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•! Parameter estimation

–! after the fact
–! real time

•! Simultaneous Location and Mapping (SLAM)
•! Reinforcement (“Q”) learning
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Off-Line!
(i.e., “after the fact”) 
Parameter Estimation!
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Parameter-Dependent Linear System

xk+1 = !! p( )xk + "" p( )uk
zk = Hxk + nk

Linear systems contains parameters

What if the parameter vector, p, is unknown?
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Least-Square-Error Estimates 
of System  Parameters

Trends and higher-degree curve-fitting
Multivariate estimation

Identification of dynamic system parameters 

Error “Cost” Function
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LTI System with Unknown 
Parameters

Parameters to be identified from experimental data, p
Known input, uk, noisy measurements, xk, made at 

discrete instants of time
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xk+1 = !! p( )xk + "" p( )uk + ## p( )wk , x0   given
zk = Hxk + nk , k = 0,K

Error Cost Function for 
Parameter Identification

J = !! k
TR!! k

k=0

K

" = zk # x̂k[ ]T R zk # x̂k[ ]
k=0

K

"

Weighted-square error of  difference between 
measurements and model’s estimates

zk :   Measurement data set
x̂k :   Estimate propagated by sampled-data model
R :   Weighting matrix
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Parameter Identification 
via Search

Error cost minimized by choice of p and x(0)

min
w.r .t .p, x0

J = min
w.r .t .p, x0

zk ! x̂k[ ]T R zk ! x̂k[ ]
k=0

K

"

using search, e.g.,  Genetic Algorithm, 
Nelder-Mead (Downhill Simplex) algorithm 

[MATLAB’s fminsearch], …
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Extended Kalman Filter for 
Nonlinear State Estimation!
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Link to #20



Extended Kalman-Bucy Filter

!! Propagate the state estimate using the continuous-
time nonlinear model

!! Update the state estimate using an optimal 
continuous-time linear correction in the nonlinear 
propagation

!! Calculate optimal filter gain as in previous lecture 
and OCE
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!̂x(t) = f x̂(t),u(t)[ ]+K t( ) z(t)! h x̂(t)[ ]{ }

Continuous-Time Nonlinear System

 

!x(t) = f x(t),u(t)[ ]
z(t) = h x(t)[ ]+ n t( )

Hybrid Extended Kalman Filter

x̂k !( ) = x̂k!1 +( )+ f x̂ "( ),u "( )#$ %&d"
tk!1

tk

'

Numerical integration for state and 
covariance propagation

Pk !( ) tk[ ] = Pk!1 +( )+ F "( )P "( ) + P "( )FT "( ) +L "( )Q 'C "( )LT "( )#$ %&d"
tk!1

tk

'

State Estimate (–)

Covariance Estimate (–)

Jacobian matrices must be calculated
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Hybrid Extended Kalman Filter
Incorporate measurements at discrete 

instants of time

Kk = Pk !( )Hk
T tk( ) HkPk !( )Hk

T +Rk!1"# $%
!1

x̂k +( ) = x̂k !( ) +Kk zk !Hkx̂k !( )"# $%

Pk +( ) = In !KkHk[ ]Pk !( )

Filter Gain

Covariance Estimate (+)

State Estimate (+)
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On-Line !
(i.e., “real-time”) 

Parameter Estimation!
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Parameter Identification Using an 
Extended Kalman-Bucy Filter

 

!x(t)
!p(t)

!

"
#
#

$

%
&
&
=

fx x(t),p(t),u(t),wx (t)[ ]
fp p(t),wp (t)!" $%

!

"

#
#

$

%

&
&; z = h x t( )!" $% + n t( )

Augment state to include the parameter 

Extend the dynamic model to account for 
the parameter
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Parameter Vector Must Have 
a Dynamic Model

Unknown constant parameter: p(t) = constant

 
!p t( ) = fp p t( ),wp (t)!" #$ " 0; p 0( ) = po; Pp 0( ) = Ppo
Random parameter: p(t) =  Integrated white noise

 

!p t( ) = fp p t( ),wp (t)!" #$ " wp t( ); p 0( ) = po; Pp 0( ) = Ppo
E wp t( )!" #$ = 0; E wp t( )wp

T %( )!" #$ =Qp& t '%( )
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Several alternatives



 

!pM t( ) =
!p t( )
!pD t( )
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Dynamic Models for the 
Parameter Vector

Parameter vector
Parameter rate of change

Parameter vector
Parameter rate of change
Parameter acceleration
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Random parameter: p(t) =  Integral of integrated white noise

Random parameter: p(t) =  Double integral of 
integrated white noise

Number of parameters and derivatives to be 
estimated is doubled or tripled

Integrated White Noise 
Models of a Parameter

•! Third integral models 
slowly varying, 
smooth parameter

•! Second integral is 
smoother but still has 
fast changes

•! First integral of white 
noise has abrupt jumps, 
valleys, and peaks

•! White noise
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Multiple-Model Testing for 
System Identification

Choose model with minimum error residual
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Create a bank of Kalman Filters, one 
for each hypothetical model, n = 1,N

Jn = !! nk '
T R!! nk '

k '=k"ko

k

# = znk ' " x̂nk '$% &'
T
R znk ' " x̂nk '$% &'

k '=k"ko

k

#

Simultaneous Location 
and Mapping (SLAM)
•! Build or update a local map within an 

unknown environment
–! Stochastic map, defined by mean and 

covariance of many points
–! SLAM Algorithm = State estimation with 

bank of extended Kalman filters, a form 
of particle filter

–! Landmark and terrain tracking
–! Multi-sensor integration

Durrant- Whyte et al
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SLAM with Ultrasound SONAR, 
LIDAR, or RADAR
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UW-RSE Lab

Adaptive Control!
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Reinforcement (“Q”) Learning
•! Learn from success and failure
•! Repetitive trials

–! Reward correct behavior
–! Penalize incorrect behavior

•! Learn to control from a human 
operator

http://en.wikipedia.org/wiki/Reinforcement_learning
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Adaptive Control System Design
•! Control logic changes to accommodate changes 

or unknown parameters of the plant
–! System identification to improve state estimate
–!Gain scheduling to account for environmental change
–!Adaptive Critic (Dual Heuristic Adaptive Dynamic 

Programming)
–! Learning systems that track performance metrics (e.g., 

CMAC)
–!Reinforcement learning

•! Control law is nonlinear 

u t( ) = c z(t),a,y * t( )!" #$

c •[ ] :    Control law
x(t) :    State
z x(t)[ ] :  Measurement of state
a :        Control law parameters
y*(t) : Command input
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Operating Points Within a 
Flight Envelope

Dynamic model is a function of altitude and airspeed
Design LTI controllers throughout the flight envelope
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Gain Scheduling  

Proportional-integral controller with scheduled gains

u t( ) = CF a( )y*+CB a( )!x +CI a( ) !y t( )dt"
# c x(t),a,y* t( )$% &'

Scheduling variables, a, are “slow”, e.g., altitude, speed, 
properties of chemical process, …
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Adaptive Critic Neural Network 
Controller 

•! On-line adaptive critic controller
–!Replace gain matrices by neural networks (see Lecture 19)
–!Nonlinear control law implemented as action network
–! Performance and control usage evaluated via critic network
–!Control network weights adapted to improve performance
–!Cost model adapted to improve critique
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Action Network On-line Training
Train action network, at time t, holding the critic parameters fixed

NNC 

  Aircraft Model 
•! Transition Matrices 
•! State Prediction 

Utility Function 
Derivatives 

NNA 

xa(t) 

a(t) 

Optimality 
Condition 

NNA Target 

Target Generation 26



Critic Network On-line Training
Train critic network, at time t, holding the action parameters fixed

NNC
(old)

 

Utility Function 
Derivatives 

NNA 

NNC Target 

Target Generation 

  Aircraft Model 
•! Transition Matrices 
•! State Prediction 

NNC 

Target C ost  
Gradient 

xa(t) 
a(t) 
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Real-Time 
Implementation of Rule-
Based Control System
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Application: Failure-tolerant flight control for CH-47 
Chinook helicopter

Control is a side effect from expert system 
perspective

Rule-Based Control System 
(Handelman and Stengel, 1989) 
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•! Search until root node is 
solved
–! Initiates lower-level 

functions to declare leaf 
node is TRUE

Rule-Based 
Control Logic 
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Rule-Based 
Reconfiguration 

Logic 
Example of a Failure-Diagnosis Rule
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Failure Response
Response to Stuck Pitch-

Rate Sensor
Response to Stuck Forward-

Collective Pitch Actuator
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•! Original code written in LISP
•! Automatic procedural code generation (LISP to Pascal)
•! Real-time execution on three i386 processors in 

Multibus™ architecture
•! External PC used for code development, testing, and 

helicopter simulation

Real-Time Implementation of 
Rule-Based Control System
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Next Time:!
Task Planning and Multi-

Agent Systems!

34



SSuupppplleemmeennttaarryy  MMaatteerriiaall!!
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Preferential Oxidizer (PrOx)

•! Proton-Exchange Membrane Fuel Cell converts hydrogen 
and oxygen to water and electrical power

•! Steam Reformer/Partial Oxidizer-Shift Reactor converts fuel 
(e.g., alcohol or gasoline) to H2, CO2, H2O, and CO. Fuel flow 
rate is proportional to power demand

•! CO poisons  the fuel cell and must be removed from the 
reformate

•! Catalyst promotes oxidation of CO to CO2 over oxidation of 
H2 in a Preferential Oxidizer (PrOx)

•! PrOx reactions are nonlinear functions of catalyst, 
reformate composition, temperature, and air flow

FUEL
PROCESSOR

Shift

2H O
Air

PrOx

Reformer or Partial 
Oxidation Reactor
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Reinforcement ( Q ) Learning 
Control of a Markov Process

ubest tk( ) = argmax
u

Q x(tk ),u[ ]

•! Q: Quality of a state-action function
•! Heuristic value function
•! One-step philosophy for heuristic optimization

•! Various algorithms for computing best control value

Q-Learning Snail
https://www.youtube.com/watch?v=UbwIPDaMlvY

Q-Learning, Ball on Plate
https://www.youtube.com/watch?v=04MLqlNZwHY&feature=related

Q x(tk+1),u(tk+1)[ ] =Q x(tk ),u(tk )[ ]+! (tk ) Lu(t ) x(tk )[ ]+ " (tk )max
u
Q x(tk+1),u[ ]#

$
%
& 'Q x(tk ),u(tk )[ ]{ }

! (tk ) :   learning rate, 0<! (tk )<1
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Q Learning Control of a Markov 
Process is Analogous to LQG 

Control in the LTI Case
Q x(tk+1),u(tk+1)[ ] =Q x(tk ),u(tk )[ ]+! (tk ) Lu(tk ) x(tk )[ ]+ " (tk )max

u
Q x(tk+1),u[ ]#

$
%
& 'Q x(tk ),u(tk )[ ]{ }

! (tk ) :   learning rate, 0 <! (tk ) <1

xk+1 = !!xk + ""C x̂k # xk *( )

x̂k = !!x̂k"1 " ##C x̂k"1 " xk"1 *( ) +K zk "Hx !!x̂k"1 " ##C x̂k"1 " xk"1 *( )$% &'{ }

Controller

Estimator
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More on Rules 
•! Example of a pre-formed compound rule

•! Once rule is defined, it has a 
fixed, ordered frame or 
argument list

•! Side effects: Actions triggered by inference
–! If A = TRUE,  … but what is A?
–! Execute a function to find out, and return to the rule
–! … then B = C, … but what is C?
–! Execute a function …
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