Robot Arm Transformations, Path Planning, and Trajectories

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017

- Forward and inverse kinematics
- Path planning
 - Voronoi diagrams and Delaunay triangulation
 - Probabilistic Road Map
 - Rapidly Exploring Random Tree
- Closed-form trajectories; connecting the dots
 - Polynomials and splines
 - Acceleration profiles

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html 1

Manipulator **Maneuvering Spaces**

• <u>Joint space</u>: Vector of <u>joint variables</u>, e.g.,

$$\mathbf{r}_{J} = \begin{bmatrix} \theta_{waist} & \theta_{shoulder} & \theta_{elbow} & \theta_{wrist-bend} & \theta_{flange} & \theta_{wrist-twist} \end{bmatrix}^{T}$$

• End-effecter space: Vector of end-effecter positions, e.g.,

$$\mathbf{r}_{E} = \begin{bmatrix} x_{tool} & y_{tool} & z_{tool} & \boldsymbol{\psi}_{tool} & \boldsymbol{\theta}_{tool} & \boldsymbol{\phi}_{tool} \end{bmatrix}^{T}$$

 <u>Task space</u>: Vector of <u>task-dependent positions</u>, e.g., locating a symmetric grinding tool above a horizontal surface:

$$\mathbf{r}_{T} = \begin{bmatrix} x_{tool} & y_{tool} & z_{tool} & \boldsymbol{\psi}_{tool} & \boldsymbol{\theta}_{tool} \end{bmatrix}^{T}$$

Forward and Inverse Transformations of a Robotic Assembly

Forward Transformation

Transforms homogeneous coordinates from tool frame to reference frame coordinates

$$\begin{split} \boldsymbol{s}_{base} &= \mathbf{A}_{tool}^{base} \mathbf{s}_{tool} \\ &= \mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} \end{split}$$

Inverse Transformation

Transform homogeneous coordinate from reference frame to tool frame coordinates

$$\begin{aligned} s_{tool} &= \mathbf{A}_{base}^{tool} \mathbf{s}_{base} \\ &= \mathbf{A}^{-1}_{wrist-twist} \mathbf{A}^{-1}_{flange} \mathbf{A}^{-1}_{wrist-bend} \mathbf{A}^{-1}_{elbow} \mathbf{A}^{-1}_{shoulder} \mathbf{A}^{-1}_{waist} \mathbf{s}_{base} \end{aligned}$$

3

Forward and Inverse Kinematics Between Joints, Tool Position, and Tool Orientation

Forward Kinematic Problem: Compute the position of the tool in the reference frame that corresponds to a given joint vector (i.e., vector of link variables)

$$s_{base} = \mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} = \mathbf{A}_{tool}^{base} \mathbf{s}_{tool}$$
To Be Determined \Leftarrow Given

Inverse Kinematic Problem: Find the vector of link variables that corresponds to a desired task-dependent position

$$\mathbf{A}_{waist} \mathbf{A}_{shoulder} \mathbf{A}_{elbow} \mathbf{A}_{wrist-bend} \mathbf{A}_{flange} \mathbf{A}_{wrist-twist} \mathbf{s}_{tool} = \mathbf{A}_{tool}^{base} \mathbf{s}_0 = \mathbf{s}_{base}$$
To Be Determined \Leftarrow Given

Forward and Inverse Kinematics Single-Link Example

Forward Kinematic Problem: Specify task-dependent position that corresponds to a given joint variable $(=\theta_n)$

$$\mathbf{s}_{n-1} = \mathbf{A}(z_{n-1}, \boldsymbol{\theta}_n) \mathbf{A}(z_{n-1}, \boldsymbol{d}_n) \mathbf{A}(x_{n-1}, \boldsymbol{l}_n) \mathbf{A}(x_{n-1}, \boldsymbol{\alpha}_n) \mathbf{s}_n$$

$$= \begin{bmatrix} \cos \boldsymbol{\theta}_n & -\sin \boldsymbol{\theta}_n \cos \boldsymbol{\alpha}_n & \sin \boldsymbol{\theta}_n \sin \boldsymbol{\alpha}_n & \boldsymbol{l}_n \cos \boldsymbol{\theta}_n \\ \sin \boldsymbol{\theta}_n & \cos \boldsymbol{\theta}_n \cos \boldsymbol{\alpha}_n & -\cos \boldsymbol{\theta}_n \sin \boldsymbol{\alpha}_n & \boldsymbol{l}_n \sin \boldsymbol{\theta}_n \\ 0 & \sin \boldsymbol{\alpha}_n & \cos \boldsymbol{\alpha}_n & \boldsymbol{d}_n \end{bmatrix} \mathbf{s}_n$$

$$= \begin{bmatrix} \cos \boldsymbol{\theta}_n & -\sin \boldsymbol{\theta}_n \cos \boldsymbol{\alpha}_n & -\cos \boldsymbol{\theta}_n \sin \boldsymbol{\alpha}_n & \boldsymbol{l}_n \sin \boldsymbol{\theta}_n \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{s}_n$$

Red: Known Blue: Unknown

5

Forward and Inverse Kinematics Single-Link Example

Inverse Problem: Find the joint variable, θ , that corresponds to a desired task-dependent position

$$\mathbf{s}_{n-1} = \mathbf{A}(z_{n-1}, \boldsymbol{\theta}_n) \mathbf{A}(z_{n-1}, 0) \mathbf{A}(x_{n-1}, \boldsymbol{l}_n) \mathbf{A}(x_{n-1}, 90^{\circ}) \mathbf{s}_n$$

$$= \begin{bmatrix} \cos \boldsymbol{\theta}_n & 0 & \sin \boldsymbol{\theta}_n & \boldsymbol{l}_n \cos \boldsymbol{\theta}_n \\ \sin \boldsymbol{\theta}_n & 0 & -\cos \boldsymbol{\theta}_n & \boldsymbol{l}_n \sin \boldsymbol{\theta}_n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{s}_n$$

Red: Known Blue: Unknown

$$x_{n-1} = x_n \cos \theta_n + z_n \sin \theta_n + l_n \cos \theta_n$$
$$y_{n-1} = x_n \sin \theta_n - z_n \cos \theta_n + l_n \sin \theta_n$$
In this simple case,

check by elimination and inverse trig functions

6

Manipulator Redundancy

and Degeneracy

More than one link configuration may provide a given end point

- Redundancy: Finite number of joint vectors provide the same task-dependent vector
- Degeneracy: Infinite number of joint vectors provide the same task-dependent vector

Co-linear joint axes are degenerate

7

Space Robot Arms are Highly Redundant

· Why?

Link variable		θ	α	1	d
1	θ,	θ_1	0	11	0
2	θ_2	θ_2	0	12	0

Transformations for a Two-Link Manipulator

$$\mathbf{H}_0^1 = \begin{bmatrix} \cos \theta_1 & \sin \theta_1 & 0 \\ -\sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \quad \mathbf{r}_0 = \begin{bmatrix} -l_1 \\ 0 \\ 0 \end{bmatrix}$$

Example: Type 1 Two-Link Manipulator, neglecting offset (e.g., Puma geometry without waist and wrist)

$$\mathbf{A}_{0}^{1} = \begin{bmatrix} & \mathbf{H}_{0}^{1} & & \mathbf{r}_{0} \\ (& 0 & 0 & 0 &) & 1 \end{bmatrix} = \begin{bmatrix} & \cos\theta_{1} & \sin\theta_{1} & 0 & -l_{1} \\ -\sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{1}^{2} = \begin{bmatrix} & \mathbf{H}_{1}^{2} & \mathbf{r}_{1} \\ (& 0 & 0 & 0 &) & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{2} & \sin \theta_{2} & 0 & -l_{2} \\ -\sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

9

Position of Distal Joint Relative to the Base

(2-link manipulator)

$$\theta_B = \theta_1 + \theta_2$$

$$\mathbf{s}_{base} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{base} = \mathbf{A}_{1}^{0} \mathbf{A}_{2}^{1} \mathbf{s}_{distal} = \begin{bmatrix} \cos \theta_{B} & -\sin \theta_{B} & 0 & l_{1} \cos \theta_{1} + l_{2} \cos \theta_{B} \\ \sin \theta_{B} & \cos \theta_{B} & 0 & l_{1} \sin \theta_{1} + l_{2} \sin \theta_{B} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}_{distal}$$

$$= \begin{bmatrix} l_{1} \cos \theta_{1} + l_{2} \cos \theta_{B} \\ l_{1} \sin \theta_{1} + l_{2} \sin \theta_{B} \\ 0 \\ 1 \end{bmatrix}$$

Path Planning

Baxter Path Planning (UNC, 2014) https://www.youtube.com/watch?v=oY1FfytaD-c

11

Path Planning

- Well-defined Start and Goal
- Waypoints
- Path primitives (line, circle, etc.)
- · Timing and coordination
- Obstacle detection and avoidance
- · Feasibility and regulation
- Optimization and constraint

Path Planning with Waypoints

 Define Start, Goal, and Waypoints by position and time

Connect the dots

Various interpolation methods

- Straight lines
- Polynomials
- Splines
- Generate associated velocity and acceleration
- Satisfy trajectory constraints

13

Path Planning with Obstacles and Destinations

- Given set of points, e.g., obstacles, destinations, or centroids of multiple points
- Chart best path from start to goal
- Tessellation (tiling) of decision space
- · 2-D Voronoi diagram
 - Polygons with sides equidistant to two nearest points (black dots)

Delaunay Triangulation Constructs the Voronoi Diagram

- Threats/obstacles are black points
- Edges (black) connect all triplets of black points lying on circumferences of empty circles, i.e., circles containing no other black points
- "Circumcircle" centers are red points
- Voronoi segment boundaries (red) connect centers and are perpendicular to each edge

https://en.wikipedia.org/wiki/ Delaunay_triangulation

15

Voronoi Diagrams in Path Planning

Threat/obstacle avoidance

Path Planning with Potential Fields

Map features attract or repel path from Start to Goal, e.g., +/- gravity fields

17

Path Planning on Occupancy Grid

Admissible and Inadmissible Blocks

- Identify feasible paths from Start to Goal
- Chose path that best satisfies criteria, e.g.,
 - Simplicity of calculation
 - Lowest cost
 - Highest performance

Bug Path Planning

- 1) Identify shortest unconstrained path from Start to Goal, *i.e., green path*
- 2) Chose path that navigates the boundary
 - 1) Stays as close as to possible to <u>unconstrained path</u> (dashed line)
 - 2) Satisfies constraint
 - 3) Follows simple rule, e.g., "stay to the left"

19

D* or **A*** Path Planning (TBD)

- Determine <u>occupancy cost</u> of each block
- · Chose path from Start to Goal that
 - Reduce occupancy cost with each step

Probabilistic Road Map (PRM)

- Construct random configuration of admissible points
- Connect admissible points to nearest neighbors
- <u>Assess incremental cost</u> of traveling along each "edge" between points
- Query to find all feasible paths from Start to Goal
- · Select lowest cost path

21

Rapidly Exploring Random Tree (RRT*)

Space-filling tree evolves from Start
Open-loop trajectories with state constraints
Initially feasible solution converges to optimal solution through searching
Committed trajectories
Branch-and-bound tree adaptation

Trajectories

23

One-Dimensional Trajectory

Constant Velocity, v

Velocity, v(t) vs. t, is constant

$$v(t) = \dot{x}(t) = v(0)$$

Position, x(t) vs. t, is a straight line

$$x(t) = x(0) + v(0)t$$

Constant Velocity, v

Position specified at 0 and t

$$\begin{bmatrix} x(0) \\ x(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & t \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \end{bmatrix}$$

Velocity at 0 to be determined

$$\begin{bmatrix} x(0) \\ v(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & t \end{bmatrix}^{-1} \begin{bmatrix} x(0) \\ x(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/t & 1/t \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \end{bmatrix}$$

25

One-Dimensional Trajectory

Constant Acceleration, a

Velocity, v(t) vs. t, is a straight line

$$v(t) = \dot{x}(t) = v(0) + at$$

Position, x(t) vs. t, is a parabola

$$x(t) = x(0) + v(t) + at^2/2$$

Constant Acceleration, a

Position specified at 0 and t; velocity specified at 0

$$\begin{bmatrix} x(0) \\ x(t) \\ v(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & t & t^2/2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \end{bmatrix}$$

Acceleration at 0 to be determined

$$\begin{bmatrix} x(0) \\ v(0) \\ a(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & t & t^2/2 \\ 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -2/t^2 & 2/t^2 & -2/t \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \end{bmatrix}$$

27

One-Dimensional Trajectory

Constant Jerk, *j*, = Derivative of Acceleration, *a*

Acceleration, a(t) vs. t, is a straight line

$$a(t) = \dot{v}(t) = \ddot{x}(t) = a(0) + jt$$

Velocity, v(t) vs. t, is a parabola

$$v(t) = \dot{x}(t) = v(0) + a(0)t + jt^2/2$$

Position, x(t) vs. t, is cubic

$$x(t) = x(0) + v(0)t + a(0)t^{2}/2 + jt^{3}/6$$

Constant Jerk, j

Position and velocity specified at 0 and t; acceleration and jerk at 0 to be determined

$$\begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & t & t^2/2 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j \end{bmatrix}$$

29

One-Dimensional Trajectory

Constant Jerk, j

Find a(0) and j to produce desired position and velocity

Start
$$\begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & t & t^2/2 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j \end{bmatrix}$$
Start Start TBD TBD

Inverse of (4×4) relationship defines required a(0) and j

$$\begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & t & t^2/2 \end{bmatrix}^{-1} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -6/t^2 & 6/t^2 & -4/t & -2/t \\ 12/t^3 & -12/t^3 & 6/t^2 & 6/t^2 \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \end{bmatrix}$$

30

Further Derivatives

- Snap, s, = Derivative of Jerk, j
- Crackle, c, = Derivative of Snap, s
- What is the derivative of Crackle?

Pop!

31

One-Dimensional Trajectory

Constant Crackle, c

Snap, s(t) vs. t, is linear in time

$$s(t) = d[j(t)]/dt = +s(0)+ct$$

Jerk, j(t) vs. t, is quadratic

$$j(t) = \dot{a}(t) = j(0) + s(0)t + ct^2/2$$

Acceleration, a(t) vs. t, is cubic

$$a(t) = \dot{v}(t) = \ddot{x}(t) = a(0) + j(0)t + s(0)t^2/2 + ct^3/6$$

with Constant Crackle, c

Velocity, v(t) vs. t, is quartic

$$v(t) = \dot{x}(t) = v(0) + a(0)t + jt^2/2 + s(0)t^3/6 + ct^4/24$$

Position, x(t) vs. t, is quintic

$$x(t) = x(0) + v(0)t + a(0)t^{2}/2 + j(0)t^{3}/6 + s(0)t^{4}/24 + ct^{5}/120$$

33

One-Dimensional Trajectory

with Constant Crackle, c

Position, velocity, and acceleration specified at 0 and t

$$\begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \\ a(0) \\ a(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j(0) \\ s(0) \\ c \end{bmatrix}$$

Inverse of (6 x 6) relationship defines controls

$$\begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j(0) \\ s(0) \\ c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 & \end{bmatrix}^{1} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \\ a(0) \\ a(t) \end{bmatrix}$$

$$\begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j(0) \\ s(0) \\ c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -60/t^3 & 60/t^3 & -36/t^2 & -24/t^2 & -9/t & 3/t & 0 \\ -60/t^3 & 60/t^4 & 192/t^3 & 168/t^3 & 36/t^2 & -24/t^2 & 0 \\ -720/t^5 & 720/t^5 & -360/t^4 & -360/t^4 & -60/t^3 & 60/t^3 \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \\ a(0) \\ a(t) \end{bmatrix}$$

35

One-Dimensional Trajectory

Eliminate unnecessary equations and define acceleration constants

$$\begin{bmatrix} j(0) \\ s(0) \\ c \end{bmatrix} = \begin{bmatrix} -60/t^3 & 60/t^3 & -36/t^2 & -24/t^2 & -9/t & 3/t \\ 360/t^4 & -360/t^4 & 192/t^3 & 168/t^3 & 36/t^2 & -24/t^2 \\ -720/t^5 & 720/t^5 & -360/t^4 & -360/t^4 & -60/t^3 & 60/t^3 \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \\ a(0) \\ a(t) \end{bmatrix}$$

Corresponding acceleration and force are specified by

$$a(t) = a(0) + j(0)t + s(0)t^{2}/2 + ct^{3}/6$$

$$= a_{control}(t) + a_{gravity}(t) + a_{disturbance}(t)$$

$$= \left[f_{control}(t) + f_{gravity}(t) + f_{disturbance}(t) \right] / m(t)$$

Calculate trajectory components, given acceleration constants

$$\begin{bmatrix} x(t) \\ v(t) \\ a(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j(0) \\ s(0) \\ c \end{bmatrix}$$

37

Example

Calculate constants for x(0) = 0, x(10) = 10

$$\begin{bmatrix} 0.6 \\ -0.36 \\ 0.072 \end{bmatrix} = \begin{bmatrix} -60/10^3 & 60/10^3 & -36/10^2 & -24/10^2 & -9/10 & 3/10 \\ 360/10^4 & -360/10^4 & 192/10^3 & 168/10^3 & 36/10^2 & -24/10^2 \\ -720/10^5 & 720/10^5 & -360/10^4 & -360/10^4 & -60/10^3 & 60/10^3 \end{bmatrix} \begin{bmatrix} 0 \\ 10 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Calculate trajectory, given constants for $t_f = 10$

$$\begin{bmatrix} x(t) \\ v(t) \\ a(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.6 \\ -0.36 \\ 0.072 \end{bmatrix}$$

1-D Example

39

Examples with Different End Conditions

Sensitivity to Errors

1% error in Crackle

41

Constrained 1-D Trajectories

What are the alternatives for achieving desired end conditions?

Alternatives for Reaching End Position

- Increase end time
 - Lower max/min values of velocity and acceleration
- "Fatten" velocity and acceleration profiles
 - Multi-segment trajectory
 - Unconstrained arcs
 - Constrained arcs (velocity and/or acceleration held constant

43

- Piecewise polynomials (linear -> quintic)
 - End-point discontinuities
 - End-point constraints
 - Parabolic blend
- Single polynomial through all points
 - Polynomial degree = # of points
 - Sensitivity to high-degree terms (e.g., ct 6)
 - · Possibility of large excursions between points
- Polynomials through adjacent points
 - e.g., cubic B splines
 - Kriging

Next Time: Time Response of Dynamic Systems

45

Supplemental Material

Joint Variables for Different Link Types

Position of Distal Joint Relative to the Base

(2-link manipulator)

• Suppose a tool plate is fixed to the distal joint at $(x \ y \ z)_{distal}^T$; then

$$\mathbf{s}_{base} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{base} = \mathbf{A}_{1}^{0} \mathbf{A}_{2}^{1} \mathbf{s}_{distal} = \begin{bmatrix} \cos \theta_{B} & -\sin \theta_{B} & 0 & l_{1} \cos \theta_{1} + l_{2} \cos \theta_{B} \\ \sin \theta_{B} & \cos \theta_{B} & 0 & l_{1} \sin \theta_{1} + l_{2} \sin \theta_{B} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{distal}$$

$$= \begin{bmatrix} x \cos \theta_{B} - y \sin \theta_{B} + l_{1} \cos \theta_{1} + l_{2} \cos \theta_{B} \\ x \sin \theta_{B} + y \cos \theta_{B} + l_{1} \sin \theta_{1} + l_{2} \sin \theta_{B} \\ z \\ 1 \end{bmatrix}$$

48

47

Tool Plates and Jaws

Tool Changer

http://www.youtube.com/watch? v=G8ZqoOlEDHY&feature=related

Another Tool Changer http://www.youtube.com/watch? v=LkPnt_nudLc&feature=related

Four-Bar Linkage and 2nd Set of Jaws

49

Robot Arms for Space

Multi-Jointed Arms

Snake-Like Manipulator

Octopus Arms

OctArm

http://www.youtube.com/watch?v=Qzvqni7O_XQs

Tentacle Arm

http://www.youtube.com/watch?v=Yk7Muaigd4k

51

DNA Microarray- Spotting Robot

- DNA strands representing different genes are spotted on a microscope slide
- Finished slide is used to analyze DNA from tissue samples

http://www.youtube.com/watch?v=Z KNhD1jz-k

American Android Multi-Arm UGV

(David Handelman, *89)

http://www.youtube.com/watch?v=pOi6OdcPKfk

http://www.youtube.com/watch?v=tVZFJ7yivxI

http://www.youtube.com/watch?v=qdM48cAg0U4

53

Voronoi Diagrams in Data Processing

Computer graphics textures (2-D and 3-D meshes)

Density characterization (3-D mesh)

Vector quantization in data compression

http://www.data-compression.com/vqanim.shtml

54

One-Dimensional Trajectory with Constant Kix, *k*

Position, velocity, acceleration, and jerk specified at 0 and t

$\begin{bmatrix} x(0) \end{bmatrix}$	ſ	1	0	0	0	0	0	0	0	$\int x(0)$
$\begin{vmatrix} v(0) \\ a(0) \end{vmatrix}$		0	0	0	0	1	0	0	0	$\begin{vmatrix} x(t) \\ v(0) \end{vmatrix}$
j(0)	_	0 $-1800/(19t^4)$	$0 \\ 1800/(19t^4)$	0 $-1680/(19t^3)$	$0 -120/(19t^3)$	$-36/(t^2)$	0 $-96/(19t^2)$	$\frac{1}{-156/(19t)}$	0 12 / (19t)	v(t)
c(0)		$14400/(19t^5)$	$-14400/(19t^5)$	$11160/(19t^4)$	$3240/(19t^4)$	$192/(t^3)$	$312/(19t^3)$	$564/(19t^2)$	$-96/(19t^2)$	$\begin{vmatrix} a(0) \\ a(t) \end{vmatrix}$
p(0)		$-50400/(19t^6)$	$50400 / \left(19t^6\right)$	()	$-21600/\left(19t^5\right)$	()	()	$-720 / \left(19t^3\right)$	$-120/\left(19t^3\right)$	j(0)
k(0)		$72000/(19t^7)$	$-72000/(19t^7)$	$21600/(19t^6)$	$50400 / \left(19t^6\right)$	0	$-14400/(19t^5)$	$-600/(19t^4)$	$1800 / \left(19t^4\right)$	$\int \int j(t)$

Snap, crackle, pop, and kix computed

One-Dimensional Trajectory

Inverse of (8 x 8) relationship defines controls

$$\begin{bmatrix} x(0) \\ x(t) \\ v(0) \\ v(t) \\ a(0) \\ j(0) \\ j(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 & t^6/600 & t^7/3600 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 & t^6/600 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 & t^6/600 & t^5/120 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & t & t^2/2 & t^3/6 & t^6/600 & t^5/120 \\ 0 & 0 & 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \end{bmatrix} \begin{bmatrix} x(0) \\ v(0) \\ a(0) \\ j(0) \\ s(0) \\ c(0) \\ p(0) \\ k(0) \end{bmatrix}$$