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Learning Objectives
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Deterministic vs. 
Stochastic Optimal Control

•! Deterministic control
–! Known dynamic process 

•! precise input
•! precise  initial condition
•! precise measurement  

–! Optimal control minimizes J* = J(x*, u*)

•! Stochastic control
–! Known dynamic process

•! unknown input
•! imprecise initial condition
•! imprecise or incomplete measurement 

–! Optimal control minimizes E{J[x*, u*]}
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z(t) = Hx(t)+ n(t)
!̂x(t) = F(t)x̂(t)+G(t)u(t)+K(t) z(t)!Hx̂(t)[ ]
u(t) = !C(t) x̂(t)+ ucommand

Linear-Quadratic-Gaussian (LQG) 
Control of a Dynamic Process

!

3

Linear-Quadratic (LQ) Control Equations 
(Continuous-Time Model) 

 !x t( ) = Fx(t)+Gu t( )

u t( ) = !Cx(t)+ ucommand

Open-Loop System State Dynamics

Control Law
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 !x t( ) = F !GC( )x(t)+GCucommand
Characteristic Equation

sI! F !GC( ) = 0
How many eigenvalues? Stable or unstable?

n Stable, with correct 
design criteria, F, and G

Closed-Loop System State Dynamics



Linear-Quadratic-Gaussian (LQG) 
Control Equations 

(Continuous-Time Model) 

 

!x t( ) = Fx(t)+Gu(t)+Lw(t)
z t( ) = Hx t( ) + n t( )

u t( ) = !Cx̂(t)+ ucommand

 ̂
!x t( ) = Fx̂(t)+Gu(t)+K z t( )!Hx̂ t( )"# $%

Open-Loop System State Dynamics and Measurement

Control Law

State Estimate
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Linear-Quadratic-Gaussian (LQG) 
Control Equations 

(Continuous-Time Model) 

 !x t( ) = Fx(t)+G !Cx̂(t)[ ]+Lw(t)

 ̂
!x t( ) = Fx̂(t)+G !Cx̂(t)[ ]+K z t( )!Hx̂ t( )"# $%
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Closed-Loop System State and Estimate Dynamics 
(neglect command)

How many eigenvalues?

Stable or unstable?

2n

TBD



LQG Separation Property
Optimal estimation algorithm does not depend on the 

optimal control algorithm

 

K t( ) = P(t)HTN!1 t( )
!P(t) = F(t)P(t)+ P(t)FT (t)+L t( )W t( )LT t( )! P(t)HTN!1 t( )HP(t)

Optimal control algorithm does not depend on the 
optimal estimation algorithm

 

C t( ) = R!1 t( )GT t( )S t( )
!S t( ) = !Q(t)! F(t)T S t( )! S t( )F(t)+ S t( )G(t)R!1(t)GT (t)S t( )
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LQG Certainty Equivalence

Stochastic feedback control law is the same 
as the deterministic control law

Stochastic feedback control is computed 
from optimal estimate of the state

u*(t) = !R!1GT (t)S(t)x̂(t) = !C(t) x̂(t)

u*(t) = !R!1GT (t)S(t)x(t) = !C(t) x(t)
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Asymptotic Stability of the 
LQG Regulator !

(with no parameter uncertainty)!
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System Equations with Continuous-
Time LQG Control

 !! t( ) ! x t( )" x̂ t( )

 !!! t( ) = F "KH( )!! t( ) + Lw t( ) "Kn t( )

With perfect knowledge of the system

State estimate error

State estimate error dynamics
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 !x t( ) = Fx(t)+G !Cx̂(t)[ ]+Lw(t)

 ̂
!x t( ) = Fx̂(t)+G !Cx̂(t)[ ]+K z t( )!Hx̂ t( )"# $%



Control-Loop and Estimator 
Eigenvalues are Uncoupled
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Upper-block-triangular stability matrix
LQG system is stable because

(F – GC) is stable
(F – KH) is stable

Estimate error affects state response

Actual state does not affect error response
Disturbance affects both equally

 !x t( ) = F !GC( )x t( ) +GC"" t( ) + Lw t( )
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Discrete-Time LQG Controller
Kalman filter produces state estimate

x̂k !( ) = ""x̂k!1 +( )! ##Ck!1x̂k!1 +( )

uk = !Ckx̂k +( )

x̂k +( ) = x̂k !( ) +Kk zk !Hx̂k !( )"# $%

Closed-loop system uses state estimate for 
feedback control (ucommand = 0)

xk+1 !( ) = ""xk !( )! ##Ckx̂k +( )
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Response of Discrete-Time 1st-Order System 
to Disturbance, and 

Kalman Filter Estimate from Noisy 
Measurement

Propagation of Uncertainty Kalman Filter, Uncontrolled System
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Comparison of 1st-Order Discrete-
Time LQ and LQG Control Response

Linear-Quadratic Control with 
Noise-free Measurement

Linear-Quadratic-Gaussian Control 
with Noisy Measurement
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MATLAB Demo: LQG Rolling Mill 
Control System Design Example

•! Maintain desired thickness of 
shaped beam

•! Account for random
–! variations in thickness/

hardness of incoming beam
–! eccentricity in rolling cylinders
–! measurement errors

Open- and Closed-Loop Response

http://www.mathworks.com/help/control/ug/lqg-regulation-rolling-mill-example.html15

Robust Stochastic 
Control!

16



•! Stochastic controller 
•! minimize response to random initial conditions, disturbances, 

and measurement errors
•! perfect knowledge of the plant

•! Robust controller 
•! fixed gains and structure
•! minimize likelihood of instability or unsatisfactory performance 

due to parameter uncertainty in the plant
•! Adaptive controller 

•! variable gains and/or structure
•! minimize likelihood of instability or unsatisfactory performance 

due to plant parameter uncertainty, disturbances, and 
measurement errors

Stochastic, Robust, and Adaptive 
Control

Practical controller may have elements of all three
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Robust Control System Design
•! Make closed-loop response insensitive to plant 

parameter variations
•! Robust controller

–! Fixed gains and structure
–! Minimize likelihood of instability
–! Minimize likelihood of unsatisfactory performance
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Probabilistic Robust 
Control Design

•! Design a fixed-parameter controller for 
stochastic robustness

•! Monte Carlo Evaluation of competing designs
•! Genetic Algorithm or Simulated Annealing 

search for best design 
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Representations of Uncertainty

 

sI! F = det sI! F( ) !
"(s) = sn + an!1s

n!1 + ...+ a1s + a0
= s ! #1( ) s ! #2( ) ...( ) s ! #n( ) = 0

Characteristic equation of the uncontrolled system

•! Uncertainty can be expressed in
–! Elements of F
–! Coefficients of "(s)
–! Eigenvalues of F
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Root Locations for an 
Uncertain 2nd-Order System 

•! Variation may be represented by
–! Worst-case, e.g., Upper/lower bounds of uniform distribution
–! Probability, e.g., Gaussian distribution

Uniform Distribution Gaussian Distribution

s Plane s Plane
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“3-D” Stochastic Root Loci for 
2nd-Order Example 

•! Root distributions 
are nonlinear 
functions of 
parameter 
distributions

•! Unbounded 
parameter 
distributions 
always lead to 
non-zero 
probability of 
instability

•! Bounded 
distributions may 
be guaranteed to 
be stable
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Probability of Satisfying 
a Design Metric

•! Probability of satisfying a design metric
–! d: Control design parameter vector [e.g., SA, GA, …]
–! v: Uncertain plant parameter vector [e.g., RNG]
–! e: Binary indicator, e.g., 
 !  0: satisfactory  1: unsatisfactory
–! H(v): Plant 
–! C(d): Controller (Compensator) 

Pr(d,v) ! 1
N

e C d( ),H v( )"# $%
i=1

N

&
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Design Control System to Minimize 
Probability of Instability 

!closed"loop (s) = sI" F v( )"G v( )C d( )#$ %&
= s " '1( ) s " '2( ) ...( ) s " 'n( )#$ %&closed"loop = 0

•! Characteristic equation of the closed-loop system

•! Monte Carlo evaluation of probability of instability 
with uncertain plant parameters

•! Minimize probability of instability using numerical 
search of control parameters

min
d

Pr Re !i , i = 1,n( )"# $% > 0{ }
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Control Design Example*

•! Challenge: Design a feedback compensator for a 4th-order 
spring-mass system ( the plant ) whose parameters are 
bounded but unknown
–! Minimize the likelihood of instability
–! Satisfy a settling time requirement
–! Don t use too much control

* 1990 American Control Conference Robust Control Benchmark Problem

m1 m2

k
u y

w
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Design Cost Function 
•! Probability of Instability, Pri

–! ei = 1 (unstable) or 0 (stable)
•! Probability of Settling Time 

Exceedance, Prts  
–! ets = 1 (exceeded) or 0 (not 

exceeded)
•! Probability of Control Limit 

Exceedance, Pru  
–! eu = 1 (exceeded) or 0 (not 

exceeded)
•! Each metric has a 

binomial distribution

•! Design Cost Function
–! High probabilities weighted 

more than low probabilities
–! J = aPri

2 + bPrts
2 + c Pru

2 
–! a = 1
–! b = c = 0.01

 

pr x( ) = n!
k! n ! k( )! p x( )k 1! p x( )"# $%

n!k
! n

k
&
'(

)
*+
p x( )k 1! p x( )"# $%

n!k

=   probability of exactly k  successes in n trials, in 0,1( )
~  normal distribution for large n
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Monte Carlo Evaluation of Probability of 
Satisfying a Design Metric
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•! Compute v using random 
number generators over N 
trials
–! Required number of trials 

depends on outcome 
probability and desired 
confidence interval

•! Search for best d using  a 
genetic algorithm to 
minimize J

Prk (d,v) !
1
N

ek C d( ),H v( )"# $%
i=1

N

& , k = 1,3

J = aPri
2 (d,v)+ bPrts

2 (d,v)+ cPru
2 (d,v)
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Uncertain Plant*

Plant dynamic equation

* 1990 American Control Conference Robust Control Benchmark Problem

m1 m2

k
u y
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4th-Order Plant characteristic equation

y = x2 + n
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Parameter Variations and 
Open-Loop Roots

•! Parameters of mass-spring 
system
–! Uniform probability density 

functions for 
•! 0.5 < m1, m2 < 1.5 
•! 0.5 < –k < 2

•! Neutral stability for all mass-
spring values

x

x

xx

!(s) = s2 s2 + k
m1 +m2( )
m1m2

"

#
$

%

&
'

= s2 s2 () n
2"# %&
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Mass-Spring-Mass Stabilization 
Requires Compensation

•! Proportional feedback alone cannot stabilize 
the system

•! Feedback of either sign drives at least one root 
into the right half plane

 u s( ) = !cy s( ) ! !cx2 s( )
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c ! 0, Blue locus of roots
c " 0, Green locus of roots

Single-input/single-output 
(SISO) feedback control law

x

x
xx



Search-and-Sweep Design of Family of 
Robust SISO Feedback Compensators

Arrange parameters as binary design vector

C12 (s) =
a0 + a1s

b0 + b1s + b2s
2 ! C d( )

d = a0 ,a1,b0 ,b1,b2{ }

d* = a0*,a1*,b0*,b1*,b2 *{ }
Search for design 

vector, d, that 
minimizes J

Begin with lowest-order feedback compensator

m1 = rand 1( ) + 0.5
m2 = rand 1( ) + 0.5
k = !1.5*rand 1( ) + 0.5

Monte Carlo 
evaluation with 

uncertain parameters, v
31

Search-and-Sweep Design of Family of 
Robust Feedback Compensators

1)# Define next higher-order compensator

2)# Optimize over all parameters, including optimal 
coefficients in starting population

3)# Sweep to satisfactory design or no further 
improvement

C22 (s) =
a0 + a1s + a2s

2

b0 + b1s + b2s
2

d = a0*,a1*,a2,b0*,b1*,b2 *{ }! d**= a0 **,a1 **,a2 **,b0 **,b1 **,b2 **{ }

C23(s) =
a0 + a1s + a2s

2

b0 + b1s + b2s
2 + b3s

3 C33(s) =
a0 + a1s + a2s

2 + a3s
3

b0 + b1s + b2s
2 + b3s

3

C34 (s) =
a0 + a1s + a2s

2 + a3s
3

b0 + b1s + b2s
2 + b3s

3 + b4s
4 ...
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Design Cost and Probabilities for 
Optimal 2nd- to 5th-Order 

Compensators
NNuummbbeerr  ooff  ZZeerrooss  ==  NNuummbbeerr  ooff  PPoolleess
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2nd Order

3rd Order

4th Order

5th Order
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Next Time:!
Parameter Estimation and 

Adaptive Control!
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SSuupppplleemmeennttaall  MMaatteerriiaall
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Example: Probability of Stable 
Control of an Unstable Plant

F =

!2gf11 /V "V 2 f12 / 2 "Vf13 !g

!45 /V 2 "Vf22 / 2 1 0

0 "V 2 f32 / 2 "Vf33 0
0 0 1 0
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p = ! V f11 f12 f13 f22 f32 f33 g11 g12 g31 g32"
#

$
%
T

!1"4 = "0.1± 0.057 j, " 5.15, 3.35

Longitudinal dynamics for a 
Forward-Swept-Wing Aircraft

Nominal eigenvalues (one unstable)

X-29 Aircraft

Environment Uncontrolled Dynamics Control Effect

Air density and airspeed, ! and V , have uniform distributions(±30%)
10 coefficients have Gaussian distributions (!  = 30%)
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LQ Regulators for 
the Example

•! Case a) LQR with low 
control weighting

•! Case b) LQR with high 
control weighting

Q = diag 1,1,1,0( ); R = 1,1( ); !1"4nominal = –35,–5.1,–3.3,–.02

C = 0.17 130 33 0.36
0.98 "11 "3 "1.1

#

$
%

&

'
(

Q = diag 1,1,1,0( ); R = 1000,1000( ); !1"4nominal = "5.2,"3.4,"1.1,".02

C = 0.03 83 21 "0.06
0.01 "63 "16 "1.9

#

$
%

&

'
(

!1"4nominal = "32,–5.2,–3.4,–0.01

C = 0.13 413 105 "0.32
0.05 "313 "81 "1.1" 9.5

#

$
%

&

'
(

•! Case c) Case b with gains 
multiplied by 5 for bandwidth 
(loop-transfer) recovery

Three stabilizing 2-input feedback control laws
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Stochastic Robustness !
(Ray, Stengel, 1991)

"! Distribution of closed-loop roots with
"! Gaussian uncertainty in 10 parameters
"! Uniform uncertainty in velocity and air density

"! 25,000 Monte Carlo evaluations

Stochastic Root Locus

"! Probability of instability
"! a) Pr = 0.072
"! b) Pr = 0.021
"! c) Pr = 0.0076
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Probabilities of Instability 
for the Three Cases

39

Stochastic Root Loci for 
the Three Cases

Case a: Low LQ Control Weights

Case b: High LQ Control Weights

Case c: Bandwidth Recovery

with Gaussian Aerodynamic Uncertainty!

•! Probabilities of instability with 30% 
uniform aerodynamic uncertainty!
–! Case a:  3.4 x 10-4!
–! Case b:  0!
–! Case c:  0!
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Markov Process!
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Markov Sequence and 
Process 

"! Markov Process (Continuous Time)
"! Probability distribution of dynamic process at 

time s > t > 0, conditioned on the past history 
"! Depends only on the state, x, at time t 

"! Markov Sequence (Discrete Time)
"! Probability distribution of dynamic process at 

time tk+1 > tk > 0, conditioned on the past history 
"! Depends only on the state, x, at time tk

 Pr xk+1 | xk , xk!1, xk!2 ,!,0( )"# $% = Pr xk+1 | xk[ ]
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Markov Decision Sequence
•! Model for decision making under 

uncertainty contains following elements

X,A,Pam xi ,x '( ),Lam xi ,x '( )!" #$

•! Optimal decision maximizes (minimizes) expected total 
reward (cost) by choosing best set of actions (control policy)
–! Linear-quadratic-Gaussian (LQG) control
–! Dynamic programming -> HJB equation ~> A* search
–! Reinforcement learning ~> Heuristic search

 

where
X :  Finite set of states, x1,  x2,…xi ,…,x I

A :  Finite set of actions, a1,a2,…,a j ,…,aJ
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Pa j
xk ,x '( ) = Pr x tk+1( ) = x '!" #$ x tk( ) = xk  and a tk( ) = a j!" #${ }

=  Probability that a j  will cause xi tk( ) to transition to x '

La j
xk ,x '( ) =  Expected immediate reward for transition from xk  to x '

Maximizing the Utility 
Function of a Markov Process

Utility function:  J = lim
k f!"

# (tk )
k=0

k f

$ La x(tk ),x(tk+1)[ ]
# (tk ) :   Discount rate, 0<# (tk )<1

Utility function to go = Value function:  

V = lim
k f!"

# (tk )
k=kcurrent

k f

$ La x(tk ),x tk+1( )%& '(
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Maximizing the Utility Function of a 
Markov Process

uopt tk( ) = argmax
a

La x(tk ),x(tk+1)[ ] + ! (tk ) Pa x(tk ),x(tk+1))[ ]V x(tk+1)[ ]
k= kcurrent

"

#
$
%
&

'&

(
)
&

*&

Optimal control at t

Optimized value function

V * tk( ) = Luopt (tk ) x * (tk )[ ] + ! (tk ) Puopt (tk ) x * (tk ),xest * (tk+1)[ ]V x *est (tk+1)[ ]
k= kcurrent

"

#
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LQG Control Optimizes Discrete-
Time LTI Markov Process

X,A,Pam xi ,x '( ),Lam xi ,x '( )!" #$

 

where
X :  Finite set of states, x1,  x2 ,…xi ,…,x I

A :  Finite set of actions, a1,a2 ,…,a j ,…,aJ

Pa j
xk ,x '( ) = Pr x tk+1( ) = x '!" #$ x tk( ) = xk  and a tk( ) = a j!" #${ }

=  Probability that a j  will cause xi tk( ) to transition to x '

La j
xk ,x '( ) =  Expected immediate reward for transition from xk  to x '

LQG Gain Calculation
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