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•! Inner, Middle, and Outer 
Feedback Control Loops

•! Step Response of Linear, Time-
Invariant (LTI) Systems

•! Position and Rate Control
•! Transient and Steady-State 

Response to Sinusoidal Inputs
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Outer-to-Inner-Loop 
Control Hierarchy 

•! Inner Loop
–! Small Amplitude
–! Fast Response
–! High Bandwidth

•! Middle Loop
–! Moderate Amplitude
–! Medium Response
–! Moderate Bandwidth

•! Outer Loop
–! Large Amplitude
–! Slow Response
–! Low Bandwidth

•! Feedback
–! Error between command and 

feedback signal drives next 
inner-most loop
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Natural Feedback Control 

Chicken Head Control - 1
http://www.youtube.com/watch?v=_dPlkFPowCc

Osprey Diving for Fish
http://www.youtube.com/watch?

v=qrgpl9-N6jY

Inner Loop

Middle Loop

Outer Loop

Hovering Red-Tail Hawks
http://www.youtube.com/watch?v=-

VPVZMSEvwU
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Outer-to-Inner-Loop 
Control Hierarchy of an 

Industrial Robot 

•! Inner Loop
–! Focus on control 

of individual joints

•! Middle Loop
–! Focus on operation of the robot

•! Outer Loop
–! Focus on goals for robot operation
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Inner-Loop Feedback Control 

Single-Input/Single-Output Example, with forward 
and feedback control logic ( compensation )

Feedback control design must account for 
actuator-system-sensor dynamics
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Thermostatic Temperature Control 

•! Dynamics
–! Delays
–! Dead Zones
–! Saturation
–! Coupling

•! External Effects
–! Solar Radiation
–! Air Temperature
–! Wind
–! Rain, Humidity

•! Structure
–! Layout
–! Insulation
–! Circulation
–! Multiple Spaces

... all controlled by a simple (but nonlinear) on/off switch
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Thermostat Control Logic 

e(t) = yc(t)! y(t) = uc(t)! ub (t)
< Thermostat >

u(t) =
1(on), e(t) > 0
0 (off ), e(t) " 0

#
$
%

&%

•! Control Law [i.e., logic that drives the control variable, u(t)] 

•! yc: Desired output 
variable (command)

•! y: Actual output
•! u: Control variable 

(forcing function)
•! e: Control error
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Thermostat Control Logic 

•! ...but control signal would chatter  with slightest 
change of temperature 

•! Solution:  Introduce lag to slow the switching 
cycle, e.g., hysteresis  

u(t) =
1 (on), e(t) ! T > 0
0 (off ), e(t) + T " 0

#
$
%

&%

u(t) =
1 (on), e(t) > 0
0 (off ), e(t) ! 0

"
#
$

%$
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Thermostat Control Logic 
with Hysteresis 

•! Hysteresis delays the response
•! System responds with a limit cycle

•!Cooling control is similar  
with sign reversal 
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Speed Control of 
Direct-Current Motor

u(t) = ce(t)
where

e(t) = yc(t)! y(t)

How would y(t) be measured?

Angular Rate

Linear Feedback Control Law (c = Control Gain)
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Characteristics of the Model

•! Simplified Dynamic Model
–! Rotary inertia, J, is the sum of motor and load inertias
–! Internal damping neglected
–! Output speed, y(t), rad/s, is an integral of the control 

input, u(t)
–! Motor control torque is proportional to u(t) 
–! Desired speed, yc(t), rad/s, is constant
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1/J

Model of Dynamics 
and Speed Control

First-order LTI ordinary differential equation

y(t) = 1
J

u(t)dt
0

t

! = c
J

e(t)dt
0

t

! = c
J

yc(t)" y(t)[ ]dt
0

t

!

= " c
J

y(t)[ ]dt
0

t

! + c
J

yc(t)[ ]dt
0

t

!

dy(t)
dt

=
1
J
u(t) = c

J
e(t) = c

J
yc (t) ! y(t)[ ], y 0( )   given

Integral of the equation, with y(0) = 0

•!Positive integration of yc(t)
•!Negative feedback of y(t) 12
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Angular Rate



Step Response of 
Speed Controller

y(t) = yc 1! exp
!

c
J

"
#$

%
&' t(

)
*
*

+

,
-
-
= yc 1! exp

.t() +, = yc 1! exp
! t /(

)*
+
,-

•! where
! !! = –c/J = eigenvalue or 

root of the system (rad/sec)
! "" = J/c = time constant of 

the response (sec)

Step input :

yC (t) =
0, t < 0
1, t ! 0

"
#
$

%$•! Solution of the integral

What does the shaft angle 
response look like?
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Angular Rate

Feedback Control Law
u(t) = ce(t)
where

e(t) = yc(t)! y(t)

How would y(t) be measured?

Angular Position

•! Simplified Dynamic Model
–! Rotary inertia, J, is the sum of motor and load inertias
–! Output angle, y(t), is a double integral of the control, u(t)
–! Desired angle, yc(t), is constant

Angle Control of 
Direct-Current Motor
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Model of Dynamics and Angle Control

y(t) = c
J

yc ! y(t)[ ]
0

t

" dt dt
0

t

"

= ! c
J

y(t)[ ]
0

t

" dt 2
0

t

" + c
J

yc[ ]
0

t

" dt 2
0

t

"

2nd-order, linear, time-invariant ordinary differential equation

 

d 2y(t)
dt 2

= !!y(t) = 1
J
u t( ) = c

J
e t( ) = c

J
yc ! y(t)[ ]

Output angle, y(t), as a function of time
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Angular Position

Model of Dynamics and Angle Control
•! Corresponding set of 1st-order equations, with

–! Angle:  x1(t) = y(t)
–! Angular rate:  x2(t) = dy(t)/dt 

 

!x1(t) = x2 (t)

!x2 (t) =
u(t)
J

= c
J
yc ! y(t)[ ] = c

J
yc ! x1(t)[ ]

16

Angular Position



State-Space Model 
of the DC Motor

Open-loop dynamic equation

 

!x1(t)
!x2 (t)

!

"
#
#

$
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&
= 0 1

0 0
!

"
#

$

%
&

x1(t)
x2 (t)

!

"
#
#

$

%
&
&
+ 0

1 / J
!

"
#

$

%
&u(t)

Closed-loop dynamic equation

Feedback control law

u(t) = c yc (t) ! y1(t)[ ]= c yc (t) ! x1(t)[ ]

 

!x1(t)
!x2 (t)

!

"
#
#

$

%
&
&
= 0 1

'c / J 0
!

"
#

$

%
&

x1(t)
x2 (t)

!

"
#
#

$

%
&
&
+ 0

c / J
!

"
#

$

%
& yc
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Step Response with 
Angle Feedback

%   Step Response of Undamped Angle Control
 
    F1  =   [0 1;-1 0];
    G1  =   [0;1];
    F2  =   [0 1;-0.5 0];
    G2  =   [0;0.5];
    F3  =   [0 1;-0.25 0];
    G3  =   [0;0.25];
    Hx  =   [1 0;0 1];
    
    Sys1    =   ss(F1,G1,Hx,0);
    Sys2    =   ss(F2,G2,Hx,0);
    Sys3    =   ss(F3,G3,Hx,0);
    
    step(Sys1,Sys2,Sys3)

c/J = 1, 0.5, and 0.25

 

!x1(t)
!x2 (t)

!

"
#
#

$

%
&
&
= 0 1

'c / J 0
!

"
#

$

%
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x1(t)
x2 (t)

!

"
#
#
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&
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+ 0

c / J
!

"
#

$

%
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What Went Wrong?
•! No damping!
•! Solution: Add rate feedback in 

the control law

Closed-loop dynamic equation

u(t) = c1 yc (t) ! y1(t)[ ]! c2y2 (t)

 

!x1(t)
!x2 (t)

!

"
#
#

$

%
&
&
=

0 1
'c1 / J 'c2 / J

!

"
#
#

$

%
&
&

x1(t)
x2 (t)

!

"
#
#

$

%
&
&
+

0
c1 / J

!

"
#
#

$

%
&
&
yc

•! Control law with 
rate feedback
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Alternative Implementations 
of Rate Feedback

One input, two outputs

 

u(t) = c1 yc (t) ! y1(t)[ ]! c2y2(t) = c1 yc (t) ! y1(t)[ ]! c2
dy1(t)
dt

One input, one output
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c1 /J = 1 
c2 /J = 0, 1.414, 2.828

%   Step Response of Damped 
Angle Control
 
    F1  =   [0 1;-1 0];
    G1  =   [0;1];
    
    F1a =  [0 1;-1 -1.414];
    F1b =   [0 1;-1 -2.828];
   
    Hx  =   [1 0;0 1];
    
    Sys1    =   ss(F1,G1,Hx,0);
    Sys2    =   ss(F1a,G1,Hx,0);
    Sys3    =   ss(F1b,G1,Hx,0);
    
    step(Sys1,Sys2,Sys3)

Step Response with Angle and 
Rate Feedback
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LTI Model with Feedback Control
•! Command input, uc, has dimensions of u

 

˙ x (t) = F x(t) + Gu(t) + Lw(t)
y(t) = Hxx(t) + Huu(t)u(t) = uc (t) !Cy(t)
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LTI Control with 
Forward-Loop Gain

 

˙ x (t) = F x(t) + Gu(t) + Lw(t)
y(t) = Hxx(t) + Huu(t)

u(t) = C yc (t) ! y(t)[ ]

With Cc = C, command input, yc, has dimensions of y
23

Effect of Feedback Control 
on the LTI Model

 

!x(t) = Fx(t) +Gu(t) = Fx(t) +G uc (t) !Cy(t)[ ]
= Fopen loop x(t) +G uc (t) !C Hxx(t)[ ]{ }

Feedback modifies the stability matrix of 
the closed-loop system

Convergence or divergence
Envelope of transient response

 

= F !GCHx[ ]x(t)+Guc(t)
! Fclosed loopx(t)+Guc(t)
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LTI Model with Feedback Control 
and Command Gain

Command input, yc, is shaped  by Cc

u(t) = uc(t)!Cy(t)
= Ccyc(t)!Cy(t) 25

Effect of Command Gain on LTI Model  

 

!x(t) = Fx(t)+Gu(t) = Fx(t)+G Ccyc(t)!Cy(t){ }
= Fx(t)+G Ccyc(t)!C Hxx(t)[ ]{ }
= F !GCHx[ ]x(t)+GCcyc(t)

Steady-state response of the system

x * (t) = ! F !GCHx[ ]!1GCcyc * (t)

•! Command gain adjusts the steady-state response
•! Has no effect on the stability of the system

 !x(t) = 0

26



Response to Sine Wave 
Input with Angle Feedback: 

No Damping
c1 /J = 1; c2 /J = 0yc (t) = sin ! t( ) = sin 6.28 t( ), deg

•! Why are there 2 
oscillations in the 
output?

–! Undamped 
transient response 
to the input

–! Long-term dynamic 
response to the 
input

•! System has a natural 
frequency of 
oscillation, ##n

•! Long-term response 
to a sine wave is a 
sine wave
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Response to Sine 
Wave Input with 

Rate Damping
c1 /J = 1; c2 /J = 1.414 c1 /J = 1; c2 /J = 2.828

yc (t) = sin ! t( ) = sin 6.28 t( ), deg

With damping, transient response decays
In this case, damping has negligible effect on long-term response 28



System Dynamics Produces 
Differences in Amplitude and 

Phase Angle of Input and Output 

Amplitude ratio and phase 
angle characterize the 

system model
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Amplitude Ratio (AR) =
yOutput Peak
yInput Peak

Phase Angle = 360
tInput Peak ! tOutput Peak( )
Period of Input

, deg

Effect of Input Frequency 
on Output Amplitude and 

Phase Angle
c1 /J = 1; c2 /J = 1.414

•! With low input 
frequency, input 
and output 
amplitudes are 
about the same

•! Output angle 
oscillation “lags” 
input by a few 
degrees

•! Rate oscillation 
leads  angle 

oscillation by ~90 
deg

yc(t) = sin t / 6.28( ), deg
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At Higher Frequency, Output Amplitude 
Decreases, Phase Angle Lag Increases

c1 /J = 1; c2 /J = 1.414yc(t) = sin t( ), deg
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c1 /J = 1; c2 /J = 1.414

yc(t) = sin 6.28 t( ), deg At Even Higher Frequency, 
Amplitude Ratio Decreases
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Frequency 
Response of the 
DC Motor with 

Feedback 
Control 

!!Long-term response to 
sinusoidal inputs over 
range of frequencies
!! Determine 

experimentally 
!! or from the transfer 

function
!!Frequency response 

depicted by Bode Plot 
!!Transfer function
!!Laplace transform 

of system
!!TBD 
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No 
Damping

More 
Damping

Damping 

Next Time:!
Control Systems!
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