Robot Arm Transformations,
Path Planning, and Trajectories

Robert Stengel
Robotics and Intelligent Systems
MAE 345, Princeton University, 2017

 Forward and inverse kinematics
- Path planning

— Voronoi diagrams and Delaunay triangulation
— Probabilistic Road Map
— Rapidly Exploring Random Tree
- Closed-form trajectories; connecting the dots
— Polynomials and splines
— Acceleration profiles

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. 1
http://www.princeton.edu/~stengel/MAE345.htm|

Manipulator
Maneuvering Spaces

- Joint space: Vector of joint variables, e.g.,

T
rJ :|: ewaist Oshoulder eelbow ewristfbend eﬂange ewri“’m’.s’ j|

- End-effecter space: Vector of end-effecter positions, e.g.,

T
l.E :|: ‘xtool y tool Ztool l//tool etool ¢tool :|

- Task space: Vector of task-dependent positions, e.g., locating a
symmetric grinding tool above a horizontal surface:

T
l.T :|: 'xtoal y tool Ztool ll/lool 01001 :|

Forward and Inverse Transformations
of a Robotic Assembly

Forward Transformation

Transforms homogeneous coordinates from tool frame to reference
frame coordinates

base

Sbase = Atool tool

=A . A A, A

waist™ ~ shoulder™ = elbow” = wrist—bend

A

Inverse Transformation

Transform homogeneous coordinate from reference frame to tool
frame coordinates

A

flange™ ™ wrist—twist S tool

_ Atool

tool base S base

= A"l

\)

-1 -1 -1 -1 -1
A ﬂangeA wrist—bendA elbowA shoulderA

Wrist—twist waist S base

3

Forward and Inverse
Kinematics Between
Joints, Tool Position,
and Tool Orientation

Forward Kinematic Problem: Compute the position of the
tool in the reference frame that corresponds to a given joint
vector (i.e., vector of link variables)

s.=A A, A A A, A s, =AM

waist” = shoulder ™~ elbow” = wrist—bend” ™ flange” = wrist—twist " tool tool = tool

To Be Determined < Given

Inverse Kinematic Problem: Find the vector of link variables
that corresponds to a desired task-dependent position

A, A A, A s, =As

shoulder™ ™ elbow” = wrist—bend” ™ flange” = wrist—twist" tool tool =0 — Sbase

To Be Determined < Given

A A

waist

Forward and Inverse
Kinematics
Single-Link Example

Forward Kinematic Problem: Specify task-dependent

position that corresponds to a given joint variable (= 6,)

Snfl = A (Zn—l ’911)A(Zn—l ’dn)A('xn—l ’ln)A (xn—l ’an) Sn
cosf, —sin@ cosc, sin6 sinc, [cosO,
_| sin 0, cosf coso, —cosO sino, [sinf, .
. n
0 sino,, coso, d,
0 0 0 1
Red: Known

Blue: Unknown

Forward and Inverse Kinematics

Single-Link Example

Inverse Problem: Find the joint variable, 6, that

corresponds to a desired task-dependent position

Sp1= A(Zn—l .0,)A(Zn—l ’O)A(’xn—l oLy)A('xn—l ’900) S,
| cos@, 0 sin@, [cosO, |
_| sinf, 0 —cos6, [sinb,
0o 1 0 0 '
. 0 0 0 1 |

Red: Known
Blue: Unknown

x, ,=x,¢c080 +z sinf +/ cosO,
v, =x,s8in6 —z cosO +I[sinf,

In this simple case,

check by elimination and inverse trig functions

Manipulator Redundancy

and Degeneracy

More than one link configuration
may provide a given end point
Redundancy: Finite number of
joint vectors provide the same
task-dependent vector
Degeneracy: Infinite number of
joint vectors provide the same
task-dependent vector

Co-linear joint axes
are degenerate

Space Robot Arms are
Highly Redundant

. Why?

Transformations for a
Two-Link Manipulator

cosf, sin6, 0 i, Exar_nple: Type1qu-Link
] , ' Manipulator, neglecting
Hy=| —sin6 cos§ 0 | 5 = 0 offset (e.g., Puma geometry
0 0 1 0 without waist and wrist)
cos@, sinf, 0 -/
1
Al = H, To _| —sinf, cos§ 0 O
“1(0o00)1 o 0 10
0 0 0 1
cosf, sinf, 0 -, |
2
A= H; hi _| —sinf, cosf, 0 O
"1(o000) 1 0 0 1 0
0 0 0 1 |
9
Position of Distal Joint
Relative to the Base
(2-link manipulator)
6, =0 +0,
[x cos, —sinB, 0 [cosO, +1,cos0, 0
S, = Yy —A’Als, = sinf, cosf, O [sin6, +1,sin0, 0
z 0 0 1 0 0
1 0 0 0 1 1

L base
l,cosB, +1,cos0,
l;sin@, +1,sin6,
0
1

distal

10

Path Planning

Baxter Path Planning (UNC, 2014)
https://www.youtube.com/watch?v=0Y1FfytaD-c

Path Planning

Environment idealization Trajectory decomposition
and nominal path and segmentation

11

Well-defined Start and Goal
Waypoints

Path primitives (line, circle, etc.)
Timing and coordination
Obstacle detection and avoidance
Feasibility and regulation
Optimization and constraint

12

Path Planning with Waypoints

- Define Start, Goal, and
Waypoints by position and time

- Connect the dots

- Various interpolation methods
+ Straight lines
+ Polynomials
+ Splines

- Generate associated velocity
and acceleration

- Satisfy trajectory constraints

13

Path Planning with Obstacles and
Destinations

- Given set of points, e.g., Voronoi diagram
obstacles, destinations,
or centroids of multiple
points

« Chart best path from
start to goal

- Tessellation (tiling) of
decision space
- 2-D Voronoi diagram

— Polygons with sides
equidistant to two nearest
points (black dots)

14

Delaunay Triangulation
Constructs the Voronoi Diagram

Threats/obstacles are black points

Edges (black) connect all triplets of
black points lying on circumferences
of empty circles, i.e., circles
containing no other black points

“Circumcircle” centers are red points

Voronoi segment boundaries
(red) connect centers and are
perpendicular to each edge

https://en.wikipedia.org/wiki/
Delaunay _triangulation

15

Voronoi Diagrams in
Path Planning

Threat/obstacle avoidance

Choose path with farthest
distance from obstacles

16

Path Planning with

Potential Fields

Map features attract or repel path from
Start to Goal, e.g., +/- gravity fields

17

Path Planning on Occupancy Grid

Admissible and Inadmissible Blocks

- Identify feasible paths from Start to Goal
+ Chose path that best satisfies criteria, e.g.,
— Simplicity of calculation
— Lowest cost
— Highest performance 18

Bug Path Planning

1) Identify shortest unconstrained path from Start to Goal,
i.e., green path
2) Chose path that navigates the boundary

1) Stays as close as to possible to unconstrained path (dashed line)
2) Satisfies constraint

3) Follows simple rule, e.g., “stay to the left” 19

D* or A* Path Planning (TBD)

- Determine occupancy cost of each block
« Chose path from Start to Goal that
— Reduce occupancy cost with each step

20

Probabilistic Road Map (PRM)

- Construct random configuration of admissible points
- Connect admissible points to nearest neighbors

- Assess incremental cost of traveling along each
“edge” between points

- Query to find all feasible paths from Start to Goal
- Select lowest cost path 2

Rapidly Exploring Random Tree (RRT¥)

Space-filling tree evolves from Start
Open-loop trajectories with state constraints

Initially feasible solution converges to optimal
solution through searching

Committed trajectories

Branch-and-bound tree adaptation
22

Trajecfories

One-Dimensional Trajectory

Constant Velocity, v

23

© ©

—_—a(t), v(2)

100

Velocity, v(1) vs. i, is constant

v(1)=(t)=v(0)

Position, x(t) vs. t, is a straight line

x(t) = x(0)+ V(O)t

24

One-Dimensional Trajectory
Constant Velocity, v

Position specified at 0 and ¢

o]

Velocity at 0 to be determined

x(O)
v(0)

H w H (((t))) H e H

One-Dimensional Trajectory
Constant Acceleration, a

—_—a(t), v(2)

| —O— © I

0 100

Velocity, v(i) vs. 1, is a straight line
v(t)=x(1)=v(0)+at
Position, x(t) vs. i, is a parabola

x(1)=x(0)+v(z)+ at’[2

26

One-Dimensional Trajectory
Constant Acceleration, a

Position specified at 0 and t; velocity specified at 0

x(0) 1o o | x0)
x(t) |=| 1 ¢ 22 | v(0)
o) | Lot o a)

x(0) {1 0 0
() 1= 0 0 1

2/t* 2/t* -2/t

|

Aki
o < o
~— = ~—

<

One-Dimensional Trajectory
Constant Jerk, j, = Derivative of
Acceleration, a
Acceleration, a(t) vs. t, is a straight line
a(t)=v(t)=i(t)=a(0)+ jt

Velocity, v(1) vs. t, is a parabola

v(t)=%(¢)=v(0)+a(0)t+ jt* /2

Position, x(t) vs. t, is cubic

x(0)+v(0)t+a(0)t*/2+ jt' /6

x(1)=

27

28

One-Dimensional Trajectory

Constant Jerk, j

Position and velocity specified at 0 and f;
acceleration and jerk at 0 to be determined

©) 1]

O O =

e s)

0 0
t’/2 /6
0 0
t 122

e

<

Q

0

-

J

(
(0)
(

)
)

One-Dimensional Trajectory
Constant Jerk, j

Find a(0) and j to produce desired position and velocity

Start
Finish

Start

Finish

O O = =

—_—— = O

0 0
/2 1’6
0 0
)2

=

<

S

(
(
(

0
0
0

)
)
)

J

Start
Start
TBD
TBD

29

Inverse of (4 x 4) relationship defines required a(0) and j

X

<

S

0)

0)

(
0) |
(

(- j .

0 0
2 /6
0 0

-1

1
0

-6/t
12/

0 0 0
0 1 0

6/t> -4/t -2/t

—12/* 6/t* 6/t

Further Derivatives

- Snap, s, = Derivative of Jerk, j
- Crackle, ¢, = Derivative of Snap, s
- What is the derivative of Crackle?

Pop!

31

One-Dimensional Trajectory
Constant Crackle, ¢

Snap, s(t) vs. t, is linear in time
s(t)=d[j(t)]/dt =+s(0)+ct
Jerk, j(t) vs. t, is quadratic
j(t)=a(t)=j(0)+s(0)t+ct*/2

Acceleration, a(t) vs. t, is cubic

a(t)

=v(t)=%(t)=a(0)+j(0)t+5(0)t* [2+ct’ /6

32

One-Dimensional Trajectory
with Constant Crackle, ¢

Velocity, v(i) vs. t, is quartic

v(t)=x(t)=v(0)+a(0)t+ jt* [2+5(0)’ [6+ct /24

Position, x(t) vs. t, is quintic

x(t)=x(0)+v(0)t+a(0)*/2+j(0)t’ /6 +5(0)t* /24 +ct’ /120

33

One-Dimensional Trajectory

with Constant Crackle, ¢
Position, velocity, and acceleration specified

atOand t
O 1 10 0 o o o | x(0)
x(t) 1+ */2 £/6 t*/24 /120 || v(0)
vO)] o1 0 0 0 0 a(0)
vty | |01 ¢)2 Pl)24 i(0)
a(0) 00 1 0 0 0 5(0)
ary | LOO Lt /2 /6 I .

One-Dimensional Trajectory
Inverse of (6 x 6) relationship defines controls

x0) {10 0o o o o T ~0)

v(0) 1t 22 £l *j24 /120 x(1)

a0) | 01 0 0 0 0 v(0)

joy | o1 1 2 e 1) V(1)

00 1 0 0 0 a

S(CO) 00 1 t 2 Ple] a(((:))
x(0) 1 0 0 0 0 o | *0
v(0) 0 0 1 0 0 0 x(1)
a(0) 0 0 0 0 1 0 v(0)
, =l —-60/t* 60/t 36/t -24/r" -9/t 3/t
J(O) 4 4 3 3 2 2 v(t)
+(0) 360/t* —360/t* 192/t 168/t 36/t> —24/t a(0)
. -720/ 720/ —360/t* —360/t* -60/t 60/t 1 ()

35

One-Dimensional Trajectory

Eliminate unnecessary equations and define
acceleration constants

| +(0) |
7(0) 60/ 60/ =36/t> —24/F -9t 3 x(((;;
(0) [=| 30t sev/rt wafe sye e e |
¢ -720/° 7208 -360/1* -360/* —60/t 60/r’ :(0)

a(r)

Corresponding acceleration and force are specified by

a(t)=a(0)+j(0)t+s(0)t*/2+ct’ /6

=Aa, ol (t) + agravity (Z) + Agisturbance (t)

= I:fcomrol (t) + fgmvity (t) + fdisturbance (t):I/I’H(t)

36

One-Dimensional Trajectory

Calculate trajectory components, given
acceleration constants

_ ” -
I x(t) 111« /2 /6 t*/24 /120 1
vi) |=| 0 1 ¢ 22 e)24 7(
a(t) 00 1 t /2)6 us
- - | s(0
Example

Calculate constants for x(0) =0, x(10) =10

37

|

0.6
—0.36
0.072

]_

-60/10°
360/10*
-1720/10°

720/10°

60/10°
-360/10*

-36/10°
192/10°
-360/10* -360/10* -60/10°

-24/10°

168/10°

-9/10
36/10°

3/10
-24/10°
60/10°

)

o O O O

Calculate trajectory, given constants for t,= 10

1
0
0

t
1
0

/2 £l6 /24 /120

t
1

/2
t

/6
t*/2

/24
*/6

0
0
0
0.6
—0.36
0.072

38

1-D Example

a,, (1)

(0)+0.6t—0.36¢>/2+0.072¢/6

Examples with Different End

Conditions

Y(10) =1

v(10) = -1, a(10) =2
w

39

40

Sensitivity to Errors
1% error in Crackle

41

Constrained 1-D Trajectories

® V(1) SV

What are the alternatives for

achieving desired end conditions?
42

Alternatives for Reaching End Position

* Increase end time
* Lower max/min values
of velocity and
acceleration

+ “Fatten” velocity and

acceleration profiles

* Multi-segment
trajectory

* Unconstrained arcs

» Constrained arcs
(velocity and/or
acceleration held
constant

43

Connect the Dots
Interpolation

» Piecewise polynomials (linear -> quintic)
* End-point discontinuities
* End-point constraints
+ Parabolic blend
« Single polynomial through all points
* Polynomial degree = # of points
+ Sensitivity to high-degree terms (e.g., ct®)
+ Possibility of large excursions between points
+ Polynomials through adjacent points
* e.g., cubic B splines
* Kriging

44

Next Time:
Time Response of
Dynamic Systems

Supplemental Material

Joint Variables for Different
Link Types

| Joint Variable = 6,

| Joint Variable = 6,

| Joint Variable = 6,

| Joint Variable = 6,

Joint Variable = d,

| Joint Variable = 6,

Joint Variable = 6,

| Joint Variable = d,

Position of Distal Joint

Relative to the Base
(2-link manipulator)

47

+ Suppose a tool plate is fixed to the distal joint at (x y 2) ., "; then

Sbase

X cosf, —sinf,
y —A%Als, = sin@, cos6,
Z 0 0
1 0 0

base
xcosf, —ysinB, +1 cosO, +1,cosO,
xsin@, +ycosf, +/ sinf, +1,sinb,

2z
1

0
0
1
0

l,cosB, +1,cos0,
[,sinB, +1,sinB,
0
1

— N e =

distal

48

Alternatively, straightforward trigonometry could be used in this example

Tool Plates and Jaws

Four-Bar Linkage and 2
Set of Jaws

Tool Changer
http.//www.youtube.com/watch?
v=G8ZqoOIEDHY&feature=related

Another Tool Changer
http://www.youtube.com/watch?
v=LkPnt_nudLc&feature=related

49

Robot Arms for Space

Dextre Manipulator, ISS

Canadarm2, ISS

Curiosity Robot Arm

50

Multi-Jointed Arms

Snake-Like Manipulator Octopus Arms

OctArm
http://www.youtube.com/watch ?v=Qzvqni7O_XQs

Tentacle Arm
http://www.youtube.com/watch ?v=Yk7Muaigd4k

51

DNA Microarray-
Spotting Robot

DNA strands representing different genes are
spotted on a microscope slide
Finished slide is used to analyze DNA from

tissue samples
http: //www.youtube.com/watch?v=Z KNhD1jz-k

52

American Android Multi-Arm UGV
(David Handelman, *89)

http://'www.youtube .com/watch?v=p0Oi6 Odc PKfk

http://'www.youtube .com/watch?v=tVZFJ7yivxl

http://www.youtube .com/watch?v=qdM48cAg0U4

Voronoi Diagrams in
Data Processing

Computer graphics textures (2-D and 3-D meshes)

Density characterization (3-D mesh)

Vector quantization in data compression

http://www.data-compression.com/vqanim.shtml

53

54

One-Dimensional Trajectory
with Constant Kix, k

Position, velocity, acceleration, and jerk
specified at 0 and

S O =
S o oo
(=R =)
- o
(=R =le)

0
0
0
0 0 0 0
Z| -1800/(19r*) 1800/(19:*) -1680/(19¢%) —120/(19°) -36/(r*) 96/
14400/(19¢°) —14400/(19¢°) 11160/(19¢*) 3240/(19¢*) 192/(%) 312/

1

—_ —~ o o oo

0
0
0
0

197) -156/(19r) 12/(19¢)
194) 564/(19¢) -96/(19¢*)
-50400/(191°) 50400/(19¢°) —28800/(19¢°) -21600/(19¢°) -360/(¢') 3240/(19¢*) —720/(19¢%) —-120/(19¢%)
72000/(19¢7) =72000/(19¢7) 21600/(19:°) 50400/(19¢°) 0 ~14400/(19¢%) =600/(19¢*) 1800/(19¢*) ||

Snap, crackle, pop, and kix computed

One-Dimensional Trajectory

Inverse of (8 x 8) relationship defines controls

O 1T 0 0 0 o 0 0 0o |
x(1) 1 ¢t 22 £l6 /24 /120 °/600 t’/3600
v(0) 01 0 0 0 0 0 0

vie) | |01 ¢ 22 Fle 24 £/120 /600
a0) | |00 1 0 0 0 0 0

alt) 00 1)2 /6 1°/600 /120

: 00 0 1 0 0 0 0

i(0) Y

, 00 0 1 t /2 Ple)24
j |t ol

=
)

—_
)

~
—_— — — — — — ~— —

<

Q
)

9%
[e)

@]

o

=~

<
e e
)

=)

