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Outer-to-Inner-Loop

Inner Loop

— Small Amplitude

— Fast Response

— High Bandwidth
Middle Loop

— Moderate Amplitude
— Medium Response
— Moderate Bandwidth
Outer Loop

— Large Amplitude

— Slow Response

— Low Bandwidth

Control Hierarchy

Feedback

— Error between command and
feedback signal drives next
inner-most loop




Natural Feedback Control

Inner Loop

Chicken Head Control - 1
http://www.youtube.com/watch?v=_dPlkFPowCc

Middle Loop
Hovering Red-Tail Hawks

http://www.youtube.com/watch?v=-
VPVZMSEvwU

Outer Loop
Osprey Diving for Fish
http://www.youtube.com/watch?
v=qrgpl9-N6jY

Outer-to-Inner-Loop
Control Hierarchy of an
Industrial Robot

* Inner Loop

— Focus on control
of individual joints

- Middle Loop

— Focus on operation of the robot

« Outer Loop
— Focus on goals for robot operation



Inner-Loop Feedback Control

Feedback control design must account for
actuator-system-sensor dynamics

Single-Input/Single-Output Example, with forward
and feedback control logic (“compensation”)

Thermostatic Temperature Control
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Bimetal coil

+ Dynamics + Structure + External Effects
— Delays — Layout — Solar Radiation
— Dead Zones — Insulation — Air Temperature
— Saturation — Circulation — Wind
— Coupling — Multiple Spaces — Rain, Humidity

.. all controlled by a simple (but nonlinear) on/off switch




Thermostat Control Logic

Bimetal coil

Control Law [i.e., logic that drives the control variable, u(t)]

e(t) =y ()= y(@) =u (t)—u,(r) * y.: Desired output

< Thermostat > variable (command)
 y: Actual output

+ u: Control variable
u(t) = L(on), e(t)>0 (forcing function)
0 (off), e(t)<0 - e: Control error

Thermostat Control Logic

0 (off), e(t)<0

u(t)={ 1 (on), e(t)>0

...but control signal would “chatter” with slightest
change of temperature

Solution: Introduce /ag to slow the switching
cycle, e.g., hysteresis

{ 1(on), e(t)—T >0
u(t) =
0 (off), e(t)+T <0




Thermostat Control Logic
with Hysteresis

» Hysteresis delays the response
« System responds with a limit cycle

+ Cooling control is similar
with sign reversal

Thermostatic Response
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Speed Control of
Direct-Current Motor

~.

Linear Feedback Control Law (¢ = Control Gain)
u(t)=ce(t)
where How would y(t) be measured?

e(t) =y ()—y@)
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Characteristics of the Model

1/J

- Simplified Dynamic Model

— Rotary inertia, J, is the sum of motor and load inertias

— Internal damping neglected

— Output speed, y(t), rad/s, is an integral of the control
input, u(t)

— Motor control torque is proportional to u(t)

— Desired speed, y.(1), rad/s, is constant
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Model of Dynamics
Arngular Fate and Speed Control

First-order LTI ordinary differential equation

dy(t) 1
Ay
dt J

()="e)="[5.0)~y0]. y(0) given

Integral of the equation, with y(0) =0

1 t t t
=5 ! u(t)dt = % ! e(t)dt = § £ [y.()— y(0)]dt

== J [y(t)]d +§£[yc<r>]dt

* Positive integration of y ()

*Negative feedback of y(t) 12




Step Response of
Speed Controller

Step input :

Angular Rate

0, t<0
« Solution of the integral yc<t>={ 1 120

Y=y, {1 - eXp(’w =y [1-exp" |=7y, [1 —exp

where
- A=-c/J = eigenvalue or
root of the system (rad/sec)
- 7= J/c = time constant of
the response (sec)

What does the shaft angle
response look like?
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Angle Control of
Direct-Current Motor

Angular Position

- Simplified Dynamic Model
— Rotary inertia, J, is the sum of motor and load inertias
— Output angle, y(1), is a double integral of the control, u(t)
— Desired angle, y.(1), is constant

Feedback Control Law
u(t)=ce(t)
where How would y(t) be measured?

e(t)=y (1)—y() 14




Model of Dynamics and Angle Control

| Angular Position |

2nd-order, linear, time-invariant ordinary differential equation

dy@) 1 .~ ¢ o\ cr
o =0 =Jult)=Ze()=7]y -]

Output angle, y(1), as a function of time

¥(0) =§H v, = y(0))dede
00

00 15

Model of Dynamics and Angle Control
- Corresponding set of 1st-order equations, with
— Angle: X (1) = y()
— Angular rate: x,(t) = dy(t)/dt
x] (t) =X, (t)

o ut) _cr o q_Cr.
5(0== ][yc ()] J[yc x, ()]

Angular Position
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State-Space Model
of the DC Motor

Open-loop dynamic equation

[ (1) }{ 0 1 }[ x, (1) ]J{ 0 }m)
i, (1) 00 | x0 1/J

Feedback control law

u(t)=cly.®) - y®)]=c[y.() - x,@®)]

Closed-loop dynamic equation

{ x,() ] [ 0 1 }{ x, (1) ] [ 0 }
= + yc
X, (1) —/J 0 x, (1) clJ
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Step Response with
Angle Feedback

{xm} { 0 1}[%0)] { 0 }
= =+ yc
X, (1) —c/J 0 X, (1) clJ

% Step Response of Undamped Angle Control

F1 =
G1 =
F2 =
G2 =
F3 =
G3 =
Hx =

Sys1
Sys2
Sys3

step(Sys1,Sys2,Sys3)

| ¢/J=1, 0.5, and 0.25

[01;-10];
[0;1];
[01;-0.50];
[0;0.5];

[0 1;-0.25 0];
[0;0.25];
[10;01];

ss(F1,G1,Hx,0);
ss(F2,G2,Hx,0);
ss(F3,G3,Hx,0);
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What Went Wrong?

* No damping!
- Solution: Add rate feedback in
the control law

« Control law with _ _ B
rate feedback u(t) = ¢, [yc(t) N (t)] C,¥,()

Closed-loop dynamic equation

@ | | 0 1 x,(1) L0
o) || —ald = ld || x@0) e 1J e
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Alternative Implementations

of Rate Feedback
dy, (1)

u(t) = C1[yc(t) - y1(t)]_czy2(t) = C1[yc(t) - yl(t)]_CZ dr

One input, two outputs

One input, one output

20



Step Response with Angle and
Rate Feedback

c, =1
c,/J=0,1.414, 2.828

% Step Response of Damped
Angle Control

F1 = [01;-10];
G1 = [0:1];

Fla= [01;-1-1.414];
Fib= [01;-1-2.828];

Hx = [10;01];
Sys1

Sys2
Sys3

ss(F1,G1,Hx,0);
ss(F1a,G1,Hx,0);
ss(F1b,G1,Hx,0);

step(Sys1,Sys2,Sys3)

LTI Model with Feedback Control

« Command input, u_, has dimensions of u

— x(t)=Fx(t)+ Gu(r) + Lw(t)
u@=uO=CYO] |y x+Huo




LTI Control with

Forward-Loop Gain
x(1)=Fx(t)+ Gu(r)+ Lw(?)
y(&)=H x(7)+H, u(?)

u(t)=Cly ()- y@)]

With C_, = C, command input, y_, has dimensions of y
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Effect of Feedback Control
on the LTI Model

x(t)=Fx(1)+ Gu(t) = Fx(t)+ G|u,(r)— Cy(?)]

=F, .. 100 X(1) + G{uc(t) - C[Hx( )]}

|[F-GCH_|x(1)+Gu,(t)
F x(#)+Gu,(¢)

closed loop

11>

Feedback modifies the stability matrix of
the closed-loop system
Convergence or divergence
Envelope of transient response

24



LTI Model with Feedback Control

and Command Gain
Command input, y,, is “shaped” by C_

u()=u,(1)-Cy@)
=Cy.()-Cy() 25

Effect of Command Gain on LTI Model

x(1)=Fx(t)+Gu(t)=Fx(t)+G{C.y (t)- Cy(1)}
=Fx(+G{C,y,()-C[Hx()]}
=[F-GCH,|x(t)+GC.y, (1)

Steady-state response of the system

x(1)=0

x*(1)=—-[F-GCH,| GC.y, *(1)

+ Command gain adjusts the steady-state response
+ Has no effect on the stability of the system
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Response to Sine Wave
Input with Angle Feedback:
No Damping

y.(t)=sin(®1)=sin(6.281),deg| |G =1;64=0

+ Why are there 2
oscillations in the
output?

— Undamped
transient response
to the input

— Long-term dynamic
response to the
input

+ System has a natural
frequency of
oscillation, w,

+ Long-term response
to a sine wave is a

27
Response to Sine
Wave Input with
Rate Damping yc(t)zsin(a)t)zsin(6.28 t),deg
| qAN=1;cM=1.414 | | cA=1;c,=2828 |

With damping, transient response decays
In this case, damping has negligible effect on long-term response 28



System Dynamics Produces
Differences in Amplitude and
Phase Angle of Input and Output

| y Output Peak ‘

Amplitude Ratio (AR) =

‘ylnput Peak|

(tlnput Peak — tOutpm Peak )

Phase Angle = 360 - ,
Period of Input

Amplitude ratio and phase
angle characterize the
system model
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Effect of Input Frequency
on Output Amplitude and
Phase Angle y.(t)=sin(t/6.28), deg

cN=1;c/0=1414 |

+  With low input
frequency, input
and output
amplitudes are
about the same

+ Output angle
oscillation “lags”
input by a few
degrees
Rate oscillation
“leads” angle
oscillation by ~90
deg
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At Higher Frequency, Output Amplitude
Decreases, Phase Angle Lag Increases

y.(t)=sin(t),deg| [c, H=1;c,=1.414

y.(t)=sin(6.28 ¢), deg

c,J=1;c,/J=1.414

31

At Even Higher Frequency,
Amplitude Ratio Decreases

32



Frequency
Response of the
DC Motor with
Feedback
Control

* Long-term response to
sinusoidal inputs over
range of frequencies

= Determine
experimentally

= or from the transfer
function

* Frequency response
depicted by Bode Plot

= Transfer function

= Laplace transform
of system

« TBD

Next Time:

No
Damping

Damping
More
Damping

Control Systems
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