotiation
 - Propose, assess, and prioritize agreements between parties
- Planning
 - Devise actions to achieve goals
- Prediction
 - Reason about time, forecast the future
- Reconfiguration
 - Alter system structure to maintain or improve performance
- Regulation
 - Respond to commands and adjust control parameters to maintain stability and performance

37

Principal Elements of a Rule-Based Expert System

Critical Issues for Expert System Development

- System architecture
- Inference or reasoning method (Deduction)
- Knowledge acquisition (Induction)
- Explanation (Abduction*)
- User interface

* "Syllogism whose major premise is true and minor premise is probable"

39

Representation of Knowledge for Inference

- Logic
 - Predicate calculus, 1storder logic
 - Fuzzy logic, Bayesian belief network, ...
- Search
 - Given one state, examine all possible alternative states
 - Directed acyclic graph
- Procedures
 - Function-specific routines executed within a rigid structure (e.g., flow chart)

- Semantic (propositional) networks
 - Model of associative memory
 - Tree or graph structure
 - Nodes: objects, concepts, and events
 - Links: interrelations between nodes
 - Production (rule-based) systems
 - Rules
 - Data
 - Inference engine

Elements of a Parameter

- Type
- Name
- Current value
- Rules that test the parameter
- Rules that set the parameter
- Allowable values of the parameter
- Description of parameter (for explanation)

Elements of a Rule

• Type

•

Action

Parameters

Rule

Premise

Parameters

- Status
 - 0: Has not been tested
 - I: Being tested
 - T: Premise is true
 - F: Premise is false
 - U: Premise is unknown
- Parameters tested by rule
- Parameters set by rule
- Premise: Logical statement of proposition or predicates
- Action: Logical consequence of premise being true
- Description of premise and action (for explanation)

43

The Basic Rule: IF-THEN-ELSE

- Action Parameters Rule Premise Parameters
- If A = TRUE, then B, else C
- Material equivalence of propositional calculus, extended to predicate calculus and 1st-order logic, i.e., applied to logical statements
- Methods of inference lead to plans of action
- Compound rule: Logic embedded in The Basic Rule, e.g.,
 - Rule 1: If (A = B and C = D), then perform action E, else
 - Rule 2: If $(A \neq B \text{ or } C = D)$, then E = F, else
- Nested (pre-formed compound) rule: Rule embedded in The Basic Rule, e.g.,
 - Rule 3: If (A = B), then [If (C = D), then E = F, else ...], else

45

- Identification of key attributes and outcomes
- Taxonomies developed by experts
- First principles of science and mathematics
- Trial and error
- Probability theory and fuzzy logic
- Simulation and empirical results

Example of On-Line Code Modification

- Execute a decision tree
 - Get wrong answer
- Add logic to distinguish between right and wrong cases
 - If Comfort Zone = Water,
 - then Animal = Hippo,
 - else Animal = Rhino
 - True, but Animal is Dinosaur, not Hippo
 - Ask user for right answer
 - Ask user for a rule that distinguishes between right and wrong answer: If Animal is extinct, ...

Decision Rules

Representation of Data

- Set
 - Crisp sets
 - Fuzzy sets
- Schema
 - Diagrammatic representation
 - A pattern that represents elements (or objects), their attributes (or properties), and relationships between different elements
- Object (or Frame)
 - Hierarchical data structure, with inheritance
 - Slots: Function-specific cells for data
 - Scripts [usage]: frame-like structures that represent a sequence of events
- Database
 - Spreadsheets/tables/graphs
 - Linked spreadsheets

Structure of a Frame (or Object)

- <u>Structure array</u> in MATLAB
- <u>Structure</u> or property list in LISP
- Object in C++
- Ordered set of computer words that characterize a parameter or rule
- An archetype or prototype
- <u>Object-oriented</u> <u>programming</u>: Express Rules and Parameters as Frames

49

Example, Fillers, and Instance of a Frame

Inheritance and Hierarchy of Frame Attributes

- Legal fillers: Can be specified .
 - by
 - Data type
 - Function
 - Range
- Inheritance property •
 - All instances of a specific frame may share certain properties or classes of properties
- **Hierarchical property** •
 - Frames of frames may be legal
- Inference engine
 - Decodes frames
 - Establishes inheritance and hierarchy
 - Executes logical statements

51

Animal Decision Tree: Forward Chaining

What animal is it?

Premise Parameter: Rule 1:	Size	lf 'Small', test 'Sound' Else, test 'Neck'	Action
Action Parameter:	None		Parameters
Premise Parameter:	Sound		
Rule 2:		If 'Squeak', Animal = Mouse [END] Else, Animal = Squirrel [END]	
Action Parameter:	Animal	Ť	
Premise Parameter:	Neck		Lange Com
Rule 3:		If 'Long', Animal = Giraffe [END] Else, test 'Trunk'	Rule
Action Parameter:	Animal		
Premise Parameter:	Trunk		-
Rule 4:		If 'True', Animal = Elephant [END] Else, test 'Comfort Zone'	
Action Parameter:	Animal		Premise
Premise Parameter:	Comfort Z	lone	Parameters
Rule 5:		If 'Water', Animal = Hippo [END] Else, Animal = Rhino [END]	
Action Parameter:	Animal		

Animal Decision Tree: Backward Chaining

· What are an animal's attributes?

Animal = Hippo

- From Rule 5, From Rule 4, From Rule 3, From Rule 1,
- Comfort Zone = Water Trunk = False Neck = Short Size = Large

53

Animal Decision Tree: Parameters

Type:

Name: Current Value: Rules that Test: Rules that Set: Allowable Values:

Description:

Type: Name: Current Value: Rules that Test: Rules that Set: Allowable Values: Description:

Type:

Name: Current Value: Rules that Test: Rules that Set: Allowable Values: Description:

Object Attribute Animal Variable None

None 2, 3, 4, 5 Mouse, Squirrel, Giraffe, Elephant, Hippo, Rhino Type of Animal

Object Attribute

Size Variable 1 None Large, Small Size of Animal

Object Attribute

Sound Variable 2 None Squeak, No Squeak Sound made by Animal Type: Name: Current Value: Rules that Test: Rules that Set: Allowable Values: Description:

Type: Name: Current Value: Rules that Test: Rules that Set: Allowable Values: Description:

Type: Name: Current Value: Rules that Test: Rules that Set: Allowable Values: Description:

Object Attribute Neck Variable 3 None

Long, Short Neck of Animal

Object Attribute Trunk Variable 4 None True, False Snout of Animal

Object Attribute Comfort Zone Variable 5 None Water, Dry Land Habitat of Animal

Animal Decision Tree: Rules

Type: Name: Status:

Parameters Tested: Parameters Set: Premise: Action: Description:

Type: Name: Status: Parameters Tested: Parameters Set: Premise: Action: Description:

Type: Name:

Status: Parameters Tested: Parameters Set: Premise: Action:

Description:

If-Then-Else Rule 1 Variable (e.g., untested, being tested, tested and premise = T/F/unknown) Size None Size = Large or Small Test 'Sound' OR Test 'Neck' Depending on value of 'Size', test 'Sound' or 'Neck'

If-Then-Else Rule 2 Variable Sound Animal Size = Large or Small Set value of 'Animal' AND END Depending on value of 'Sound', identify 'Animal' as 'Mouse' or 'Squirrel'

If-Then-Else Rule 3

Variable Neck Animal Neck = Long or Short Set value of 'Animal AND END OR Test 'Trunk' Depending on value of 'Neck', identify 'Animal' as 'Giraffe' or test 'Comfort Zone' Type: Name: Status: Parameters Tested: Parameters Set: Premise: Action:

Description:

Type: Name: Status: Parameters Tested: Parameters Set: Premise: Action: Description: If-Then-Else Rule 4 Variable Trunk Animal Trunk = True or False Set value of 'Animal' AND END OR Test 'Comfort Zone' Depending on value of 'Trunk', identify 'Animal' as 'Elephant' or test 'Comfort Zone'

If-Then-Else Rule 5 Variable Comfort Zone Animal Comfort Zone = Water or Dry Land Set value of 'Animal' AND END Depending on value of 'Comfort Zone', identify 'Animal' as 'Hippo' or 'Rhino'

55

Animal Decision Tree: Programs

- Procedural Sequence of Rules
 - Rule1(Size, Rule2, Rule3)
 - Rule2(Sound, Animal, Animal)
 - Rule3(Neck, Animal, Rule4)
 - Rule4(Trunk, Animal, Rule5)
 - Rule5(Comfort Zone, Animal, Animal)

Declarative Sequence of Rules

- BasicRule(Size, Sound, Neck)
- BasicRule(Sound, Animal, Animal)
- BasicRule(Neck, Animal, Trunk)
- BasicRule(Trunk, Animal, Comfort Zone)
- BasicRule(Comfort Zone, Animal, Animal)

Animal Decision Tree: Procedural Logic

Simple exposition of decision-making Rigid description of solution

57

Bayesian Belief Network

- Related events, *E*, within a contextual domain
- · Conditional dependence of events that may (or not) be observed
- Probability of unobserved event (hypothesis), *H*, to be predicted

Network of Conditional and Unconditional Probabilities

- Conditional probabilities known
- Prior estimates of unconditional probabilities given
- When event, *E_i*, occurs with probability, Pr(*E_i*), update estimates of all unconditional probabilities, including Pr(*H*)

See Supplemental Material for equations

Decision Making Under Uncertainty *Aircraft Flight Through Microburst Wind Shear*

61

Probability of Microburst Wind Shear (FAA)

OBSERVA	TION	PROBABILITY OF WIND SHEAR			
PRESENCE	OF CONVECTIVE WEA	THER NEAR FLIGHT PA	TH:		
-	With localized strong wi observed blowing dust, r tornado-like features, etc.	nds (Tower reports or ings of dust,)	нісн		
~	With heavy precipitation cations of contour, red on	(Observed or radar indi- rattenuation shadow)	HIGH		
-	With rainshower		MEDIUM		
	With lightning		MEDIUM		
÷	With virga		MEDIUM		
-	With moderate or greate radar indications)	er turbulence (Reported or	MEDIUM		
-	With temperature/dew p between 30 and 50 degree	ooint spread es Fahrenheit	MEDIUM		
ONBOARD	WINDSHEAR DETECTIOn (Reported or observed)	ON SYSTEM ALERT	нісн		
PIREP OF	AIRSPEED LOSS OR GA	IN:			
÷	15 knots or greater Less than 15 knots		HIGH MEDIUM		
LLWAS AL	ERT/WIND VELOCITY	CHANGE:			
Ξ.	20 knots or greater Less than 20 knots		HIGH MEDIUM		
FORECAST	OF CONVECTIVE WEAT	HER	LOW		

Bayesian Rules of Inference for Situation Assessment and Decision Making

(Stratton and Stengel)

http://www.youtube.com/watch?v=dKwyU1RwPto

63

Explanation in Machine Learning

- Expert Systems
 - Explanation of decisions is built-in
 - Structure relies on causal relationships
 - Best applied to problems with welldefined nodes and rules
 - Replace rules with neural networks?

- Neural Networks
 - Explanation of classification is ambiguous
 - Structure is mechanistic
 - Best applied to problems with graphical or semantic solutions
 - Restructure neural modules to reflect defined purpose?

Next Time: State Estimation

65

Supplementary Material

Example: Probability Spaces for Three Attributes

Probability of an attribute value represented by area in diagram

67

Example: Decision, given Values of Three Attributes

Bayesian Belief Network Relationships

H: Hypothesis $E_i: i^{th} Piece of Evidence$

Conditional probability of hypothesis, *H*

$$\Pr(H | E) = \frac{\Pr(E | H)}{\Pr(E)} \Pr(H)$$

Unconditional probability of evidence, E₁

$$\Pr(E_1) = \Pr(E_1 | H) \Pr(H) + \Pr(E_1 | \neg H) \Pr(\neg H)$$

 Probability of hypothesis, *H*, conditioned on *E*₁ and *E*₂

$$\Pr(H \mid E_1 \land E_2) = \frac{\Pr(E_1 \land E_2 \mid H)}{\Pr(E_1 \land E_2)} \Pr(H)$$

after Stratton, Stengel, 1992

Bayesian Belief Network Relationships

• Probability of E_2 conditioned on E_1 and H

$$\Pr(E_2 \mid H \land E_1) = \Pr(E_2 \mid H)$$

• Probability of E_1 and E_2 conditioned on H

$$\Pr(E_1 \wedge E_2 \mid H) = \Pr(E_1 \mid H) \Pr(E_2 \mid H)$$

• Then

$$\Pr(H | E_1 \land E_2) = \frac{\Pr(E_1 | H) \Pr(E_2 | H)}{\Pr(E_1 \land E_2)} \Pr(H)$$
$$= \frac{\Pr(E_2 | H)}{\Pr(E_1 | E_2)} \Pr(H | E_1)$$

70

Bayesian Belief Network Relationships

Pre- and post-hypothesis conditional probability

 $\Pr(E_1 | E_2) = \Pr(E_2 | H) \Pr(H | E_1) + \Pr(E_2 | \neg H) \Pr(\neg H | E_1)$

 Probability of hypothesis, *H*, conditioned on observation of post-hypothesis event

 $\Pr(H \mid E_2) = \Pr(H \mid E_1) \Pr(E_1 \mid E_2) + \Pr(H \mid \neg E_1) \Pr(\neg E_1 \mid E_2)$

Evolution of a Wind Shear Advisory

Local failure analysis

- Set of hypothetical models of specific failure

- Global failure analysis
 - Forward reasoning assesses failure impact
 - Backward reasoning deduces possible causes

Heuristic Search

- Local failure analysis
 - Determination based on aggregate of local models
- Global failure analysis
 - Determination based on aggregate of local failure analyses
- Heuristic score based on
 - Criticality of failure
 - Reliability of component
 - Extensiveness of failure
 - Implicated devices
 - Level of backtracking
 - Severity of failure
 - Net probability of failure model

75

Mechanical Control System

Local Failure Analysis

Frames store facts and facilitate search and inference

- Components and up-/downstream linkages of control system
- Failure model parameters
- Rule base for failure analysis (LISP)

Local Failure Model #1 The cause of Nodes 9-2 (1.0) & 17-2 (1.0) being down MAY be that Node 8-2 (1.0) is down

Local Failure Model #2 The cause of Nodes 9-3 (1.0) & 17-3 (1.0) being down MAY be that Node 8-3 (1.0) is down

Local Failure Model #3a The cause of Nodes 17-2 (1.0), 9-2 (1.0) & 18-2 (1.0) being down MAY be that Node 7-2 (0.67) is down This IMPLICATES Nodes 8-2, 15, 3, & 11-2

Local Failure Model #4 The cause of Nodes 5 (1.0) & 16 (1.0) being down MAY be that Node 2 (1.0) is down

77

78

Global Failure Analysis

	Global Failure Model #1
Formed from local mode	el(s): 1,2 Score: 32.5
Flagged Devices: Tor Eng Flo	quemeter-1, Torquemeter-2, Eng-oil-temp-1, -oil-temp-2, Eng-oil-press-1, Eng-oil-press-2, w-meter-1
Probable Cause: Eng Implicated End-Devices:	rine-#1 (0,75), Engine-#2(0.75) Pump-press-sensor-1, Pump-press-sensor-2, Actr-press-sensor-1,-2,-3,-4, Aft-yaw-&-roll, Aft-pitch-&-heave, Eng-chip-detector-1, Eng-chip-detector-2.
Formed from local mode Flagged Devices: Tor Eng Flo	Global Failure Model #2 il(s): 1,3 Score: 30.875 quemeter-1, Torquemeter-2, Eng-oil-temp-1, -oil-temp-2, Eng-oil-press-1, Eng-oil-press-2, w-meter-1
Probable Cause: Eng Implicated End-Devices:	ine-#2 (0,75), Fuel-System-#1(0.675) Pump-press-sensor-1, Pump-press-sensor-2, Actr-press-sensor-1,-2,-3,-4, Aft-yaw-&-roll, Aft-pitch-&-heave, Eng-chip-detector-1, Eng-chip-detector-2.
Formed from local mode Flagged Devices: Tor Probable Cause: Eng Implicated End-Devices:	Global Failure Model #3 l(s): 2 Score: 19.25 quemeter-1, Eng-oil-temp-1, Eng-oil-press-1 ine-#1 (0,75) Pump-press-sensor-1, Eng-chip-detector-1, Actr-press-sensor-1.