
Parameter Estimation and
Adaptive Control!

 Robert Stengel!
 Robotics and Intelligent Systems MAE 345, !

Princeton University, 2017
•! Parameter estimation

–! after the fact
–! real time

•! Simultaneous Location and Mapping (SLAM)
•! Reinforcement (“Q”) learning
•! Gain scheduling
•! Adaptive critic (DHADP)
•! Failure-tolerant control

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE345.html 1

Off-Line!
(i.e., “after the fact”)
Parameter Estimation!

2

Parameter-Dependent Linear System

xk+1 = !! p()xk + "" p()uk
zk = Hxk + nk

Linear systems contains parameters

What if the parameter vector, p, is unknown?

3

Least-Square-Error Estimates
of System Parameters

Trends and higher-degree curve-fitting
Multivariate estimation

Identification of dynamic system parameters

Error “Cost” Function

4

LTI System with Unknown
Parameters

Parameters to be identified from experimental data, p
Known input, uk, noisy measurements, xk, made at

discrete instants of time

5

xk+1 = !! p()xk + "" p()uk + ## p()wk , x0 given
zk = Hxk + nk , k = 0,K

Error Cost Function for
Parameter Identification

J = !! k
TR!! k

k=0

K

" = zk # x̂k[]T R zk # x̂k[]
k=0

K

"

Weighted-square error of difference between
measurements and model’s estimates

zk : Measurement data set
x̂k : Estimate propagated by sampled-data model
R : Weighting matrix

6

Parameter Identification
via Search

Error cost minimized by choice of p and x(0)

min
w.r .t .p, x0

J = min
w.r .t .p, x0

zk ! x̂k[]T R zk ! x̂k[]
k=0

K

"

using search, e.g., Genetic Algorithm,
Nelder-Mead (Downhill Simplex) algorithm

[MATLAB’s fminsearch], …
7

Extended Kalman Filter for
Nonlinear State Estimation!

8

Link to #20

Extended Kalman-Bucy Filter

!! Propagate the state estimate using the continuous-
time nonlinear model

!! Update the state estimate using an optimal
continuous-time linear correction in the nonlinear
propagation

!! Calculate optimal filter gain as in previous lecture
and OCE

9

!̂x(t) = f x̂(t),u(t)[]+K t() z(t)! h x̂(t)[]{ }

Continuous-Time Nonlinear System

!x(t) = f x(t),u(t)[]
z(t) = h x(t)[]+ n t()

Hybrid Extended Kalman Filter

x̂k !() = x̂k!1 +()+ f x̂ "(),u "()#$ %&d"
tk!1

tk

'

Numerical integration for state and
covariance propagation

Pk !() tk[] = Pk!1 +()+ F "()P "() + P "()FT "() +L "()Q 'C "()LT "()#$ %&d"
tk!1

tk

'

State Estimate (–)

Covariance Estimate (–)

Jacobian matrices must be calculated

10

Hybrid Extended Kalman Filter
Incorporate measurements at discrete

instants of time

Kk = Pk !()Hk
T tk() HkPk !()Hk

T +Rk!1"# $%
!1

x̂k +() = x̂k !() +Kk zk !Hkx̂k !()"# $%

Pk +() = In !KkHk[]Pk !()

Filter Gain

Covariance Estimate (+)

State Estimate (+)

11

On-Line !
(i.e., “real-time”)

Parameter Estimation!

12

Parameter Identification Using an
Extended Kalman-Bucy Filter

!x(t)
!p(t)

!

"
#
#

$

%
&
&
=

fx x(t),p(t),u(t),wx (t)[]
fp p(t),wp (t)!" $%

!

"

#
#

$

%

&
&; z = h x t()!" $% + n t()

Augment state to include the parameter

Extend the dynamic model to account for
the parameter

13

Parameter Vector Must Have
a Dynamic Model

Unknown constant parameter: p(t) = constant

!p t() = fp p t(),wp (t)!" #$ " 0; p 0() = po; Pp 0() = Ppo
Random parameter: p(t) = Integrated white noise

!p t() = fp p t(),wp (t)!" #$ " wp t(); p 0() = po; Pp 0() = Ppo
E wp t()!" #$ = 0; E wp t()wp

T %()!" #$ =Qp& t '%()

14

Several alternatives

!pM t() =
!p t()
!pD t()

!

"
#
#

$

%
&
&
= 0 I

0 0
!

"
#

$

%
&

p t()
pD t()

!

"
#
#

$

%
&
&
+

0
wp t()

!

"
#
#

$

%
&
&

!pM t() =
!p t()
!pD t()
!pA t()

!

"

#
#
#
#

$

%

&
&
&
&

=
0 I 0
0 0 I
0 0 0

!

"

#
#
#

$

%

&
&
&

p t()
pD t()
pA t()

!

"

#
#
#
#

$

%

&
&
&
&

+
0
0

wp t()

!

"

#
#
#

$

%

&
&
&

Dynamic Models for the
Parameter Vector

Parameter vector
Parameter rate of change

Parameter vector
Parameter rate of change
Parameter acceleration

15

Random parameter: p(t) = Integral of integrated white noise

Random parameter: p(t) = Double integral of
integrated white noise

Number of parameters and derivatives to be
estimated is doubled or tripled

Integrated White Noise
Models of a Parameter

•! Third integral models
slowly varying,
smooth parameter

•! Second integral is
smoother but still has
fast changes

•! First integral of white
noise has abrupt jumps,
valleys, and peaks

•! White noise

16

Multiple-Model Testing for
System Identification

Choose model with minimum error residual

17

Create a bank of Kalman Filters, one
for each hypothetical model, n = 1,N

Jn = !! nk '
T R!! nk '

k '=k"ko

k

= znk ' " x̂nk '$% &'
T
R znk ' " x̂nk '$% &'

k '=k"ko

k

#

Simultaneous Location
and Mapping (SLAM)
•! Build or update a local map within an

unknown environment
–! Stochastic map, defined by mean and

covariance of many points
–! SLAM Algorithm = State estimation with

bank of extended Kalman filters, a form
of particle filter

–! Landmark and terrain tracking
–! Multi-sensor integration

Durrant- Whyte et al

18

SLAM with Ultrasound SONAR,
LIDAR, or RADAR

19
UW-RSE Lab

Adaptive Control!

20

Reinforcement (“Q”) Learning
•! Learn from success and failure
•! Repetitive trials

–! Reward correct behavior
–! Penalize incorrect behavior

•! Learn to control from a human
operator

http://en.wikipedia.org/wiki/Reinforcement_learning
21

Adaptive Control System Design
•! Control logic changes to accommodate changes

or unknown parameters of the plant
–! System identification to improve state estimate
–!Gain scheduling to account for environmental change
–!Adaptive Critic (Dual Heuristic Adaptive Dynamic

Programming)
–! Learning systems that track performance metrics (e.g.,

CMAC)
–!Reinforcement learning

•! Control law is nonlinear

u t() = c z(t),a,y * t()!" #$

c •[] : Control law
x(t) : State
z x(t)[] : Measurement of state
a : Control law parameters
y*(t) : Command input

22

Operating Points Within a
Flight Envelope

Dynamic model is a function of altitude and airspeed
Design LTI controllers throughout the flight envelope

23

Gain Scheduling

Proportional-integral controller with scheduled gains

u t() = CF a()y*+CB a()!x +CI a() !y t()dt"
c x(t),a,y* t()$% &'

Scheduling variables, a, are “slow”, e.g., altitude, speed,
properties of chemical process, …

24

0
200

400
600

800

-1000

-500

0

6750

6800

6850

6900

6950

7000

7050
With
adaptation

Without
adaptation

Adaptive Critic Neural Network
Controller

•! On-line adaptive critic controller
–!Replace gain matrices by neural networks (see Lecture 19)
–!Nonlinear control law implemented as action network
–! Performance and control usage evaluated via critic network
–!Control network weights adapted to improve performance
–!Cost model adapted to improve critique

25

Action Network On-line Training
Train action network, at time t, holding the critic parameters fixed

NNC

 Aircraft Model
•! Transition Matrices
•! State Prediction

Utility Function
Derivatives

NNA

xa(t)

a(t)

Optimality
Condition

NNA Target

Target Generation 26

Critic Network On-line Training
Train critic network, at time t, holding the action parameters fixed

NNC
(old)

Utility Function
Derivatives

NNA

NNC Target

Target Generation

 Aircraft Model
•! Transition Matrices
•! State Prediction

NNC

Target C ost
Gradient

xa(t)
a(t)

27

Real-Time
Implementation of Rule-
Based Control System

28

Application: Failure-tolerant flight control for CH-47
Chinook helicopter

Control is a side effect from expert system
perspective

Rule-Based Control System
(Handelman and Stengel, 1989)

29

•! Search until root node is
solved
–! Initiates lower-level

functions to declare leaf
node is TRUE

Rule-Based
Control Logic

30

Rule-Based
Reconfiguration

Logic
Example of a Failure-Diagnosis Rule

31

Failure Response
Response to Stuck Pitch-

Rate Sensor
Response to Stuck Forward-

Collective Pitch Actuator

32

•! Original code written in LISP
•! Automatic procedural code generation (LISP to Pascal)
•! Real-time execution on three i386 processors in

Multibus™ architecture
•! External PC used for code development, testing, and

helicopter simulation

Real-Time Implementation of
Rule-Based Control System

33

Next Time:!
Task Planning and Multi-

Agent Systems!

34

SSuupppplleemmeennttaarryy MMaatteerriiaall!!

35

Preferential Oxidizer (PrOx)

•! Proton-Exchange Membrane Fuel Cell converts hydrogen
and oxygen to water and electrical power

•! Steam Reformer/Partial Oxidizer-Shift Reactor converts fuel
(e.g., alcohol or gasoline) to H2, CO2, H2O, and CO. Fuel flow
rate is proportional to power demand

•! CO poisons the fuel cell and must be removed from the
reformate

•! Catalyst promotes oxidation of CO to CO2 over oxidation of
H2 in a Preferential Oxidizer (PrOx)

•! PrOx reactions are nonlinear functions of catalyst,
reformate composition, temperature, and air flow

FUEL
PROCESSOR

Shift

2H O
Air

PrOx

Reformer or Partial
Oxidation Reactor

36

Reinforcement (Q) Learning
Control of a Markov Process

ubest tk() = argmax
u

Q x(tk),u[]

•! Q: Quality of a state-action function
•! Heuristic value function
•! One-step philosophy for heuristic optimization

•! Various algorithms for computing best control value

Q-Learning Snail
https://www.youtube.com/watch?v=UbwIPDaMlvY

Q-Learning, Ball on Plate
https://www.youtube.com/watch?v=04MLqlNZwHY&feature=related

Q x(tk+1),u(tk+1)[] =Q x(tk),u(tk)[]+! (tk) Lu(t) x(tk)[]+ " (tk)max
u
Q x(tk+1),u[]#

$
%
& 'Q x(tk),u(tk)[]{ }

! (tk) : learning rate, 0<! (tk)<1

37

Q Learning Control of a Markov
Process is Analogous to LQG

Control in the LTI Case
Q x(tk+1),u(tk+1)[] =Q x(tk),u(tk)[]+! (tk) Lu(tk) x(tk)[]+ " (tk)max

u
Q x(tk+1),u[]#

$
%
& 'Q x(tk),u(tk)[]{ }

! (tk) : learning rate, 0 <! (tk) <1

xk+1 = !!xk + ""C x̂k # xk *()

x̂k = !!x̂k"1 " ##C x̂k"1 " xk"1 *() +K zk "Hx !!x̂k"1 " ##C x̂k"1 " xk"1 *()$% &'{ }

Controller

Estimator

38

More on Rules
•! Example of a pre-formed compound rule

•! Once rule is defined, it has a
fixed, ordered frame or
argument list

•! Side effects: Actions triggered by inference
–! If A = TRUE, … but what is A?
–! Execute a function to find out, and return to the rule
–! … then B = C, … but what is C?
–! Execute a function …

39

