Information, Search, and Expert Systems

Robert Stengel

Robotics and Intelligent Systems MAE 345
Princeton University, 2017

- Communication/Information Theory
- Wiener vs. Shannon
- Entropy
- Finding Decision Rules in Data
- ID3 Algorithm
- Graph and Tree Search
- Expert Systems
- Forward and Backward Chaining
- Bayesian Belief Network
- Explanation

"Communication Theory" or "Information Theory"?

- Prodigy at Harvard, professor at MIT
- Cybernetics
- Feedback control
- Communication theory

Dark Hero Of The Information Age: In Search of Norbert Wiener, the Father of Cybernetics, Flo Conway and Jim Siegelman, 2005. Basic Books

- University of Michigan, MIT (student), Bell Labs, MIT (professor)
- Boolean algebra
- Cryptography, telecommunications
- Information theory

The Information: A History, A Theory, A Flood, James Gleick, 2011, Pantheon.

Information, Noise, and Observation

Communication: Separating Signals from Noise Signal-to-Noise Ratio, SNR

$$
\begin{aligned}
S N R & =\frac{\text { Signal Power }}{\text { Noise Power }} \triangleq \frac{S}{N} \\
& =\frac{\sigma_{\text {signal }}^{2}}{\sigma_{\text {noise }}^{2}}(\text { zero-mean }), \text { e.g., } \frac{\text { watts }}{\text { watts }}
\end{aligned}
$$

SNR often expressed in decibels

$$
\begin{aligned}
S N R(d B) & =10 \log _{10} \frac{\text { Signal Power }}{\text { Noise Power }}=10 \log _{10} \frac{(\text { Signal Amplitude })^{2}}{(\text { Noise Amplitude })^{2}} \\
& =20 \log _{10} \frac{\text { Signal Amplitude }}{\text { Noise Amplitude }}=S(d B)-N(d B)
\end{aligned}
$$

Communication: Separating Analog Signals from Noise

Power $=\int_{-\infty}^{\infty}[$ Power Spectral Density $(f)] d f=\int_{-\infty}^{\infty}[\operatorname{PSD}(f)] d f ; \quad f=$ Frequency, Hz

Signal-to-Noise Spectral Density Ratio, SDR(f)

$\operatorname{SDR}\left(\frac{\omega}{2 \pi}\right)=\operatorname{SDR}(f)=\frac{\text { Signal Power Spectral Density }(f)}{\text { Noise Power Spectral Density }(f)} \triangleq \frac{P S D_{\text {signal }}(f)}{P S D_{\text {noise }}(f)}$
Optimal (non-causal) Wiener Filter, $\boldsymbol{H}(\mathbf{f})$
$H(f)=\frac{P S D_{\text {signal }}(f)}{P S D_{\text {signal }}(f)+P S D_{\text {noise }}(f)}=\frac{\operatorname{SDR}(f)}{\operatorname{SDR}(f)+1}$

Communication: Bit Rate Capacity of a Noisy Analog Channel

Shannon-Hartley Theorem, C bits/s

$$
C=B \log _{2}\left(\frac{S+N}{N}\right)=B \log _{2}\left(\frac{S}{N}+1\right)=B \log _{2}(S N R+1)
$$

$$
\begin{aligned}
S & =\text { Signal Power, e.g., watts } \\
N & =\text { Noise Power, e.g., watts } \\
(S+N) & =\text { Observed Power, e.g., watts }
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline B=\text { Channel Bandwidth, } \mathrm{Hz} \\
C=\text { Channel Capacity, bits/s } \\
\hline
\end{array}
$$

Early Codes: How Many Bits?

- ~ (10 x 10) image = 100 pixels $=100$ bits required to discern a character

ASCII encodes 128 characters in 7 bits (1 byte - 1 bit)

- Dot = 1 bit
- Dash = 3 bits
- Dot-dash space = 1 bit
- Letter space = 2 bits
- 3 to 21 bits per character

Information

Ralph Hartley's Definition of Information (1928)

$$
H=\log _{10} S^{n}=n \log _{10} S \quad \begin{gathered}
S=\text { \# possible denary symbols } \\
n=\text { \# transmitted symbols }
\end{gathered}
$$

- Claude Shannon, 1948: Self-Information, $\mathbb{I}\left(x_{A}\right)$, contained in observation of Event A, x_{A}, depends on probability of occurrence, $\operatorname{Pr}\left(x_{A}\right)$:

$$
\mathbb{I}\left(x_{A}\right)=f c n\left[\operatorname{Pr}\left(x_{A}\right)\right]
$$

1) Information increases as uncertainty decreases
2) $\mathbb{I}\left(x_{A}\right) \geq 0$: Information is positive or zero
3) If $\operatorname{Pr}\left(x_{A}\right)=1$ or $0, \mathbb{I}\left(x_{A}\right)=0$: No information in observation if x_{A} is certain or not present
4) For observations of independent events, x_{A} and x_{B}, JointInformation must be additive

$$
\mathbb{I}\left(x_{A}, x_{B}\right)=\mathbb{I}\left(x_{A}\right)+\mathbb{I}\left(x_{B}\right)
$$

Information

- From (4),

$$
\begin{gathered}
\therefore f c n\left[\operatorname{Pr}\left(x_{A}, x_{B}\right)\right]=f c n\left[\operatorname{Pr}\left(x_{A}\right)\right] f c n\left[\operatorname{Pr}\left(x_{B}\right)\right] \\
=f c n\left[\operatorname{Pr}\left(x_{A}\right)\right]+f c n\left[\operatorname{Pr}\left(x_{B}\right)\right]
\end{gathered}
$$

- What function has these properties?
- Shannon's answer: the logarithm
- From (1),

$$
\mathbb{I}\left(x_{i}\right)=\log \left[1 / \operatorname{Pr}\left(x_{i}\right)\right]=-\log \left[\operatorname{Pr}\left(x_{i}\right)\right]
$$

- Mean value of self-information is the expected value

$$
E\left[I\left(x_{A}\right)\right]=-\lim _{N \rightarrow \infty}\left(\frac{n_{A}}{N}\right) \log \left(\frac{n_{A}}{N}\right)=-\operatorname{Pr}\left(x_{A}\right) \log \left[\operatorname{Pr}\left(x_{A}\right)\right]
$$

Entropy as a Measure of Information

- Prior result true in any numbering system
- Expressing Self-Information in bits (or "shannons"),

$$
E\left[\mathbb{I}\left(x_{A}\right)\right]=-\operatorname{Pr}\left(x_{A}\right) \log _{2}\left[\operatorname{Pr}\left(x_{A}\right)\right]
$$

- Given I distinct events, the entropy* of set of events is

$$
H \triangleq \sum_{i=1}^{I} E\left[\mathbb{I}\left(x_{i}\right)\right]=-\sum_{i=1}^{I} \operatorname{Pr}\left(x_{i}\right) \log _{2}\left[\operatorname{Pr}\left(x_{i}\right)\right] \text { bits }
$$

- Entropy indicates the degree of uncertainty associated with the process
- The greater the uncertainty, the higher the required channel capacity for transmission

Entropy of Two Events with Binary Frequencies of Occurrence

- $-\operatorname{Pr}(i) \log _{2} \operatorname{Pr}(i)$ represents the channel capacity (i.e., average number of bits) required to portray the $i^{\text {th }}$ event
- Frequencies of occurrence estimate probabilities of each event (\#1 and \#2)

$$
\begin{aligned}
& \operatorname{Pr}(\# 1)=\frac{n(\# 1)}{N} \\
& \operatorname{Pr}(\# 2)=\frac{n(\# 2)}{N}=1-\frac{n(\# 1)}{N} \\
& \log _{2} \operatorname{Pr}(\# 1 \text { or } \# 2) \leq 0
\end{aligned}
$$

- Combined entropy

$$
\begin{aligned}
H & =H_{\# 1}+H_{\# 2} \\
& =-\operatorname{Pr}(\# 1) \log _{2} \operatorname{Pr}(\# 1)-\operatorname{Pr}(\# 2) \log _{2} \operatorname{Pr}(\# 2)
\end{aligned}
$$

Entropy of Two Events with Binary Frequencies of Occurrence

	Entropies for 128 Trials				
	$\operatorname{Pr}(\# 1)$	- \# of Bits(\#1)	$\operatorname{Pr}(\# 2)$	- \# of Bits(\#2)	Entropy
n	n/N	$\log _{2}(\mathrm{n} / \mathrm{N})$	1-n/N	$\log _{2}(1-n / N)$	H
-1	0.008	-7	0.992	-0.011	0.066
2	0.016	-6	0.984	-0.023	0.116
4	0.031	-5	0.969	-0.046	0.201
8	0.063	-4	0.938	-0.093	0.337
16	0.125	-3	0.875	-0.193	0.544
32	0.25	-2	0.75	-0.415	0.811
64	0.50	-1	0.50	-1	1
96	0.15	-0.415	0.25	-2	0.817
112	0.875	-0.193	0.125	-3	0.544
120	0.938	-0.093	0.063	-4	0.337
124	0.969	-0.046	0.031	-5	0.201
126	0.984	-0.023	0.016	-6	0.116
127	0.992	-0.011	0.008	-7	0.066

Entropy of a fair coin flip = 1

Accurate Detection of Events Depends on Their Probability of Occurrence

Signals Rounded to Their Intended Values

Accurate Detection of Events Depends on Their Probability of Occurrence and the Noise in the Signal

- Choose most important attributes first
- Recognize when no result can be deduced
- Exclude irrelevant factors
- Iterative Dichotomizer*: the ID3 Algorithm
- Build an efficient decision tree from a fixed set of examples (supervised learning)
*Dichotomy: Division into two (usually contradictory) parts or opinions

Fuzzy Ball-Game Training Set

	Attributes				Decisions
Case \#	Forecast	Temperature	Humidity	Wind	Play Ball?
	1 Sunny	Hot	High	Weak	No
	2 Sunny	Hot	High	Strong	No
	3 Overcast	Hot	High	Weak	Yes
	4 Rain	Mild	High	Weak	Yes
	5 Rain	Cool	Low	Weak	Yes
	6 Rain	Cool	Low	Strong	No
	7 Overcast	Cool	Low	Strong	Yes
	8 Sunny	Mild	High	Weak	No
	9 Sunny	Cool	Low	Weak	Yes
10	0 Rain	Mild	Low	Weak	Yes
	1 Sunny	Mild	Low	Strong	Yes
12	2 Overcast	Mild	High	Strong	Yes
13	3 Overcast	Hot	Low	Weak	Yes
	4 Rain	Mild	High	Strong	No

Parameters of the ID3 Algorithm

- Decisions, e.g., Play ball or don' t play ball - $D=$ Number of possible decisions
- Decision: Yes, no

Parameters of the ID3 Algorithm

- Attributes, e.g., Temperature, humidity, wind, weather forecast
- M = Number of attributes to be considered in making a decision
$-I_{m}=$ Number of values that the $i^{\text {th }}$ attribute can take
- Temperature: Hot, mild, cool
- Humidity: High, low
- Wind:

Strong, weak

- Forecast: Sunny, overcast, rain
- Training trials, e.g., all the games attempted last month
- N = Number of training trials
$-n(i)=$ Number of examples with $i^{\text {th }}$ attribute

Best Decision is Related to Entropy and the Probability of Occurrence

- High entropy
- Signal provides low coding precision of distinct events
- Differences can be coded with

$$
H=-\sum_{i=1}^{I} \operatorname{Pr}(i) \log _{2} \operatorname{Pr}(i)
$$ few bits

- Low entropy
- More complex signal structure
- Detecting differences requires many bits
- Best classification of events when $H=1$...

- but that may not be achievable

Case \#	Forecast	Temperature	Humidity
1 Sunny	Hot	High	Week
2 Sunny	Hot	High	Stro
3 Overcast	Hot	High	Weak
4 Rain	Mild	High	Weeal
5 Rain	Cool	Low	Weak
6 Rain	Cool	Low	Stro
7 Overcast	Cool	Low	Stro
8 Sunny	Mild	High	Weak
9 Sunny	Cool	Low	Weak
10 Rain	Mild	Low	Weak
11 Sunny	Mild	Low	Stro
12 Overcast	Mild	High	Stro
13 Overcast	Hot	Low	Weak
14 Rain	Mild	High	Stro

Weak Ye
$H_{D}=$ Entropy of all possible decisions

$$
H_{D}=-\sum_{d=1}^{D} \operatorname{Pr}(d) \log _{2} \operatorname{Pr}(d)
$$

$G_{i}=$ Information "gain" (or contribution) of $i^{\text {th }}$ attribute

$$
G_{i}=H_{D}+\sum_{i_{m}=1}^{M} \operatorname{Pr}\left(i_{m}\right) \sum_{i_{d}=1}^{D}\left[\operatorname{Pr}\left(i_{d}\right) \log _{2} \operatorname{Pr}\left(i_{d}\right)\right]
$$

$\operatorname{Pr}\left(i_{d}\right)=n\left(i_{d}\right) / N(d)$: Probability that $i^{\text {th }}$ attribute depends on $d^{\text {th }}$ decision

$$
\sum_{i=1}^{I_{m}} \operatorname{Pr}(i) \sum_{d=1}^{D}\left[\operatorname{Pr}\left(i_{d}\right) \log _{2} \operatorname{Pr}\left(i_{d}\right)\right]: \text { Mutual information of } i \text { and } d
$$

Decision Tree Produced by ID3 Algorithm

- Typical Root Attribute gains, $\boldsymbol{G}_{\boldsymbol{i}}$
- Forecast: 0.246
- Temperature: 0.029
- Humidity: 0.151
- Wind: 0.048
- Therefore
- Choose Forecast as root
- Ignore Temperature
- Choose Humidity and Wind as branches

- Evaluating remaining gains,
- Sunny branches to Humidity
- Overcast = Yes
- Rain branches to Wind

Graph and Tree Search

Search for Best Solution

- Typical textbook problems

- Prove theorem
- Solve puzzle (e.g., Tower of Hanoi)
- Find sequence of chess moves to win a game
- Find shortest path between points (e.g., Traveling salesman problem)
- Find sequence of symbolic transformations that solve problem (e.g., Mathematica)

Curse of Dimensionality

- Feasible search paths may grow without bound
- Possible combinatorial explosion
- Checkers: 5×10^{20} possible moves
- Chess: $\mathbf{1 0}^{120}$ moves
- Protein folding: ?

- Limiting search complexity
- Redefine search space
- Employ heuristic (i.e., pragmatic) rules
- Establish restricted search range
- Invoke decision models that have worked in the past

Tree Structures for Search

- Single path between root and any node
- Path between adjacent nodes = arc
- Root node
- no precursors
- Leaf node
- no successors
- possible terminator

Expert
 System Symbology

- Parameters
- Values
- Rules
- Name
- Logic
- And/Or

Structures for Search

- Multiple paths between root and some nodes
- Predicate calculus

Directions of Search

- Forward chaining

- Reason from premises to actions
- Data-driven: draw conclusions from facts
- Backward chaining
- Reason from actions to premises
- Goal-driven: find facts that support hypotheses

Strategies for Search

- Realistic assessment
- Not necessary to consider all 10^{120} possible moves to play good chess
- Forward and backward chaining, but not 10^{120} evaluations
- Search categories
- Blind search
- Heuristic search
- Probabilistic search
- Optimization
- Search forward from opening?
- Search backward from end game?
- Both?

"Blind" Tree Search

- Node expansion
- Begin at root
- Find all successors to node

- Depth-first forward search
- Expand nodes descended from most recently expanded node
- Consider other paths only after reaching node with no successors
- Breadth-first forward search
- Expand nodes in order of proximity to start node
- Consider all sequences of arc number n (from root node) before considering any of number ($n+1$)
- Exhaustive, but guaranteed to find the shortest path to a terminator

AND/OR Graph Search

Leaf Nodes
Root Node

- A node is "solved" if
- It is a leaf node with a satisfactory goal state
- It provides a satisfactory goal state and has "AND nodes" as successors
- It has "OR nodes" as successors and at least one leaf provides a satisfactory goal state.
- Goal: Solve the root node

Heuristic Search

- For large problems, blind search typically leads to combinatorial explosion
- If optimal search (Lecture 12) is intractable, search for feasible (approximately optimal) solutions
- Employ heuristic knowledge about quality of possible paths
- Decide which node to expand next
- Discard (or prune) nodes that are unlikely to be fruitful
- Ordered or best-first search
- Always expand "most promising" node

Shortest Path Routing

- Example: Double-Bucket Dijkstra algorithm
- Forward and backward search
- Data stored in a "heap" (value-ordered tree)
- Length of heap update path is logarithmic in number of leaves
- Also see Lecture 5 slides

Single Dijkstra Search

33

Heuristic Dynamic Programming: A* and D* Search
 $\hat{J}_{k_{f}}=\sum_{i=1}^{k} J_{i}+\sum_{i=k+1}^{k_{f}} \hat{J}_{i}\left(\operatorname{arc}_{i}\right)$

- Forward search through given nodes
- Each arc bears an incremental cost
- Cost, J, estimated at $\boldsymbol{k}^{\text {th }}$ instant $=$
- Cost accrued to k
- Remaining cost to reach final point, \boldsymbol{k}_{f}
- Goal: minimize estimated cost by choice of remaining arcs
- Choose arc $_{k+1}$, arc $_{k+2}$ accordingly
- Use heuristics to estimate remaining cost

Expert Systems

Expert Systems: Using Signals to Make Decisions

- Program that exhibits intelligent behavior
- Program that uses rules to evaluate information
- Program meant to emulate an expert or group of experts making decisions in a specific domain of knowledge (or universe of discourse)
- Program that chains algorithms to derive conclusions from evidence

Functions of Expert Systems

- Design
- Conceive the form and substance of a new device, object, system, or procedure
- Diagnosis
- Determine the nature or cause of an observed condition
- Instruction
- Impart knowledge or skill
- Interpretation
- Explain or analyze observations
- Monitoring
- Observe a process, compare actual with expected observations, and indicate system status
- Negotiation
- Propose, assess, and prioritize agreements between parties
- Planning
- Devise actions to achieve goals
- Prediction
- Reason about time, forecast the future
- Reconfiguration
- Alter system structure to maintain or improve performance
- Regulation
- Respond to commands and adjust control parameters to maintain stability and performance

Principal Elements of a RuleBased Expert System

Critical Issues for Expert System Development

- System architecture
- Inference or reasoning method (Deduction)
- Knowledge acquisition (Induction)
- Explanation (Abduction*)
- User interface
* "Syllogism whose major premise is true and minor premise is probable"

Representation of Knowledge for Inference

- Logic
- Predicate calculus, $1^{\text {st. }}$ order logic
- Fuzzy logic, Bayesian belief network, ...
- Search
- Given one state, examine all possible alternative states
- Directed acyclic graph
- Procedures
- Function-specific routines executed within a rigid structure (e.g., flow chart)
- Semantic (propositional) networks
- Model of associative memory
- Tree or graph structure
- Nodes: objects, concepts, and events
- Links: interrelations between nodes
Production (rule-based) systems
- Rules
- Data
- Inference engine

Basic Rule Structure

- Rule sets values of action parameters
- Rule tests values of premise parameters
- Forward chaining
- Reasoning from premises to actions
- Data-driven: facts to conclusions
- Backward chaining
- Reasoning from actions to premises
- Goal-driven: find facts that support a hypothesis
- Analogous to numerical inversion

Elements of a Parameter

- Type
- Name
- Current value
- Rules that test the parameter
- Rules that set the parameter
- Allowable values of the parameter
- Description of parameter (for explanation)

Elements of a Rule

- Type
- Name

- Status
- 0: Has not been tested
- 1: Being tested
- T: Premise is true
- F: Premise is false
- U: Premise is unknown
- Parameters tested by rule
- Parameters set by rule
- Premise: Logical statement of proposition or predicates
- Action: Logical consequence of premise being true
- Description of premise and action (for explanation)

The Basic Rule: IF-THEN-ELSE

- If $A=T R U E$, then B, else C

- Material equivalence of propositional calculus, extended to predicate calculus and $1^{\text {st_}}$ order logic, i.e., applied to logical statements
- Methods of inference lead to plans of action
- Compound rule: Logic embedded in The Basic Rule, e.g.,
- Rule 1: If ($A=B$ and $C=D$), then perform action E, else
- Rule 2: If ($A \neq B$ or $C=D$), then $E=F$, else
- Nested (pre-formed compound) rule: Rule embedded in The Basic Rule, e.g.,
- Rule 3: If $(A=B)$, then [lf $(C=D)$, then $E=F$, else ...], else

- Identification of key attributes and outcomes
- Taxonomies developed by experts
- First principles of science and mathematics
- Trial and error
- Probability theory and fuzzy logic
- Simulation and empirical results

Example of On-Line Code Modification

- Execute a decision tree
- Get wrong answer
- Add logic to distinguish between right and wrong cases
- If Comfort Zone = Water,
- then Animal = Hippo,
- else Animal = Rhino
- True, but Animal is Dinosaur, not Hippo
- Ask user for right answer
- Ask user for a rule that distinguishes between right and wrong answer: If Animal is extinct, ...

Decision Rules

Representation of Data

- Set
- Crisp sets
- Fuzzy sets
- Schema
- Diagrammatic representation
- A pattern that represents elements (or objects), their attributes (or properties), and relationships between different elements
- Object (or Frame)
- Hierarchical data structure, with inheritance
- Slots: Function-specific cells for data
- Scripts [usage]: frame-like structures that represent a sequence of events
- Database
- Spreadsheets/tables/graphs
- Linked spreadsheets

Structure of a Frame (or Object)

- Structure array in MATLAB
- Structure or property list in LISP
- Object in C++
- Ordered set of computer words that characterize a parameter or rule
- An archetype or prototype
- Object-oriented programming: Express Rules and Parameters as Frames

49

Example, Fillers, and Instance of a Frame

Application-Specific

Frame

Generic Fillers

Instantiation

Inheritance and Hierarchy of Frame Attributes

- Legal fillers: Can be specified
by
- Data type
- Function
- Range
- Inheritance property
- All instances of a specific frame may share certain properties or classes of properties
- Hierarchical property
- Frames of frames may be legal
- Inference engine
- Decodes frames
- Establishes inheritance and hierarchy
- Executes logical statements

51

Animal Decision Tree: Forward Chaining

- What animal is it?

Premise Parameter: Size

Rule 1:

Action Parameter: None
Premise Parameter: Sound Rule 2:

Action Parameter: Animal
Premise Parameter: Neck Rule 3:

Action Parameter: Animal
Premise Parameter: Trunk
Rule 4:
Action Parameter:
Animal
Premise Parameter: Comfort Zone
If 'Water', Animal = Hippo [END]
Else, Animal = Rhino [END]
If 'Squeak’, Animal = Mouse [END]
Else, Animal = Squirrel [END]

If 'Long', Animal = Giraffe [END]
Else, test ‘Trunk'

If 'True', Animal = Elephant [END]
Else, test 'Comfort Zone'

Rule 5:

If 'Small', test 'Sound'
Else, test 'Neck’

Action Parameter: Animal

Animal Decision Tree: Parameters

Type:	Object Attribute	Type:	Object Attribute
Name:	Animal	Name:	Neck
Current Value:	Variable	Current Value:	Variable
Rules that Test:	None	Rules that Test:	3
Rules that Set:	$2,3,4,5$	Rules that Set:	None
Allowable Values:	Mouse, Squirrel, Giraffe,	Allowable Values:	Long, Short
	Elephant, Hippo, Rhino	Description:	Neck of Animal
Description:	Type of Animal		
		Type:	Object Attribute
Type:	Object Attribute	Name:	Trunk
Name:	Size	Current Value:	Variable
Current Value:	Variable	Rules that Test:	4
Rules that Test:	1	Rules that Set:	None
Rules that Set:	None	Allowable Values:	True, False
Allowable Values:	Large, Small	Description:	Snout of Animal
Description:	Size of Animal		
		Type:	Object Attribute
Type:	Object Attribute	Name:	Comfort Zone
Name:	Sound	Current Value:	Variable
Current Value:	2	Rules that Test:	5
Rules that Test:	2	Rules that Set:	None
Rules that Set:	None	Allowable Values:	Water, Dry Land
Allowable Values:	Squeak, No Squeak	Description:	Habitat of Animal
Description:	Sound made by Animal		

Animal Decision Tree: Rules

Type:
Name:
Status:

Parameters Tested
Parameters Set:
Premise:
Action:
Description:

Type:
Name:
Status:
Parameters Tested
Parameters Set:
Premise:
Action:
Description:

Type:
Name:
Status:
Parameters Tested:
Parameters Set:
Premise:
Action:
Description:

Rule 1
Variable (e.g., untested, being tested, tested and premise $=$ T/F/unknown) Size None
Size = Large or Small
Test 'Sound' OR Test 'Neck'
Depending on value of 'Size', test 'Sound' or 'Neck'

If-Then-Else

Rule 2
Variable
Sound
Animal
Size = Large or Small
Set value of 'Animal' AND END
Depending on value of 'Sound', identify 'Animal' as 'Mouse' or 'Squirrel'

If-Then-Else

Rule 3
Variable
Neck
Animal
Neck = Long or Short
Set value of 'Animal AND END
OR Test 'Trunk'
Depending on value of 'Neck',
identify 'Animal' as 'Giraffe' or test 'Comfort Zone'
Type:
Name:
Status:
Parameters Tested:
Parameters Set:
Premise:
Action:
Description:

If-Then-Else

Rule 4
Variable
Trunk
Animal
Trunk = True or False
Set value of 'Animal' AND END OR Test ‘Comfort Zone'
Depending on value of 'Trunk', identify 'Animal' as 'Elephant' or test 'Comfort Zone'

If-Then-Else

Rule 5
Variable
Comfort Zone
Animal
Comfort Zone = Water or Dry Land Set value of 'Animal' AND END Depending on value of 'Comfort Zone', identify ‘Animal' as 'Hippo' or 'Rhino'

Animal Decision Tree: Programs

- Procedural Sequence of Rules

- Rule1(Size, Rule2, Rule3)
- Rule2(Sound, Animal, Animal)
- Rule3(Neck, Animal, Rule4)
- Rule4(Trunk, Animal, Rule5)
- Rule5(Comfort Zone, Animal, Animal)

- Declarative Sequence of Rules

- BasicRule(Size, Sound, Neck)
- BasicRule(Sound, Animal, Animal)
- BasicRule(Neck, Animal, Trunk)
- BasicRule(Trunk, Animal, Comfort Zone)
- BasicRule(Comfort Zone, Animal, Animal)

Animal Decision Tree: Procedural Logic

Simple exposition of decision-making

Rigid description of solution

```
If Size \(=\) Big
    Then If Sound = Squeak
            Then Animal = Mouse
            Else Animal = Squirrel
            Endlf
    Else If Neck = Long
                            Then Animal = Giraffe
            Else If Trunk = True
                                    Then Animal = Elephant
                                    Else If Comfort Zone = Water
                                    Then Animal = Hippo
                                    Else Animal = Rhino
                                    Endlf
                Endlf
            Endlf
```

Endlf

Bayesian Belief Network

- Related events, E_{i}, within a contextual domain
- Conditional dependence of events that may (or not) be observed
- Probability of unobserved event (hypothesis), H, to be predicted

Network of Conditional and Unconditional Probabilities

- Conditional probabilities known
- Prior estimates of unconditional probabilities given
- When event, E_{i}, occurs with probability, $\operatorname{Pr}\left(E_{i}\right)$, update estimates of all unconditional probabilities, including $\operatorname{Pr}(H)$

See Supplemental Material for equations

Decision Making Under Uncertainty Aircraft Flight Through Microburst Wind Shear

Probability of Microburst Wind Shear (FAA)

OBSERVATION	D SHEAR
PRESENCE OF CONVECTIVE WEATHER NEAR FLIGHT PATH:	
With obser torna	HIGH
With catio	HIGH
With	MEDIUM
With	MEDIUM
With	MEDIUM
- With radar	MEDIUM
- With	MEDIUM
ONBOARD WINDSHEAR DETECTION SYSTEM ALERT (Reported or observed). \qquad HIGH	
PIREP OF AIRSPEED LOSS OR GAIN:	
- Less	MEDIUM
LLWAS ALERT/WIND VELOCITY CHANGE:	
- $\quad 20 \mathrm{kn}$	$\begin{aligned} & \text { HIGH } \\ & \text { MEDIUM } \end{aligned}$
FORECAST OF CO	LOW

Bayesian Rules of Inference for Situation Assessment and Decision Making (Stratton and Stengel)

- Boxes represent unconditional probabilities
- Arrows represent conditional probabilities

http://www.youtube.com/watch? $v=d K w y U 1 R w P t o$

Explanation in Machine Learning

- Expert Systems
- Explanation of decisions is built-in
- Structure relies on causal relationships
- Best applied to problems with welldefined nodes and rules
- Replace rules with neural networks?
- Neural Networks
- Explanation of classification is ambiguous
- Structure is mechanistic
- Best applied to problems with graphical or semantic solutions
- Restructure neural modules to reflect defined purpose?

Next Time:
 State Estimation

Supplementary Material

Example: Probability Spaces for Three Attributes

- Probability of an attribute value represented by area in diagram

Attribute \#2
6 possible values

Attribute \#3 4 possible values

Example: Decision, given Values of Three Attributes

Bayesian Belief Network Relationships

$H:$ Hypothesis
$E_{i}: i^{\text {th }}$ Piece of Evidence

- Conditional probability of hypothesis, \boldsymbol{H}

$$
\operatorname{Pr}(H \mid E)=\frac{\operatorname{Pr}(E \mid H)}{\operatorname{Pr}(E)} \operatorname{Pr}(H)
$$

- Unconditional probability of evidence, E_{1}

$$
\operatorname{Pr}\left(E_{1}\right)=\operatorname{Pr}\left(E_{1} \mid H\right) \operatorname{Pr}(H)+\operatorname{Pr}\left(E_{1} \mid \neg H\right) \operatorname{Pr}(\neg H)
$$

- Probability of hypothesis, H, conditioned on E_{1} and E_{2}

$$
\operatorname{Pr}\left(H \mid E_{1} \wedge E_{2}\right)=\frac{\operatorname{Pr}\left(E_{1} \wedge E_{2} \mid H\right)}{\operatorname{Pr}\left(E_{1} \wedge E_{2}\right)} \operatorname{Pr}(H)
$$

Bayesian Belief Network Relationships

- Probability of E_{2} conditioned on E_{1} and H

$$
\operatorname{Pr}\left(E_{2} \mid H \wedge E_{1}\right)=\operatorname{Pr}\left(E_{2} \mid H\right)
$$

- Probability of E_{1} and E_{2} conditioned on H

$$
\operatorname{Pr}\left(E_{1} \wedge E_{2} \mid H\right)=\operatorname{Pr}\left(E_{1} \mid H\right) \operatorname{Pr}\left(E_{2} \mid H\right)
$$

- Then

$$
\begin{aligned}
\operatorname{Pr}\left(H \mid E_{1} \wedge E_{2}\right) & =\frac{\operatorname{Pr}\left(E_{1} \mid H\right) \operatorname{Pr}\left(E_{2} \mid H\right)}{\operatorname{Pr}\left(E_{1} \wedge E_{2}\right)} \operatorname{Pr}(H) \\
& =\frac{\operatorname{Pr}\left(E_{2} \mid H\right)}{\operatorname{Pr}\left(E_{1} \mid E_{2}\right)} \operatorname{Pr}\left(H \mid E_{1}\right)
\end{aligned}
$$

Bayesian Belief Network Relationships

- Pre- and post-hypothesis conditional probability
$\operatorname{Pr}\left(E_{1} \mid E_{2}\right)=\operatorname{Pr}\left(E_{2} \mid H\right) \operatorname{Pr}\left(H \mid E_{1}\right)+\operatorname{Pr}\left(E_{2} \mid \neg H\right) \operatorname{Pr}\left(\neg H \mid E_{1}\right)$
- Probability of hypothesis, H, conditioned on observation of post-hypothesis event
$\operatorname{Pr}\left(H \mid E_{2}\right)=\operatorname{Pr}\left(H \mid E_{1}\right) \operatorname{Pr}\left(E_{1} \mid E_{2}\right)+\operatorname{Pr}\left(H \mid \neg E_{1}\right) \operatorname{Pr}\left(\neg E_{1} \mid E_{2}\right)$

Evolution of a Wind Shear Advisory

- Local failure analysis
- Set of hypothetical models of specific failure
- Global failure analysis
- Forward reasoning assesses failure impact
- Backward reasoning deduces possible causes

Heuristic Search

- Local failure analysis
- Determination based on aggregate of local models
- Global failure analysis
- Determination based on aggregate of local failure analyses
- Heuristic score based on
- Criticality of failure
- Reliability of component
- Extensiveness of failure
- Implicated devices
- Level of backtracking
- Severity of failure
- Net probability of failure model

Mechanical Control System

Local Failure Analysis

- Frames store facts and facilitate search and inference
- Components and up-/downstream linkages of control system
- Failure model parameters
- Rule base for failure analysis (LISP)

Local Failure Model \#1
The cause of Nodes 9-2 (1.0) \& 17-2 (1.0) being down
MAY be that Node 8-2 (1.0) is down
Local Failure Model \#2
The cause of Nodes 9-3 (1.0) \& 17-3 (1.0) being down
MAY be that Node 8-3 (1.0) is down
Local Failure Model \#3a
The cause of Nodes 17-2 (1.0), 9-2 (1.0) \& 18-2 (1.0) being down
MAY be that Node 7-2 (0.67) is down
This IMPLICATES Nodes $8-2,15,3, \& 11-2$
Local Failure Model \#4
The cause of Nodes $5(1.0) \& 16$ (1.0) being down
MAY be that Node 2 (1.0) is down

Global Failure Analysis

