Time Response of Dynamic Systems

Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017

Multi-dimensional trajectories Numerical integration Linear and nonlinear systems Linearization of nonlinear models LTI System Response Phase-plane plots

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Multi-Dimensional Trajectories

$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix};$	$\mathbf{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$	$]; \mathbf{a} = \begin{bmatrix} \\ \\ \end{bmatrix}$	$\begin{bmatrix} a_x \\ a_y \end{bmatrix}$;	j =	$\begin{bmatrix} j_x \\ j_y \end{bmatrix}; \mathbf{s} =$	$= \begin{bmatrix} s_x \\ s_y \end{bmatrix}$
$\begin{bmatrix} x(0) \\ x(t) \\ v_x(0) \\ v_x(t) \\ a_x(0) \\ a_x(t) \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \begin{bmatrix} 0 & t^{3}/6 & t \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$		$ \begin{array}{c c} 0 \\ 5/120 \\ 0 \\ t^{3}/6 \\ t^{2}/2 \\ t \\ t$	$\begin{bmatrix} x(0) \\ v_x(0) \\ a (0) \end{bmatrix}$ $0 0 \\ 24 t^5/120 \\ 0 0 \\ 3/6 t^4/24 \\ 0 0 \\ 2/2 t^3/6 \end{bmatrix}$	$ \begin{bmatrix} y(0) \\ v_y(0) \\ a_y(0) \\ j_y(0) \\ s_y(0) \\ c_y(0) \end{bmatrix} $

Position, velocity, and acceleration are vectors

Two-Dimensional Trajectory Solve for Cartesian components separately

x Component $ \begin{bmatrix} j_x(0) \\ s_x(0) \\ c_x(0) \end{bmatrix} = \begin{bmatrix} -60/360/20 \\ -720/20 \end{bmatrix} $	$t^{3} 60/t^{3}$ $t^{4} -360/t^{4}$ $t^{5} 720/t^{5}$	$-36/t^{2}$ 192/t ³ $-360/t^{4}$	$-24/t^{2}$ 168/t ³ $-360/t^{4}$	-9/t $36/t^2$ $-60/t^3$	$\frac{3/t}{-24/t^2}$ $\frac{60/t^3}{-24/t^3}$	$\begin{bmatrix} x(0) \\ x(t) \\ v_x(0) \\ v_x(t) \\ a_x(0) \\ a_x(t) \end{bmatrix}$
<i>y</i> Component $\begin{bmatrix} j_y(0) \\ s_y(0) \\ c_y(0) \end{bmatrix} = \begin{bmatrix} -60/3 \\ -720/3 \end{bmatrix}$	$t^{3} \frac{60}{t^{3}} \\ \frac{60}{t^{4}} - \frac{360}{t^{4}} \\ \frac{60}{t^{5}} \frac{720}{t^{5}} \\ \frac{60}{t^{5}} $	$-36/t^{2}$ 192/t ³ $-360/t^{4}$	$-24/t^{2}$ 168/t ³ $-360/t^{4}$	$-9/t$ $36/t^2$ $-60/t^3$	$\frac{3/t}{-24/t^2}$ $\frac{60/t^3}{-24/t^3}$	$\begin{bmatrix} y(0) \\ y(t) \\ v_{y}(0) \\ v_{y}(t) \\ a_{y}(0) \\ a_{y}(t) \end{bmatrix}$

Two-Dimensional Example

Required acceleration vector is specified by

Six-Degree-of-Freedom (Rigid Body) Equations of Motion

$$\dot{\mathbf{r}}_{I} = \mathbf{H}_{B}^{I} \mathbf{v}_{B}$$
$$\dot{\mathbf{v}}_{B} = \frac{1}{m} \mathbf{f}_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B}$$

$$\dot{\boldsymbol{\Theta}} = \mathbf{L}_{B}^{I} \boldsymbol{\omega}_{B}$$
$$\dot{\boldsymbol{\omega}}_{B} = \mathbf{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{I}_{B} \boldsymbol{\omega}_{B} \right)$$

Translational position and velocity

Rotational position and velocity

$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{\varphi} \\ \boldsymbol{\theta} \\ \boldsymbol{\psi} \end{bmatrix};$	$\boldsymbol{\omega}_{\scriptscriptstyle B} =$	р q r
---	--	-------------

5

... nonlinear, and complex

Rate of change of Translational Position

 $\dot{x}_{i} = (\cos\theta\cos\psi)u + (-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi)v + (\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)w$ $\dot{y}_{i} = (\cos\theta\sin\psi)u + (\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi)v + (-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi)w$

 $\dot{z}_{I} = (-\sin\theta)u + (\sin\phi\cos\theta)v + (\cos\phi\cos\theta)w$

Rate of change of Translational Velocity

 $\dot{u} = X / m - g \sin \theta + rv - qw$ $\dot{v} = Y / m + g \sin \phi \cos \theta - ru + pw$

 $\dot{w} = Z / m + g \cos\phi \cos\theta + qu - pv$

Rate of change of Angular Position

 $\dot{\phi} = p + (q\sin\phi + r\cos\phi)\tan\theta$ $\dot{\theta} = q\cos\phi - r\sin\phi$ $\dot{\psi} = (q\sin\phi + r\cos\phi)\sec\theta$

Rate of change of Angular Velocity

$$\begin{split} \dot{p} &= \left(I_{zz}L + I_{xz}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)p + \left[I_{xz}^{2} + I_{zz}\left(I_{zz} - I_{yy}\right)\right]r\right\}q\right) / \left(I_{xx}I_{zz} - I_{xz}^{2}\right) \\ \dot{q} &= \left[M - \left(I_{xx} - I_{zz}\right)pr - I_{xz}\left(p^{2} - r^{2}\right)\right] / I_{yy} \\ \dot{r} &= \left(I_{xz}L + I_{xx}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)r + \left[I_{xz}^{2} + I_{xx}\left(I_{xx} - I_{yy}\right)\right]p\right\}q\right) / \left(I_{xx}I_{zz} - I_{xz}^{2}\right) \end{split}$$

Multiple Rigid Links Lead to Multiple Constraints

- Each link is subject to the same 6-DOF rigidbody dynamic equations
- ... but each link is constrained to have a single degree of freedom w.r.t. proximal link

Newton-Euler Link Dynamics

- Link dynamics are coupled
 - Proximal-link loads affected by distal-link positions and velocities
 - Distal-link accelerations affected by proximallink motions
 - Joints produce constraints on link motions
- Net forces and torques at each joint related to velocities and accelerations of the centroids of the links
- Equations of motion derived directly for each link, with constraints

$$\dot{\mathbf{v}}_{B} = \frac{1}{m} \mathbf{f}_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B}$$

$$\dot{\mathbf{\omega}}_{B} = \mathbf{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{I}_{B} \mathbf{\omega}_{B} \right)$$

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \right]$$

Lagrangian Link Dynamics

- Lagrange's equation derives from Newton's Laws
 - Principle of virtual work
 - D'Alembert's principle
- Dynamic behavior <u>described by work done and</u> <u>energy stored</u> in the system
- Equations of motion derived from *Lagrangian* function and Lagrange's equation

Hamiltonian Link Dynamics

• Hamilton's Principle: Lagrange's equation is a necessary condition for an extremum (i.e., maximum or minimum)

extremum $I = \int_{t_1}^{t_2} L(q_n, \dot{q}_n) dt$

Equations of motion derived from an optimization problem

Hamiltonian function

•

$$H(p,q) = \sum \dot{q}_n p_n - L(q_n, \dot{q}_n)$$

Hamilton's equations $\begin{aligned}
\dot{q}_n &= \frac{\partial H(p,q)}{\partial p_n} \\
\dot{p}_n &= -\frac{\partial H(p,q)}{\partial q_n}
\end{aligned}$ Generalized momentum, p_n , e.g., $(mv_x, mv_y, mv_z, I_{xx}p, I_{yy}q, I_{zz}r)$ $\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$

McKerrow, 1991

from Example 7.1, Lagrangian derivation, McKerrow, 1991, pp. 388-390.

Differential Equations Integrated to Produce Time Response

$$\dot{\mathbf{x}}(t) = \mathbf{f} [\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t], \quad \mathbf{x}(0) \text{ given}$$

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \mathbf{f} \big[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \big] dt$$

Numerical integration is an approximation

13

Rectangular and Trapezoidal Integration of Differential Equations

Rectangular (Euler) Integration

$$\mathbf{x}(t_k) = \mathbf{x}(t_{k-1}) + \Delta \mathbf{x}(t_{k-1}, t_k)$$

$$\approx \mathbf{x}(t_{k-1}) + \mathbf{f} \Big[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1}) \Big] \Delta t , \quad \Delta t = t_k - t_{k-1}$$

Trapezoidal (modified Euler) Integration (ode23)

$$\mathbf{x}(t_{k}) \approx \mathbf{x}(t_{k-1}) + \frac{1}{2} \left[\Delta \mathbf{x}_{1} + \Delta \mathbf{x}_{2} \right]$$

where
$$\Delta \mathbf{x}_{1} = \mathbf{f} \left[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1}) \right] \Delta t$$

$$\Delta \mathbf{x}_{2} = \mathbf{f} \left\{ \left[\mathbf{x}(t_{k-1}) + \Delta \mathbf{x}_{1} \right], \mathbf{u}(t_{k}), \mathbf{w}(t_{k}) \right\} \Delta t$$

ode23 varies step size, Δt , to reduce numerical error

Numerical Integration Examples

More Complicated Algorithms (e.g., MATLAB)

Solver	Problem Type	Order of Accuracy	When to Use
ode45	Nonstiff	Medium	Most of the time. This should be the first solver you try.
ode23	Nonstiff	Low	For problems with crude error tolerances or for solving moderately stiff problems.
ode113	Nonstiff	Low to high	For problems with stringent error tolerances or for solving computationally intensive problems.
ode15s	Stiff	Low to medium	If ode45 is slow because the problem is stiff.
ode23s	Stiff	Low	If using crude error tolerances to solve stiff systems and the mass matrix is constant.
ode23t	Moderately Stiff	Low	For moderately stiff problems if you need a solution without numerical damping.
ode23tb	Stiff	Low	If using crude error tolerances to solve stiff systems.

Comparison of Exact and Numerically Integrated Trajectories

Calculate trajectory, given constants for $t_f = 10$

$$\begin{bmatrix} x(t) \\ v(t) \\ a(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.6 \\ -0.36 \\ 0.072 \end{bmatrix}$$

Calculate trajectory by numerical integration

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = \dot{v}(t) = a(t) = 0.6t - 0.36t^2/2 + 0.072t^3/6$$

Comparison of Exact and Numerically Integrated Trajectories

Comparison of Exact and Numerically Integrated Trajectories (Zoom)

Measurement Equation

 $\mathbf{z}(t) = \mathbf{y}(t) + \mathbf{n}(t)$

Dynamic System Example: Automotive Vehicle

Dynamic Process

- x : dynamic state
- Position, velocity, angle, angular rate
- •u : input
- Steering, throttle, brakes
- w : disturbance
 - Road surface, wind
- p : parameter
- Weight, moments of inertia, drag coefficient, spring constants
- t : time (independent variable)

Observation Process

- y : error-free output
 - Speed, front-wheel angle, engine rpm, acceleration, yaw rate, throttle, brakes, GPS location
- n : measurement error
 Perturbations to y
- z : measurement
 Sum of y and n

Nonlinearity and Time Variation in Dynamic Systems

Nonlinear, time-varying dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{f} \Big[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \Big] \qquad \textbf{NTV}$$
Nonlinear, time-invariant dynamics
$$\dot{\mathbf{x}}(t) = \mathbf{f} \Big[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t) \Big] \qquad \textbf{NTI}$$
Linear, time-varying dynamics
$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{L}(t)\mathbf{w}(t) \qquad \textbf{LTV}$$
Linear, time-invariant dynamics

 $\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$

Nonlinearity and Time Variation in Dynamic Systems

Nonlinear, time-varying dynamics

Linear, time-varying dynamics

Nonlinear, time-invariant dynamics

Linear, time-invariant dynamics

25

Solutions of Ordinary Differential Dynamic Equations

Time-Domain Model (ODE)	Solution by Numerical Integration	Principle of Superposition	Frequency-Domain Model
. Nonlinear, time- varying (NTV)	Yes	No	No
. Nonlinear, time- invariant (NTI)	Yes	Νο	Yes (amplitude- dependent, harmonics)
. Linear, time- varying (LTV)	Yes	Yes	Approximate
. Linear, time- invariant (LTI)	Yes	Yes	Yes

Comparison of Damped Linear and Nonlinear Systems

MATLAB Simulation of Linear and Nonlinear Dynamic Systems

MATLAB Main Program

% Nonlinear and Linear Examples
clear
tspan = [0 10];
xo = [0, 10];
[t1, <u>x1 = ode23('NonLin',tspa</u> n,xo);
xo = [0, 1];
[t2,x2] = ode23('NonLin',tspan,xo);
xo = [0, 10];
[t3,x3] = ode23('Lin',tspan,xo);
xo = [0, 1];
[t4,x4] = ode23('Lin',tspan,xo);
subplot(2,1,1)
plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g')
ylabel('Position'), grid
subplot(2,1,2)
plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')
xlabel('Time'), ylabel('Rate'), grid

Linear Spring

 $\dot{x}_1(t) = x_2(t)$ $\dot{x}_2(t) = -10x_1(t) - x_2(t)$

function xdot = Lin(t,x) % Linear Ordinary Differential Equation % x(1) = Position % x(2) = Rate xdot = [x(2) -10*x(1) - x(2)];

Weakening Spring $\dot{\mathbf{x}}(t) = \mathbf{x}(t)$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) + 0.8x_1^3(t) - x_2(t)$$

function xdot = NonLin(t,x) % Nonlinear Ordinary Differential Equation % x(1) = Position % x(2) = Rate xdot = [x(2) -10*x(1) + 0.8*x(1)^3 - x(2)];

Linearization of Nonlinear Equations

State, Control, and Disturbance Perturbations

Difference between nominal and actual paths:

Linear Approximation of Perturbation Effects

Nominal and actual paths both satisfy same dynamic equations

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t]$$
$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), t]$$

Actual dynamics expressed as sum of nominal terms plus perturbations

Solve the nominal and perturbation parts *separately* Nominal (nonlinear) equation

 $\dot{\mathbf{x}}_N(t) = \mathbf{f}[\mathbf{x}_N(t), \mathbf{u}_N(t), \mathbf{w}_N(t), t], \quad \mathbf{x}_N(0) \text{ given}$

Perturbation (linear) equation

 $\Delta \dot{\mathbf{x}}(t) \approx \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t) + \mathbf{L}(t)\Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(0) \text{ given}$

Approximate total solution

 $\mathbf{x}(t) \approx \mathbf{x}_N(t) + \Delta \mathbf{x}(t)$

Jacobian Matrices Express Sensitivity to Small Perturbations Along Nominal **Trajectory**

 $\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} ; \quad \mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}} ; \quad \mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$

Sensitivity to state perturbations: stability matrix

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\Big|_{\substack{\mathbf{x}=\mathbf{x}_{N}(t)\\\mathbf{w}=\mathbf{w}_{N}(t)}}^{\mathbf{x}=\mathbf{x}_{N}(t)} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}_{\substack{\mathbf{x}=\mathbf{x}_{N}(t)\\\mathbf{w}=\mathbf{w}_{N}(t)}}^{\mathbf{x}=\mathbf{x}_{N}(t)}$$

35

Sensitivity to Small Control and **Disturbance Perturbations Along Nominal Trajectory**

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}; \quad \mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}; \quad \mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}};$$

Control-effect matrix

Disturbance-effect matrix

Stiffening Cubic Spring Example

Nonlinear equation, no inputs

$$\dot{x}_1(t) = f_1 = x_2(t)$$

$$\dot{x}_2(t) = f_2 = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Integrate nonlinear equation to produce nominal path

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \rightarrow \int_0^{t_f} \begin{bmatrix} f_{1_N} \\ f_{2_N} \end{bmatrix} dt \rightarrow \begin{bmatrix} x_{1_N}(t) \\ x_{2_N}(t) \end{bmatrix} in [0, t_f]$$

Stiffening Cubic Spring Example

Evaluate partial derivatives along the path

$$\mathbf{F}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} = 0 & \frac{\partial f_1}{\partial x_2} = 1 \\ \frac{\partial f_2}{\partial x_1} = -10 - 30 x_{1_N}^2(t) & \frac{\partial f_2}{\partial x_2} = -1 \end{bmatrix}$$
$$\mathbf{G}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial u} = 0 \\ \frac{\partial f_2}{\partial u} = 0 \end{bmatrix} \mathbf{L}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial w} = 0 \\ \frac{\partial f_2}{\partial w} = 0 \\ \frac{\partial f_2}{\partial w} = 0 \end{bmatrix}$$

Nominal and Perturbation Dynamic Equations

Nominal and Perturbation Dynamic Solutions for Cubic Spring Example with $x_N(0) = 0$

If nominal solution remains at equilibrium

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t)], \quad \mathbf{x}_{N}(0) = 0, \quad \mathbf{x}_{N}(t) = 0 \text{ in } [0,\infty]$$

Linearization is time-invariant

$$\begin{bmatrix} \Delta \dot{x}_{1}(t) \\ \Delta \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_{1}(t) \\ \Delta x_{2}(t) \end{bmatrix}$$
$$= \text{Linear, Time-Invariant (LTI) System}$$

Initial-Condition Response of a Linear, Time-Invariant (LTI) Model

Doubling the initial condition doubles Displacement the output Stability, speed of response, and Rate damping are independent of the initial condition % Linear Model - Initial Condition F = [-0.5572 - 0.7814; 0.7814 0];G = [1 -1;0 2]; Hx = [1 0; 0 1];sys = ss(F, G, Hx, 0); nea m Initial C = [1;0]; хо $[y_1,t_1,x_1] = initial(sys, xo);$ Out(1) 62 Displacement хо = [2;0]; ŝ [y2,t2,x2] = initial(sys, xo);plot(t1,y1,t2,y2) -0.5572 -0.7814 $\mathbf{F} =$ Rate 0.7814 0 N. Canol figure 1 -1 xo = [0;1];G =0 2 initial(sys, xo)

> 10 Time (sec)

42

 $\mathbf{H}_{\mathbf{x}} = \mathbf{I}_2; \quad \mathbf{H}_{\mathbf{u}} = \mathbf{0}$

Step Response of a Linear, Time-Invariant Model

Response to Combined Initial Condition and Step Input

Linear system responses are additive

Initial-Condition Responses of 1st-Order LTI Systems are Exponentials

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t), \quad \Delta \mathbf{x}(0) \text{ given}$

Initial-Condition Responses of 2nd-Order LTI Systems **Exponentials and Sinusoids** Stable, Lightly Damped $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t)$ 1.5 2nd-order system $\Delta \mathbf{x}(0)$ given 0.5 0.5 Displacement f_{11} f_{12} Rate F = 0 -0.5 -0.5 $\Delta \dot{x}_1 = f_{11} \Delta x_1 + f_{12} \Delta x_2 + g_1 \Delta u$ -1 -1 $\Delta \dot{x}_2 = f_{21} \Delta x_1 + f_{22} \Delta x_2 + g_2 \Delta u$ -1.5 └ 0 -1.5 10 20 0 30 20 10 30 Time, s Sinusoid with exponential envelope $\Delta x_1(t) = A_1 e^{-\zeta \omega_n t} \cos \left[\omega_n \sqrt{1 - \zeta^2} t + \varphi_1 \right]$ $\Delta x_2(t) = A_2 e^{-\zeta \omega_n t} \cos \left[\omega_n \sqrt{1 - \zeta^2} t + \varphi_2 \right]$ 46

Equilibrium Response of Linear, Time-Invariant Models

- General equation $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t)$
- At equilibrium,
 - Derivative goes to zero
 - State is unchanging
 - $\mathbf{0} = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t)$
- State at equilibrium

$$\Delta \mathbf{x}^* = -\mathbf{F}^{-1} (\mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*)$$
$$= -\frac{Adj(\mathbf{F})}{\det(\mathbf{F})} (\mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*)$$

47

State ("Phase")-Plane Plots

- Cross-plot of one component against another
- Time or frequency not shown explicitly in phase plane

Response of Higher-Order LTI Systems Superposition of Sub-System Responses

Examples of Coupled and Uncoupled Third-Order Systems

Third-order system with uncoupled 1st- and 2nd-order sub-systems

	-1	0	0]	
F =	0	0	1	
	0	-1	-1.414	

$\Delta \mathbf{x} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix}$	
--	--

Coupling in first row and first column

1 0.1 0]
$\mathbf{F} = 0.1 0 1$	
0 -1 -1.414	

Rate Coupling, Δx_2				
	- -1	0	0.1	
$\mathbf{F} =$	0	0	1	ĺ
	0.1	-1	-1.414	

51

3rd-Order LTI Systems with Coupled Response

Next Time: Dynamic Effects of Feedback Control

Supplemental Material

Perturbed Initial Conditions Produce Perturbed Path

Equilibrium Response of Second-Order LTI System

System description

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}; \quad \mathbf{G} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}; \quad \mathbf{L} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$

State equilibrium depends on constant input values

$$\begin{bmatrix} \Delta x_{1}^{*} \\ \Delta x_{2}^{*} \end{bmatrix} = -\frac{\begin{bmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{bmatrix}}{(f_{11}f_{22} - f_{12}f_{21})} \begin{bmatrix} g_{1} \\ g_{2} \end{bmatrix} \Delta u^{*} + \begin{pmatrix} l_{1} \\ l_{2} \end{bmatrix} \Delta w^{*} \end{bmatrix}$$
$$|\mathbf{F}| = (f_{11}f_{22} - f_{12}f_{21}) \neq 0$$