INFERENCE WITH FEW HETEROGENEOUS CLUSTERS

Rustam Ibragimov and Ulrich K. Miiller*

Abstract—Suppose estimating a model on each of a small number of poten-
tially heterogeneous clusters yields approximately independent, unbiased,
and Gaussian parameter estimators. We make two contributions in this
setup. First, we show how to compare a scalar parameter of interest between
treatment and control units using a two-sample #-statistic, extending pre-
vious results for the one-sample 7-statistic. Second, we develop a test for
the appropriate level of clustering; it tests the null hypothesis that clustered
standard errors from a much finer partition are correct. We illustrate the
approach by revisiting empirical studies involving clustered, time series,
and spatially correlated data.

I. Introduction

HE use of clustered standard errors has become wide-

spread in empirical economics. For instance, Bertrand,
Duflo, and Mullainathan (2004) stress the importance of
allowing for time series correlation in panel difference-in-
difference applications. The usual asymptotic justification
for the use of clustered standard errors requires the num-
ber of clusters to go to infinity so that standard errors can
be consistently estimated. In a number of contexts, though,
only a few clusters reliably provide independent information
about the parameter of interest. It is then not possible to esti-
mate the correct standard errors precisely, and the variability
in the standard error estimator has to be taken into account
when conducting inference.

In a time series context, the asymptotic framework of
Kiefer and Vogelsang (2002, 2005) provides a model for the
variability of such standard error estimators: Even asymptot-
ically, the denominator of their z-statistics remains random.
But its asymptotic distribution is known (at least up to a scal-
ing constant that cancels in the overall fraction), so that an
appropriate critical value can be computed. Similarly, in a
panel context, Hansen (2007) and Donald and Lang (2007)
derive asymptotically justified inference in which the vari-
ability of the standard error is explicitly taken into account.
Closely related approaches are developed in Miiller (2007,
2014), Stock and Watson (2008), Sun, Phillips, and Jin
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(2008), Bester, Conley, and Hansen (2011), and Sun (2013,
2014).

An important limitation of these approaches is that the
asymptotic distribution of the standard error estimator needs
to be fully known, at least up to a scaling constant. This
requires strong homogeneity assumptions, ruling out clusters
of different size or with substantially different design matri-
ces and, in a time series context, deterministic or stochastic
trends in second moments.

In general, allowing for variance heterogeneity leads to
test statistics whose distribution depends on the relative vari-
ances from each cluster. These nuisance parameters cannot
be consistently estimated, given that the point of cluster-
ing standard errors is to remain agnostic about the form of
intracluster correlations. With a finite number of clusters,
bootstrap or subsampling methods also have no theoretical
justification. In Monte Carlo experiments, Cameron, Gel-
bach, and Miller (2008) found good performance of the
percentile-¢ wild cluster bootstrap even with a small number
of clusters, although these experiments focused on relatively
homogeneous designs. We consider explicitly heterogenous
designs in this paper and find that the method does not
generally control size under cluster heterogeneity. Further
analytical progress can be made by deriving bounds for the
appropriate quantile of the test statistic that hold for any
value of the cluster variances.!

Bakirov and Székely (2005) establish the following
remarkable small sample result. The usual Student-¢ critical
values are valid for the #-test about the mean of ¢ indepen-
dent and Gaussian observations, even if the variances are
heterogeneous, at least at conventional significance levels.2
In a previous paper, Ibragimov and Miiller (2010), we rely
on this result to derive asymptotically valid inference about
a scalar parameter of interest B. Specifically, partition the
data into ¢ > 2 groups that provide approximately inde-
pendent information about B. Estimate the model on each
of the groups to obtain estimators Bj, j = 1,...,q (the
model may contain additional parameters beyond B, which
are estimated along with B; but then discarded). Then test
the null hypothesis Hy : B = B¢ with the usual ¢-test using
the g observations {ﬁj}]‘.’zl and g — 1 degrees of freedom.3
Given the result of Bakirov and Székely (2005), this test is
asymptotically valid as long as the Bj’s are asymptotically

1See Imbens and Kolesar (2012), Carter, Schnepel, and Steigerwald
(2013), Webb (2014), MacKinnon and Webb (2014), and Canay, Romano,
and Shaikh (2014) for some recent alternative suggestions for inference
with a small number of clusters.

2For a two-sided 7-test, the result holds at the 8.3% level and below for
all values of ¢ > 2, and it also holds at the 10% level for g < 14.

3The idea of using group estimates for a ¢-test goes back to Brillinger
(1973). It is also known as the batch mean method in the analysis of Markov
chain Monte Carlo output and as the Fama and MacBeth (1973) method in
finance. Ibragimov and Miiller (2010) demonstrate its validity even with a
small number of heterogeneous groups.
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independent, unbiased, and Gaussian of possibly different
variances. Even severe heterogeneity in the variability of
the ﬁj’s can thus be accommodated, enabling valid inference
with very few and potentially heterogeneous clusters. As
discussed in more detail in Ibragimov and Miiller (2010),
natural group choices in a time series or spatial setting
lead to asymptotic independence of the group estimators
under conventional weak dependence assumptions, so that
this approach may be applied in a wide range of settings.
This paper extends this approach in two dimensions. First,
we establish a corresponding result for the comparison of a
scalar parameter across two types of groups, such as treat-
ment and control groups, or pre- and post-structural break
data with known break date. The small sample problem here
is the analysis of the usual two-sample #-statistic when the
underlying observations in the two samples are indepen-
dent and Gaussian, but of potentially heterogeneous variance
within and across the two samples. We prove that the criti-
cal value of a Student-7 distribution with degrees of freedom
equal to the smaller sample size minus 1 leads to valid tests at
conventional significance levels. This result then allows us to
derive asymptotically valid inference about a scalar param-
eter B = 8; — 3, where 8; and 8, describe two different
populations. Let {8, ;}7.; and {5, ;}?2, be the parameter esti-

mates from the two types of groups with population values
d1 and 3,, respectively, where g, g» > 2. The null hypothe-
sis Hy : B = Py can then be tested with the usual two-sample
t-test using the observations {31, j}j'.i1 and {82, j fil, and a crit-
ical value from a Student-¢ distribution with min(gy, ¢,) — 1
degrees of freedom.

Second, we develop a test for the appropriate level of
clustering. A researcher entertains the null hypothesis that
a fine level of clustering is appropriate, with the alterna-
tive that only a coarser level of clustering (few groups with
corresponding estimators {Bj}]?:l) actually provides approx-
imately independent information about the parameter of
interest. For example, in an analysis with a large panel of
countries, a fine level of clustering might cluster on coun-
tries, while a coarser level imposes independence only across
a few (= g) larger regions. We approximate the fine clus-
tering by asymptotics where the number of clusters goes to
infinity, so that under the null hypothesis, the asymptotic
variance 0].2 of each of the ﬁj can be consistently estimated.
In the example, p ; is the parameter estimator using data from
region j only, and sz is estimated using the usual clustered

standard error in the estimation of B ;, where the clustering is
on countries. The suggested test then compares the sample
variance computed from the g observations {f; };?:1 with what

one would expect if the ﬁj’s were Gaussian with variance
proportional to the estimated value of o?, as would be the
case asymptotically under the null hypothesis. The test can
also be applied in the context of comparisons between two
populations as described in the first extension. Rejections
of the test suggest that usual inference with clustered
standard errors using the fine level of clustering is invalid,

so instead, the methods based on group estimators B ; should
be applied.

The remainder of this paper is organized as follows.
Section II provides evidence on the failure of Cameron et al.’s
(2008) percentile-t wild cluster bootstrap, as well as Bester
etal.’s (2011) approach, to reliably control size under cluster
heterogeneity. Section III discusses inference about compar-
isons across two populations in detail. Section IV develops
the test for the level of clustering and provides some Monte
Carlo evidence on its small sample properties. Section V
illustrates the new tests in four empirical applications.

II. Validity of Inference with Few Heterogeneous Clusters
As an initial motivation, consider a linear regression,

Yii = Xj/,ie + € (D

where y;; and X;; are the ith of n; observations from clus-
ter j,j = 1,...,q, X;; is a nonrandom k x 1 regressor,
and ¢;; is mean zero normal and uncorrelated across clusters
Ele;e1x] = 0 for j # [, but not necessarily within clus-
ters. Suppose we are interested in inference about the first
element of 0, B = |0 with v; = (1,0,...,0)". Specifically,
we seek to test the null hypothesis Hy : B = Po against the
two-sided alternative H; : B # Bo.
The usual OLS estimator HL5 can be written as

-1
q

> 7. )
j=1

where Iy = 357, X,uXj; = XjXj, and Z; = Y, Xjue;,
are independent \'(0, ¥;) with W; = Var[Y_”, X; ;1. The
point of clustering is to remain agnostic about the value of
{W;};_, while conducting inference about f.

Let ¢; = Z; — T;(8°'S — 6). Then the usual clustered and
degree of freedom corrected standard error of fOL5 = v/ §OLS
is 65, where

q
eOLS —0 + ZF]

j=1

-1 -1

q q q

A2 q / Y

G =—7u|2D 6 | | 22T

q j=1 j=1 j=1
3)
and the corresponding z-statistic is
AOLS
tcluster — B — BO 4)
Gp

Ibragimov and Miiller’s (2010) (IM in the following)
suggestion is to estimate the parameter of interest from
each cluster and then apply a z-test to the g estimates. If
I'; is invertible, the OLS estimator of 6 from cluster j is
éj =0+ F;le, so that the cluster j estimator of B is
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Bj =B+ F;le. Thus, IM’s suggestion is to reject Hy when
the absolute value of

tIM — \/Z]B ;BO

is larger than the usual critical value cv from a Student-¢ with
g — 1 degrees of freedom, where p = ¢~ > B; and S? =

(&)

q+1 P B — B2, yielding a confidence interval for p with

end points (3) + cvS/,/q. Since Bj ~ N8, L’IF;I\IJJ-FJ-_IH)
independent across j, the result of Bakirov and Székely
(2005) described in section I ensures that this inference
remains valid for any value of the W;’s at the significance
level 8.3% and below.

Cameron et al. (2008) (CGM in the following) instead
consider a wild bootstrap to approximate the null quantiles
of 11Ut Tn the bootstrap world, the I';’s are as in the actual
sample, but the Z;’s are replaced by Uj*?zf, where the U;
are 1.i.d. random variables with P(Uj* =1 = P(Uj* =
—1) = 1/2 and éf are the estimates of Z; under the null
hypothesis, that is, with R the last K — 1 columns of I, éf =
Z; —T;R(CL, RTyR)™' Y% R'Z;. Note that this bootstrap
distribution consists of (at most) 29 distinct points. CGM
find in Monte Carlo simulations that under homogeneous
clusters (I'; ~ I'; and W; ~ W; for all i,j), this procedure
works well even for fairly small g.

Alternatively, Bester et al. (2011) (BCH in the following)
suggest relying on 7" with a critical value from a Student-
t with g — 1 degrees of freedom. Under the homogeneity of
I = XJ’XJ across clusters (I'; = I')), this results in valid
inference because "' then reduces to IM’s statistic '
via p = BOLS.

Little is known about the validity of CGM’s and BCH’s
method under general cluster heterogeneity for finite ¢
(validity under ¢ — oo follows from standard arguments).
Both methods implicitly define a critical region CR, the sub-
set of values of {Zj};?:1 for which the null hypothesis Hy : p =
Bo is rejected. The critical region depends on the observed
matrices {Fj};le, CR = CR{I-],};;:l. In this notation, the null
rejection probability simply becomes P({Z.,-}f:l € CR{Ff};'{=1 ),
a function of {W;}1_, via Z; ~ N'(0,¥)). As noted before,
the point of clustering is to remain agnostic about the value
of {W;}7_,. So for a given value of {I';}/_,, the size of these
methods is usefully defined as

sup P({Z;};_, € CR{F/}?:l)’ ©

il

the largest rejection probability that can be induced by vary-
ing {\Ifj};’zl. It is computationally difficult to determine this
quantity, as the space of ¢ covariance matrices of dimension
k x k is large unless both k and g are very small. To get
some sense of the reliability of the CGM and BCH methods,
we compute their rejection probability for a relatively small
set of values of {\I{i}le at the edge of the parameter space,

as detailed in the online appendix. The largest of these null
rejection probabilities is, by construction, a lower bound on
actual size, as defined by equation (6).

Since size depends on {Fj}/?:l, we computed this lower
bound for 100 independent draws of {Fj}jqzl, where I'; are
distributed i.i.d. Wishart with 2k degrees of freedom and
scale matrix I;. Table 1 reports summary statistics of these
100 draws for various values of k and g. One can see that both
methods are seriously oversized, at least for some values of
{Fj};.’:l. The one exception is CGM’s method for k = 1 and
q > 4, for which we found no evidence of size distortions.
For k = 1 and ¢ = 4, CGM’s method seems to result in
an empty critical region; it never rejects. With ¢ = 4, the
bootstrap distribution has only 29 = 16 points of support,
and for k = 1, the realized value of test statistic 71" appar-
ently always falls between 2.5% and 97.5% quantiles of this
distribution.

For computational reasons, we considered only the values
1, 2, and 3 for the number of regressors k. Note, however,
that k can be thought of as the number of noncluster-specific
regressors. This follows from standard Frisch-Waugh logic.
Let W;; be regressors that are specific to one group, that is,
each element of W;; is nonzero only for one cluster j. Let
Xi,i be the k x 1 noncluster-specific original regressors, and
let §;; be the original disturbances. Now define X;; and ¢;;
as the residuals of a linear regression of X;; and ; on W,
respectively. Then ¢;; are still uncorrelated across clusters,
equations (2) to (4) still hold, and both CGM’s and BCH’s
method behave as described in table 1. For instance, if a
regression analysis contains cluster fixed effects and a sin-
gle noncluster-specific regressor of interest, then the k = 1
results of table 1 apply.

One might argue that this linear regression design with
normal errors and fixed regressors is fairly special. But con-
sider asymptotics where the number of observations in each
cluster n; is some positive fraction of n and n — oo. A
law of large numbers and a central limit theorem applied to
cluster averages then yields n='T; = n~' 3"/ | XX, e
and n='2Z; = "7 | X; 61 = N(0, ¥)) independent across
J (see IM for additional details and a generalization to GMM
models). The distributional assumption of treating the I'; as
fixed and Z; as independent mean-zero normals then arises
naturally. The numbers in table 1 are therefore also lower
bounds on the asymptotic size of the CGM and BCH method
under such asymptotics, and IM’s method controls asymp-
totic size no matter the value of { \Dj};’: |- Consequently, the
results here point to IM’s method as a generally more reli-
able procedure to conduct inference with few heterogeneous
clusters.

Note, however, that in order to implement IM’s 7-statistic,
equation (5), it must be possible to estimate the parameter
B from each cluster. This rules out parameters of interest f§
that are identified only from across cluster variation, render-
ing the I'; noninvertible. A particularly important example
is inference about the difference of a linear regression
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TABLE 1.—LOWER BOUNDS ON SIZE OF TESTS IN GENERIC NORMAL LINEAR REGRESSION WITH FEW CLUSTERS AND HETEROGENEOUS X]fXj

CGM BCH
Minimum Q Median Qs Maximum Minimum Q Median Q3 Maximum
q=4
k=1 0.0 0.0 0.0 0.0 0.0 3.9 8.6 14.0 17.4 100.0
k=2 3.7 7.2 9.1 12.4 63.6 4.7 8.6 15.3 20.0 100.0
k=3 6.3 11.2 14.5 20.6 68.8 6.2 11.8 17.5 20.8 100.0
q=3
k=1 4.3 4.4 4.5 4.8 4.9 6.6 9.7 11.8 16.7 27.3
k=2 4.8 9.1 11.1 13.9 33.2 6.3 9.3 11.6 14.9 27.4
k=3 6.3 10.8 14.0 17.8 35.8 6.0 9.3 11.6 14.7 26.2
g=12
k=1 4.5 4.6 4.7 5.0 5.1 7.2 9.8 12.0 15.9 24.2
k=2 53 6.8 8.3 10.2 19.9 6.0 8.4 10.0 12.9 28.2
k=3 6.3 8.5 9.9 13.0 22.2 6.3 8.5 10.6 12.8 22.2

Entries are lower bounds on size in percent of nominal 5% tests using the Cameron et al. (2008) (CGM) and Bester et al. (2011) (BCH) methods for inference about a scalar coefficient with ¢ clusters in a linear
regression with k noncluster-specific regressors. The columns report the minimum, first quartile, median, third quartile, and maximum of the lower bound over 100 draws of (X]/X, }J‘.’:, from an i.i.d. Wishart distribution

with 2k degrees of freedom and scale matrix ;. Based on 10,000 Monte Carlo draws.

coefficient between two populations with the first g; clusters
from one population and ¢ = g — gq; > 0 independent
clusters from the second population. With a scalar regressor
x; i, this corresponds in the above notation to inference about
the first element of 6 in equation (1) with X;; = (xj;,x;,;)

forj < gy and X;; = (0,x;;) forj =q +1,...,q1 + ¢,
leading to 2 x 2 matrices I'; = XJ’XJ of the form
Y 00
I = Vi Vi forj <gyandI'; =
Vi Yi 0y;
forj=q+1,....q1 + ¢ @)
withy; = Y17 2% > 0,and Z = 37| X, ~ N(0, W)
with '
Al 00
v = Vi forj<gyandI'; =
Wi 0y
forj=q1+1,....,91 +q2

for some s; > 0. As before, these expressions also remain
valid in the presence of additional cluster-specific regres-
sors W;; once x;; and ¢;; are defined as residuals of a
linear regression of the original scalar regressor of inter-
est X;; and the original disturbance ;; on the cluster-specific
regressors.

Table 2 reports summary statistics of lower bounds on
size (6) of the CGM and BCH methods in this two-sample
design for various values of g; and g;. As in table 1, for each
pair of (g1, ¢»), we generated 100 draws of {yj};]:1 with y;
i.i.d. chi squared with 2 degrees of freedom. For each such
realization of {yj};’:l, we compute the largest null rejection
probability over a finite set of values of {dfj}]‘.’zl detailed in
the online appendix. As can be seen from the table, neither
of the two methods yields reliable inference. This motivates
the development of a version of IM’s method that guarantees
valid inference in the two-sample design, which we pursue
in the next section.

III. Comparisons between Two Populations

A. Small Sample Result

Let Y;; be independent random variables with distribu-
tion Y;; ~ N(ui,czi),j =1,...,q;, i = 1,2, where
gi > 2. Define the statistics ¥; = q; ! ?’z Y;; and si2 =
(¢ — D7'Y% (v;; — V)% for i = 1,2. The parameter of
interest is A = L — W2, SO we seek to test Hy : A = Ay
against H; : A # Ayp. The usual two sample ¢-statistic is

given by

Y, -V, — A
=270 (8)
Tz ‘\'2
- 22
q1 q2

and the null hypothesis is rejected for large values of |¢].4 In
the case of homogeneous samples with o;; = o; > 0, the
null distribution of ¢ depends only on the nuisance parameter
01/02, and Mickey and Brown (1966) show that the quan-
tiles of ¢ are bounded by the appropriate quantiles from a
t-distribution with min(q;, g») — 1 degrees of freedom. This
bound is sharp, since it is obtained as either ¢;/0, — 0 or
01/0y = o0.

Theorem 1 provides a corresponding result under hetero-
geneity within the individual samples, where the nuisance
parameter space involves, in addition, the g; + g, — 2 ratios
o,-,j/ci,l,j = 2, « s (i, = 1,2

Theorem 1. Let cv(a,m) be the 1 — a/2 quantile of the
Student-t distribution with m degrees of freedom. Under the
null hypothesis of A = Ay,

sup  P(|t| > cv(a, min(g1,42) — 1)) =

q1 U
{Gl,j}j:p{O'Z,j}jzl

4 We define f to be zero if s7 = s3 = ¥, — ¥, = 0, a zero probability event
if max; jo;; > 0.
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TABLE 2.—LOWER BOUNDS ON SIZE OF TESTS ON DUMMY COEFFICIENT IN TWO-SAMPLE DESIGN
OF A NORMAL LINEAR REGRESSION WITH FEW CLUSTERS AND HETEROGENEOUS X j’X (i

CGM BCH
Minimum Q Median Qs Maximum Minimum Q Median Q3 Maximum
Qt+q=4
q1 =2 5.1 11.0 13.1 16.2 329 18.3 22.6 35.6 100.0 100.0
g1 +qg=38
q1 =2 19.6 38.9 423 46.1 100.0 20.9 28.9 32.0 100.0 100.0
q1 = 10.8 17.0 20.3 259 47.8 11.7 21.7 27.5 324 100.0
q =4 7.5 13.0 15.8 19.4 38.9 134 22.8 27.3 30.6 100.0
q1+q =12
q1 =2 36.1 442 46.0 47.8 100.0 21.0 32.8 345 100.0 100.0
q1 =3 16.9 20.6 22.6 28.5 100.0 11.3 19.3 242 31.8 100.0
q1 =4 10.2 13.1 16.2 21.0 41.3 10.1 16.6 222 26.8 100.0
q1 =5 8.2 10.8 12.3 16.1 100.0 11.2 16.4 21.7 252 100.0
q1 = 7.7 12.1 14.9 184 36.1 134 20.2 24.1 27.8 100.0

Entries are lower bounds on size in percent of nominal 5% tests using the Cameron et al. (2008) (CGM) and Bester et al. (2011) (BCH) methods for inference about the difference between a scalar regression
coefficient between two populations, with ¢; clusters from the first population and g, clusters from the second population. The columns report the minimum, first quartile, median, third quartile, and maximum of the

lower bound over 100 draws of X/X; that are proportional to i.i.d. Chi-squared random variables with 2 degrees of freedom. Based on 10,000 Monte Carlo draws.

for2 < q1,q> <50 and a € {0.001,0.002,...
also for a € {0.083,0.084, ...,

,0.083}, and
0.10} if2 < q1,q» < 14.

Theorem 1 is a new probabilistic result of potentially
independent interest in the literature of small sample prop-
erties of 7-statistics and quadratic forms in symmetric and
normal variates (Efron, 1969; Benjamini, 1983; Dufour,
1991; Dufour & Hallin, 1993; Bakirov, 1989a, 1989b, 1995;
Bakirov & Székely, 2005). The most closely related work is
Bakirov (1998), who studies the behavior of the two-sample
t-statistic with the pooled variance estimator in the denom-
inator under variance heterogeneity. Bakirov (1998), shows
that the Student-¢ critical value with min(q;, ¢2) — 1 degrees
of freedom yields a valid test when min(q;, g») > 7 and for
very low levels of o (much smaller than 1% for most values
of (g1, g2), and always less than 1%). The proof of theorem
1 is involved. It relies in part on the approach of Bakirov
(1998), the insights of Bakirov and Székely (2005), and a
number of additional arguments. (See the online appendix
for details.)

One step of the proof requires comparisons of a (large
but finite) set of quantities that depend on «, ¢, and ¢;.
We performed these comparisons for the values indicated in
the theorem, but we would expect the result to go through
also for additional values of o and ¢q;,¢q» > 50. Under
min(qgi,q2) — 0o and max;;x;0;;/0k; < 00, the valid-
ity of the z-test follows, of course, from standard asymptotic
arguments.

In small samples, the r-test of equation (8) can be quite
conservative; that is, its null rejection probability can be sub-
stantially below the nominal level o for some values of 0,% i
This raises a concern about power. A natural comparison 1s
a test based on the numerator ¥; — ¥» — A in equation (8)
with known variances, that is, a test that rejects for large
values of |z| with

. Yi—Y,— Ay )

\/q1_2 ]101]+QZ ]10%]

and the usual normal critical values. Figures 1 and 2 plot
the rejection probabilities for some choices of g, ¢», and

- of nominal 5% level tests. Note that in some scenarios,
the null rejection probability of the z-test is very small; for
instance, in the upper-right plot of figure 2, the null rejection
probability is only 0.56% for g; = 4 and g, = 16. Remark-
ably, this severe underrejection does not lead to a large loss
in power. Under alternatives where the z-test has roughly
50% power, the rejection probability of the the 7-test seems
almost completely determined by min(qi, q;), irrespective
of any variance heterogeneity. As such, substantial power
losses compared to the z-test under such moderate alterna-
tives arise only when min(q, g2) = 4 (where the two-sided
critical value is 3.18 for the #-test compared to 1.96 for the
z-test). IM reported very similar findings for the one-sample
t-statistic in their figure 3.

B. Large Sample Inference with a Finite Number of Groups

Our interest in theorem 1 mainly stems from its applica-
tion to valid large sample inference as follows. Suppose §;,
i = 1,2 are parameters of some econometric model, and we
are interested in inference about § = 8; — 8,, that is, we
want to test the null hypothesis Hy : B = Bo. The model
might be linear or nonlinear and might involve additional
parameters beyond 3;. Suppose the total n observations are
partitioned into ¢ +¢, groups, such that g, groups provide at
least asymptotically independent information about §;, and
the remaining ¢, groups provide asymptotically independent
information about 3,. Estimate the model g, +¢, times, using
observations of each group only, and let 3,», »j=1,...,qibe
the resulting estimators of §;, i = 1,2. Under asymptotics in
which the number ¢, + ¢, of groups is fixed and each group
contains more and more observations, standard results on
the large sample behavior of a wide class of estimators §;, i

imply

Vi =8 = N6} ). j=1....qni =12 (10)
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FIGURE 1.—REJECTION PROBABILITIES OF TWO-SAMPLE ¢-TEST AND z-TEST WHEN ¢q; = ¢»
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Rejection probabilities of nominal 5% level -test, equation (8), and z-test, equation (9), with the alternative for A normalized so that z ~ N/ (b, 1) throughout, with the value of b reported on the x-axis. Under
variance heterogeneity within sample, the variance of the first ¢; /2 observations is nine times as large as of the last g;/2 observations in both samples. Under variance heterogeneity across samples, the variances in one

sample are nine times as large as the variances of the other sample.

What is more, by assumption about the choice of groups,
{Si, ;j} are asymptotically independent. As discussed in IM, it
is not necessary that the group data are independent across
groups for this to hold. Standard weak dependence assump-
tion in time or space induces asymptotic independence under
reasonable group choices, as most of the variability of S,-’ j
stems from observations that are far from the group borders.

Now define 3_,- = g ;1;1 Si,j and S? = (¢ —
D! 7;1(8[,j —§)2 fori = 1,2, and let
§1 -8 —
gMzz.J__;L_EQ, (11)
sz 83
a T n

the usual two sample ¢-statistic for the difference in means
based on the two samples {3 ;}/L, and {3, ;}72,. As long
as at least one of the asymptotic variances oi ; 1s posi-
tive, max; j o7 ; > 0, the continuous mapping theorem and
equation (10) imply that

i,

(12)

under the null hypothesis, where the right-hand side of
equation (12) is as in section IIIA with A = Ag. Thus,
theorem 1 implies that rejecting for values of |#M?| that are
larger than the corresponding critical value cv of a Student-¢
distribution with min(q;,q;) — 1 degrees of freedom (df)
results in asymptotically valid inference. Equivalently an
asymptotically valid confidence interval for § has end points
81 — 82 £ ¢v,/S?/q1 + S3/q2. Moreover, equation (12) also
holds under local alternatives where /n(B —Bo) — A — Ay,
so that the local asymptotic power of such inference is equal
to the small-sample power of the two-sample -statistic of
equation (8). As is easily seen, for more distant alternatives
where /n|B —Bo| — oo, the test based on M2 is consistent.

Returning to the linear regression setup with design matri-
ces (7) of sectionII, let 6 = (8; —38,, 8,)’, so that §; and 3, are
the coefficients in the two populations and f = 8; — 3,. Let
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FIGURE 2.—REJECTION PROBABILITIES OF TWO-SAMPLE #-TEST AND z-TEST WHEN ¢ < ¢»
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See the notes of figure 1.

81, =38 +y;12j be the estimated coefficient of a regression
of y;; on x;; using group j = 1,..., g data only, and define
35, correspondingly as 8 ; = 3, + y;llﬂ,qu»,j =1,...,q.
Then theorem 1 implies that the test based on equation (11) is
small sample valid under Gaussian errors ¢;;. What is more,
in the important special case where v, is constant across j, the
M2 ; :
power of "'~ compares to the power of the (infeasible) test
based on the estimator RS with known variance just like
the #-test and z-test in figures 1 and 2. (When vy; is heteroge-

neous, then 25 no longer equals 8, —8,, and relative power
can go either way depending on the relationship between the
heterogeneity in y; and the heterogeneity in the variances.
See IM for further discussion.)

It does not pose any problems if the model contains addi-
tional parameters beyond 3; as long as 8,-’ ;j can be estimated
from each cluster. In addition, note that 2 is invariant to
transformations of the type S,-,.,- — 8,-,.,- + m for any m € R,

since m cancels in the numerator in the difference § 1 — 82
and also in the expression for S? and S3. Thus, the basic
assumption (10) for the validity of inference based on ™2
can be weakened to

Vi —my —8) = N©,07).j=1,....q.,i=1,2
(13)

t-test ¢y =4, ¢, =8
t-test ¢ = 4, ¢, = 16

for an unknown sequence m, that is not required to con-
verge. For instance, consider an intervention that has a time

dimension t = 1,...,7T, so that in a linear model with time
fixed effects a,, the outcome y;;,; in clusterj = 1,...,¢;
of population i = 1,2 for an individual / = 1,...,n;; with

characteristics x; j;; is
/
Viojud = 8+ X; j, W 4o + i j

for some conditionally mean zero error term u; ;. Let
£ i+ be the OLS estimators of the time fixed effects in a
regression of y; ;;; on x;;,; using data of cluster j from
population i only (excluding an additional constant). Then
Si,j =T7! Zthlfi,jJ estimates ; + 7! Z,T:l o, and equa-
tion (13) holds with my = m, = T7! Zthl o, under
sufficiently weak dependence of u; ;,; within cluster.> This
is true even under 7 — oo asymptotics, where there is no
reason to expect mr to converge to anything. This approach

5 For a balanced panel (i.e., for given i and j, there are equally many indi-
viduals for each time period ), STATA’s “xtreg, fe” command conveniently
reports the average value of the fixed effects 7! ZLI i .« as the coeffi-
cient on the constant. Note that this approach automatically accommodates
heterogeneity of s across clusters, = s; ;, as \ is reestimated on each
cluster.
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can be generalized to two-way fixed effects in a diff-in-diff
application (see section VD).

For the asymptotic validity of tests based on M2, the rate
of convergence +/n in equation (10), or (13), is immaterial;
any rate a, — oo would work, as it cancels in equation
(11). The same approach to inference is thus also applicable
in some nonregular and semiparametric settings, as long as
estimators are asymptotically unbiased and Gaussian. Fur-
thermore, one can replace equation (10) by an assumption
that a,(8;; — 8) = /Ri;Z:;, where Z;; ~ iidN(0,1),
and R; ; are (possibly correlated) nonnegative random vari-
ables that are independent of {Z; ;}, as long as sup, ; R; ; > 0
almost surely. The validity of inference based on 2 then
still follows from theorem 1 after conditioning on {R;}.
This structure allows for the presence of stochastic volatility
affecting §;, i» as well as convergence of 5. j to any distri-
bution that can be written as a scale mixture of normals
with common mean. This is a rather large class of sym-
metric distributions, containing all Student-# distributions,
the logistic distribution, the double exponential distribution,
and all symmetric stable distributions. Thus, after a suitable
partition of a time series, the statistic #*? can also be used,
say, for Chow (1960)-type tests about the change of loca-
tion of a serially correlated heavy-tailed time series in the
domain of attraction of a symmetric stable law or for a Chow
test of other parameters whose estimators are known to con-
verge to a symmetric stable law, for example, the sample
autocovariances in GARCH processes and estimates of an
autoregressive parameter in an AR(1) process with GARCH
errors under empirically plausible assumptions (see Davis &
Mikosch, 1998; Mikosch & Starica, 2000; Borkovec, 2001;
Cont, 2001). And given the practical difficulty of estimating
the tail index, it seems that very few alternative modes of
inference are available for such problems.

IV. Testing the Level of Clustering

In applied work, it can be challenging to decide on the
appropriate level of clustering: fine clustering (many clus-
ters) may rule out plausible correlations, but a coarse level
of clustering (few clusters) calls into question standard infer-
ence that is based on “consistent” clustered standard errors.
In this section, we develop a test ¢ of the null hypothesis that
a fine level of clustering is appropriate, against the alterna-
tive that only fewer groups provide independent information
about the parameter of interest.

The setting is similar to what is described in Ibragimov
and Miiller (2010) and Section IIIB of this paper. An econo-
metric model involves the scalar parameter of interest P,
possibly along with additional parameters. There exists a
partitioning of the n total observations into g groups that pro-
vide asymptotically independent information about p even
under the alternative. The number of groups ¢ is fixed as a
function of the overall sample size n. Estimation of the model
on the data of each of the g groups yields the estimators ﬁj,
j=1,...,q. These estimators satisfy

VnB; = B) = N(©,07)

and are asymptotically independent under both the null
and alternative hypothesis about the appropriate level of
clustering.

Under the null hypothesis, a fine level of clustering is jus-
tified. Consider asymptotics in which each of the g groups
eventually contains an infinite number of (asymptotically)
independent clusters. The usual clustered standard errors ®;
computed for each of the g estimations can then be employed
to accurately estimate 6; = /n®; 5 oj, so that sz in
equation (14) is effectively known under the null hypothesis.

Our suggestion for ¢y can now be thought of as a Haus-
man (1978)-type test about the (asymptotic) variance of

B = /ng™! - B;. Under the null hypothesis, this vari-
ance can be accurately estimated by ¢~ > 7 | 7. Under the
alternative, a natural estimator is given by

(14)

q _
V=n$/q, $*=(q-D"Y (B -P>

J=1

the (rescaled) sample variance of {éj J‘.Izl. In contrast to the
usual Hausman (1978) setup, these two estimators have
different rates of convergence, though, since V has a non-
degenerate (and non-Gaussian) limiting distribution, while

gy, 6; L g2 71 07 under the null hypothesis. The
distribution theory for the comparison of the two estimators
is thus dominated by the variability of V.

Under the null hypothesis, the distribution of V is very
well approximated by the distribution of Vy = nS% /q with
S =@—-D'YL -V ad Y = g 'YLy,
where the independent random variables Y; have distribu-
tion NV(0,®;) (conditional on the standard error estimate
®;). Let cvy (o) be the 1 —a quantile of Vy, which can easily
be computed by simulation or other techniques. The test ¢
then rejects if and only if V is larger than cvy (o). It is easily
seen that ¢ is of asymptotic level a.6 Note that the rate y/n in
equation (14) and in the relation §; = /n®; is immaterial, ¢y
can be implemented by simply comparing gV /n = S? with
the appropriate quantile of S7, neither of which involves &;,
or any scaling by n (see the synopsis in section V).

Under the alternative, the fine level of clustering ignores
correlations among the observations in the groups and &; is
no longer an accurate estimator of the standard error of B;.
In particular, inference about B based on the usual clustered
standard error formula will overstate the significance if posi-
tive correlations within the g groups are ignored. In this case,
V takes on larger values than one would expect if indeed
B ~ N, (I)jz), leading to a rejection of ¢f. Formally, the
asymptotic distribution of V stochastically dominates the
distribution of Vy whenever 6; — 0, <0 with some strict

6 This follows since under the null hypothesis, V and Vy have identical
limiting distribution (¢ —1)~"' 31, (¥; — ¥)?, where the ¥; are independent
and distributed Y; ~ N, crjz).
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TABLE 3.—SMALL-SAMPLE REJECTION PROBABILITIES OF LEVEL OF CLUSTERING TEST ¢

Null Hypothesis

Homogeneous o; Heterogeneous o;

Alternative Hypothesis

Homogeneous o; Heterogeneous o;

g\T 5 10 20 5 10 20 5 10 20 5 10 20
Normal Innovations €;, ~ N'(0, 1)

4 7.2 6.6 5.2 8.3 7.2 5.5 45.7 47.1 46.2 42.8 42.7 41.6

8 6.0 5.4 5.0 7.0 59 5.5 65.7 69.1 69.7 58.6 61.8 60.8

16 5.1 54 5.0 59 5.6 5.1 87.2 89.7 90.0 79.6 82.7 83.1

Chi-Squared Innovations &, ~ x3 — 1

4 39 3.1 3.1 79 6.0 5.0 43.5 46.4 45.1 45.0 44.3 423

8 2.8 24 3.0 43 3.1 35 58.9 63.9 67.3 57.1 584 59.7

16 1.7 1.8 2.5 24 22 2.5 79.0 86.2 88.9 72.9 78.7 81.5
Rejection probabilities in percent of nominal 5% level test ¢;. The data-generating process is y;, = B + ojuj,, t = 1,--- , T, j = 1,..., q, where u;; = puj; + €., ujp = 0, and ¢, is i.i.d. across j and ¢. Standard
errors &; for ﬁj =7! Z,T:l ¥j. are computed via the usual OLS formula &)} = (T(T — 1))~! ZLl i — Q,-)Z; that is, fine clustering treats all observations as independent. The autocorrelation p is 0 under the null
hypothesis and p = 0.5 under the alternative. Under homogeneity, o; is a positive constant, and under heterogeneity, half of the groupsj = 1,..., q/2 have o; twice as large as the remaining groups, o; = 20,>,. Based

on 10,000 replications.

inequalities, inducing an asymptotic rejection probability of
@y larger than a.

Table 3 reports some small sample rejection probabilities
of ¢y in a simple panel setting. The null rejection prob-
abilities are fairly close to the nominal level, even when
the number of independent entities within each group is as
small as five (where the standard error estimates &; are quite
imprecise).

A rejection of ¢, indicates that there are correlations
across the fine clusters (but within the coarse clusters) that

increase the variability of B relative to what is accounted
for by the fine clustering. In the presence of such cor-
relations, valid inference is obtained by relying on IM’s
one-sample statistic #/ in equation (5) and critical values
from a Student-¢ distribution with ¢ — 1 degrees of free-
dom, at least asymptotically. As is common for diagnostic
tests, however, a systematic determination of the mode of
inference as a function of ¢y will in general induce pretest
biases due to type 1 and type 2 errors. If the appropriate level
of clustering is in doubt, then it makes sense to report the
significance of results based on various clustering assump-
tions and interpret the resulting inference conditional on the
validity of these assumptions. In this perspective, the test
@ merely provides empirical evidence on the plausibility of
one particular clustering assumption.

Having said that, in the Monte Carlo simulation of table
3, a t-test for the population mean based on OLS standard
errors of 5% nominal level has null rejection probability of
18.7% to 26.8% when the time series correlation is ignored
(what is called “Alternative Hypothesis” in table 3). A switch
to t™M-inference as a function of the outcome of the 5%
level test ¢ reduces these size distortions to 5.9% to 15.3%
(compared to 3.6% to 7.9% of pure t"™ based inference). So
while not perfect, a systematic use of ¢, as a pretest does
substantially reduce size distortions, at least in this simple
setup.

The test ¢y has a natural counterpart in the two-sample

problem, with the variance of §; — &, then playing the

role of the variance of E In the implementation, the statis-
tics S and S% are to be replaced by U = S%/ql + S%/qz

and Uy = 512,51 /a1 + S;",’z/qz, respectively, where S%,’l. =
(@i — DY (Y = Y2 Y =g YR Y and Y ~
N0, (I)l2 j) conditional on {®; ;}, where &; ; is the clustered
standard error of the estimator 8i,j,j =1,...,q;,1 =12
that assume that fine clustering is justified.

V. Illustrations

We now illustrate the cluster test and #-statistic-based
inference in four empirical applications. All reported 7-tests
are two-sided. The implementations of the various tests
suggested here are summarized in table 4.

A. Few Independent Clusters: Dal Bo and Fréchette (2011)

Dal B6 and Fréchette (2011) experimentally study the
degree of cooperation in infinitely repeated games as a func-
tion of the probability of continuation p (8 in the notation
of Dal B6 & Fréchette, 2011), and the payoff of coopera-
tion R. They consider two values of p € {%, %} and three
values of the cooperation payoff R € {32,40, 48}, leading to
a total of six treatments. For each treatment, they conduct
three sessions, where each session involves between twelve
and twenty individuals who are randomly rematched for 50
minutes of play. The bottom-right panel of their table 3 pro-
vides the results of significance tests of equal propensity to
cooperate in seven pairs of treatment, using all games and all
rounds of play (reproduced in panel B of our table 5). The
comparisons are conducted by running a probit regression
on a constant and a dummy for the treatment under consid-
eration, with standard errors clustered at the session level.
Since there are only three sessions per treatment, there is
substantial variability in these standard error estimates. This
variability, however, is not appropriately taken into account
in the assessment of significance using the default clustering
approach.

An alternative mode of inference is to estimate the propen-
sity to cooperate session by session. Under the assumption
that there is enough independence within sessions for a cen-
tral limit theorem to hold, the resulting eighteen estimators
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TABLE 4.—SUMMARY OF EMPIRICAL STRATEGY

Single Population Characterized by

Two Populations Characterized by §; and 8,, Interestin p = 8; — 3,

Common Computations

Partition sample into g clusters that provide approximately independent and
Gaussian information about f.

Estimate the model (including nuisance parameters) using cluster j data only
to obtain B;,j =1,...,q.

Compute f = ¢~ Y0 By and 2 = (¢ — D' L, B; —

Partition samples from population i into g; clusters that provide approxi-
mately independent and Gaussian information about §;, i = 1, 2.

Estimate the model (including nuisance parameters) using cluster j of
population i data only to obtain o, j,j = 1,...,¢;, i = 1,2.

Compute §; = g/ Y §,jand $? = (i — 1)~ PR Gy —%i=1.2.

Inference about B

Reject Hy : B = o at level o if [™] > cv(a, g — 1), where ™ = /g(B —
Bo)/S and cv(a,g — 1) is the two-sided critical value of the Student-z
distribution with g — 1 degrees of freedom of level a. Valid for a < 8.3%
for any ¢ > 2, and for o < 10% for g < 14.

95% confidence set interval for § has end points é +cv(0.05,9 - 1)S/./q.

Student-¢ p-value (with ¢ — 1 degrees of freedom) valid for [¢™] if |#'| >

cv(0.083, g—1)forany g > 2andfor2 < g < 14if || > cv(0.1,g—1).

Reject Hy : B = Bo at level a if [#™| > cv(a, min(g;,q2) — 1), where
™2 = & — 8§ — Bo)/\/S?/q1 + S3/q> and cv(a, m) is the two-sided
critical value of the Student-z distribution with m degrees of freedom of
level a. Valid for a an integer multiple of 0.1% for o < 8.3% and any
2 < q1,q2 <50, and also for 8.4% < a < 10% if2 < q1,q> < 14.

95% confidence set interval for B has end points gl — §2 +
¢v(0.05, min(q, ¢2) — 1),/Sf/q1 + S%/qz.

Student-f p-value (with min(g;, g2) — 1 degrees of freedom) rounded up to
multiples of 0.1% valid for [¢M?| if |M?| > cv(0.083, min(g;,g2) — 1)
for 2 < qi,q» < 50, and for 2 < qi,q» < 14 if [/M?] >
cv(0.1, min(gqy, q2) — 1).

Test of Validity of Fine Clustering

In estimation of ﬁj, also estimate its standard error &; assuming a fine level
of clusters is appropriate,j = 1,...,q.

Draw Z; ~ iidN(0,1),j = 1,...,q, and compute ¥; = &Z, ¥ =
¢ 'YL Yand §§ = (g — 7' L, (¥; — ¥)*. Repeat 10,000 times.

Reject validity of fine clustering at 5% level if S? is larger than 95% quantile
of the 10,000 draws of S2.

p-value of test of validity of fine clustering equals fraction of S larger than
S2.

In estimation of 3,-, j» also estimate its standard error &;,; assuming fine level
of clusters is appropriate, j = 1,. ..
For i = 1,2, draw Z;; ~ iidN(0,1),j = 1,...,q; and compute Y; ; =
Yy and S3o= (g — DTV (Y — V)2

2qi i =1,2.

@iz, Y = qf
Compute Uy = q;‘s;l + q;lS§,2~ Repeat 10,000 times.

Reject validity of fine clustering at 5% level if U = ql_le + qz_lS% is larger
than 95% quantile of the 10,000 draws of Uy.

p-value of test of validity of fine clustering equals fraction of Uy larger
than U.

are independent and normal, and each triple of sessions cor-
responding to the same treatment has the same mean. Given
the heterogeneity in the number of individuals and games
played across sessions, one would not want to assume that
these estimators have the same variance. But given theo-
rem 1, valid pairwise comparisons between treatments may
still be conducted by simply employing the two-sample z-
statistic, equation (11), with the three probit coefficients as
observations from each treatment, using the critical value
from a Student- distribution with 2 degrees of freedom.
Table 5 reports the results. Compared to the original analysis
in Dal B6 and Fréchette (2011), the significance of differ-
ences between treatments is lower. But although the 10%
and 5% two-sided critical values of a Student-¢ statistic with
2 degrees of freedom are 1.92 and 4.30, respectively, four
of the seven tests are still significant at the 10% level and
one at the 5% level. The approach thus still yields at least
somewhat informative inference.

One might argue that given the small number of sessions,
it would be more appropriate to cluster at the level of individ-
uals. But when we test the validity of clustering at the level of
the individual, against the alternative of coarser clustering at
the session level using the test ¢y described in section IV, we
reject at the 5% level for six out of the seven comparisons.
(This might not be too surprising: individuals play against

each other in each session, after all, which might well lead
to nontrivial interaction effects.) Thus, Dal B6 and Fréchette
(2011) were right to be concerned about intrasession cor-
relation, and inference based on the f-statistic, equation
(11), adequately accounts for the (substantive!) additional
variability of the resulting inference.

B. Time Series Correlations: Keim (1983)

In a classic paper, Keim (1983) provides evidence that
the size anomaly of stock returns is, to a substantial degree,
due to very high excess returns in January. In his table 2,
he reports average differences between daily CRSP excess
returns of portfolios constructed from firms in the top and
bottom decile of equity market value for each January of the
seventeen years 1963 to 1979, along with the OLS standard
error estimate. The overall January average over these years
is reported to equal 0.714%, with a ¢-statistic of 11.8.

The standard errors are not adjusted for potential serial
correlation. Treating the average from each January as
potentially heteroskedastic independent normal variates with
common mean, one can apply the Ibragimov and Miiller
(2010) method (that is, a z-test with 16 degrees of freedom
using the seventeen January estimators) to obtain valid infer-
ence that accounts for arbitrary serial correlation within each
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TABLE 5.—EMPIRICAL RESULTS IN DAL BO AND FRECHETTE (2011)

A: Probit Coefficients 8,-, ; and Estimated Standard Errors &; ; (clustered by Individual) in Session j of Treatment i

i (P, R) 3i1 ®i di2 D2 33 D3
1

1 <5,32> —1.538 0.163 —0.963 0.183 —1.698 0.216
1

2 <§,40> —1.052 0.147 —0.813 0.146 —0.878 0.148
1

3 <§,48> —0.262 0.185 —0.261 0.221 —0.684 0.179
3

4 (2,32> —0.833 0.142 —0.698 0.167 —0.974 0.198
3

5 (2,40) 0.176 0.153 0.905 0.099 —0.200 0.205
3

6 1,48 0.458 0.118 1.037 0.132 0.674 0.113

B: Significance Tests

H, is equal cooperation under (p;,R;) and (p2, R>)
1 1
,R -,32 —,40
(p1,Ry) (2 ) (2 )

(p2, R2)
p-value of test of Hy : 8; = 8,

Dal B6 and Fréchette 8.6% 0.0% 3.9%

™2 with df = 2 >10% 8.4% >10%
p-value of test of validity of clustering at level of individuals

o 2.5% 28.5% 3.6%

(4
o) () G

()
)G9 (o)

) G
o) (o)

0.0% 0.0% 0.0% 11.5%
6.8% 3.7% 7.8% >10%
0.0% 3.7% 0.0% 0.0%

For all considered tests, rejections are in the direction of (p;,R;) yielding a lower level of cooperation than (p;, R;). The row labeled “Dal B6 and Fréchette” reports the original results of Dal B6 and Fréchette
(2011) based on probit regressions, clustered by session. The row “t/M? with df = 2” implements the two-sample 7-test, equation (11), using a critical value with 2 degrees of freedom, based on the probit coefficient

estimates 8” of panel A.

January.” Such an analysis still leads to a significant January
size effect at the 0.1% level, confirming the result in Keim
(1983). At the same time, using the seventeen pairs of estima-
tor and OLS standard error as inputs to the level of clustering
test ¢ leads to a rejection at the 0.1% level, indicating that
Keim’s original standard errors are too small.

Theorem 1 of this paper also allows for the straightforward
implementation of a Chow (1960)-type test of the stability of
the January size effect. Consider the null hypothesis that the
January size effect is time invariant, against the alternative
that it is different in the 1960s and 1970s. Again allowing for
arbitrary serial correlation within each January, this can be
tested by computing a two-sample ¢-test, with the seven Jan-
uary averages from the years 1963 to 1969 in one group and
the ten January averages from the year 1970 to 1979 in the
other. The resulting test rejects at the 10% level, providing
weak evidence against time invariance.

C. Spatial Correlations: Obstfeld, Shambaugh, and Taylor
(2010)

Obstfeld, Shambaugh, and Taylor (2010) study the deter-
minants of central bank reserve holdings with a cross-
country regression involving an unbalanced panel of 26 years
and 134 countries, for a total of 2,671 observations. Their

7The fact that the Ibragimov and Miiller (2010) method accommodates
heterogeneous variances is quite attractive here, given that stock returns
display time-dependent (stochastic) volatility.

theoretical framework motivates a focus on four variables
that relate to financial stability of a country: an index for
financial openness, dummies for a “Peg” or “Soft Peg,” and
the log of the ratio of M2 to GDP “In(M2/GDP).” In regres-
sion (5) of their table 1, they assess the significance of these
four variables in a horse race against other factors, cluster-
ing standard errors by country to account for arbitrary serial
correlation. We reproduce these results in panel B of table 6
for convenience.

Give the close economic, political, and historical ties
between neighboring countries, one might worry about the
presence of additional spatial correlation. To formally test
this, we categorize the 134 countries into six regions: West-
ern Europe/North America, Eastern Europe, Asia/Pacific,
Middle East, South America, and Africa, with 15 to 39 coun-
tries in each region. We reestimated the horse race regression
separately in each region and used the six estimators and
standard errors (clustered at the country level) to test for
the validity of clustering at the country level. As reported in
table 5, the test ¢ of section IV is significant for two of the
four coefficients of interest, indicating significant evidence
of spatial correlation.8 A test of significance of the coeffi-
cients based on the six estimates from each region using the
Ibragimov and Miiller (2010) method shows no evidence of

8 The different results of ¢ for the four coefficients are not necessarily
contradictory. The structure of intraregion correlation can be such that the
standard error estimator, clustered by country, is correct for one coefficient
but too small for another.
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TABLE 6.—EMPIRICAL RESULTS IN OBSTFELD, SHAMBAUGH, AND TAYLOR (2010)
A: Estimators B; and Estimated Standard Errors &; (Clustered by Country)
Financial Openness Peg Soft Peg In(M2/GDP)
Region B; ; B; o B, @; B, &;
Asia/Pacific 1.110 0.221 0.035 0.113 —0.060 0.119 0.627 0.164
Western Europe/North America 0.805 0.430 0.089 0.179 0.069 0.147 1.041 0.319
Eastern Europe 0.423 0.353 0.317 0.168 0.281 0.111 0.633 0.144
Africa 0.508 0.433 0413 0.151 0.318 0.101 —0.019 0.179
Middle East 1.665 0.438 —0.236 0.193 —0.056 0.153 0.511 0.152
South America 0.770 0.309 —0.279 0.165 —0.067 0.146 —0.201 0.196
B: Significance Tests
Variable Financial Openness Peg Soft Peg In(M2/GDP)
Tests of Hy That Coefficient of Variable Is 0
Obstfeld et al. 0.1% 24.6% 0.8% 0.1%
™ with df = 5 0.5% >10% >10% 7.0%
Tests of validity of clustering at level of countries
©r 19.3% 1.4% 10.8% 0.1%

For all considered tests, rejections are in the direction of a positive coefficient. The row labeled “Obstfeld et al.” reports the original results of Obstfeld et al. (2010) based on a single linear regression, clustered by
countries. The row “t™ with df = 5” implements the Ibragimov and Miiller (2010) #-test using the six coefficient estimates f; of panel A.

the importance of Soft Peg and only weak evidence for the
importance of In(M2/GDP), in contrast to the analysis in
Obstfeld et al. (2010).

An alternative interpretation of the results of the test ¢y is
that there is regional heterogeneity in the parameter of inter-
est, that is, the effect p of, say, financial openness on central
bank reserve holdings differs across the six regions. In this
interpretation, some of the observed differences between the
Bj’s in panel A of table 6 are due to heterogeneous means
B = B; rather than just estimation error f; ~ A(B, ;).
But the homogeneity of § can be tested only with some
knowledge of oo]?, so that empirically, one cannot distinguish
between unspecific heterogeneity in the B;’s and the presence
of intraregional correlations that invalidate the standard error
estimator 6312 In any event, the analysis in Obstfeld et al.
(2010) implicitly assumes world homogeneity of §, and the
test ™ in panel B of table 3 provides inference about this
parameter allowing for intraregional spatial correlations.®

D. Difference-in-Difference: Bloom et al. (2013)

Bloom et al. (2013) conducted a field experiment on
randomly selected firms in the textile industry in India to
determine the importance of management practices on pro-
ductivity. Fourteen treatment plants received extensive man-
agement consulting over several months, while six control
plants were subject only to an initial diagnostic consulting
phase that lasted about one month.

Let y; ;, be a weekly productivity measurement of plant j
in week ¢ in the treatment (i = 1) and control group (i = 2),
respectively. Consider an arrangement of data such that the
T, time periods ¢ < t are pretreatment for all plants, and the
T, time periods ¢ > t are posttreatment for all plants. Then
posit the model

9 As noted in Section 3.3 of IM, if the heterogeneity in means arises due
to B; = B + v;, where v; is independent across j with a distribution that can
be written as a scale mixture of mean zero normals, then ™ still provides
valid inference about .

Vij. = Btreat;, + k; ; + o +uy s, (15)
where treat;;, = 1[tr > t and i = 1] is an indicator for
treatment, k; ; is a full set of plant fixed effects, a, is a full
set of time fixed effects, and u; j, is a mean zero unobserved
error term that is independent across firms. The parameter
of interest is the coefficient f.

Now construct the difference in average productivity
between post- and pretreatment periods for each plant, Si, =
Tl_1 th-[yi,j,t - T()_1 Zt<ryi,j,ta J =1,... > qis i = 1’2
Note that in these differences, the plant fixed effect k; ;
cancels, and E[S,-,j] = §; + my with §; = B1[i = 1] and
mr = Tl_1 Do U — TO_1 > ;- . Furthermore, in the dif-
ference of the differences B = 81 — 82 = qfl 7;] Sl,j —
7" Z;’il 8,.;, as well as in the variance estimators S? =

(g — D! Z;lil(gi,j —8)% i = 1,2, the average time
fixed effects my cancel (see the discussion around equa-
tion [13] above).!0 Thus, if there are sufficiently many
observations in time and u;;, is weakly dependent, then
a central limit theorem yields approximate normality for
T uije — Ty 'S, ui s equation (13) holds, and
inference based on the 7-statistic 1’2 of equation (11) with
5 degrees of freedom is justified via theorem 1.

Bloom et al. (2013) implement the inference suggested
here and find significant effects of the treatment on output,
but not on quality defects, inventory, and TFP on the 5%
level. (See their paper for details.)

More generally, suppose that within each cluster j of pop-
ulation i, we observe several firms [ = 1,...,n;; with
time-varying firm characteristics x; j,; from the model

!
Vi = Btreat;; +x; U+ K g+ o+ 1 g

i,jot,

10 For this cancellation to occur, it is necessary that the same time periods
correspond to pre- and post-treatment for all observations. As the treatment
in Bloom et al. (2013) was staggered in time, this requires omitting some
productivity observations in the middle of their sample.
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Set 8, =T ' Yoo ifidu — To ' X o fijur Where f; j, are the
OLS estimators of the time fixed effects in a regression of
the outcome y; ;,; on x; j;; using data from cluster j of popu-
lation i only, which includes both time and firm fixed effects
(any normalization for the fixed effects yields the numeri-
cally identical difference S,-, j» as long as dropped coefficients
are interpreted as 0). Then as above, E[g,-,j] = d; + my.11
For the approximate normality of S,-, j» one could again
resort to time series asymptotics under weak dependence,
or argue that there are sufficiently many independent firms /
in each cluster. Either way, equation (13) applies, and infer-
ence based on the 7-test in equation (11) is asymptotically
justified.

VI. Conclusion

As the examples in section V demonstrate, the approach
developed in this paper is potentially useful in a variety
of contexts and entirely straightforward to implement. A
key regularity assumption is the approximate Gaussianity
of estimators from each group,!2 although in contrast to pre-
viously developed approaches, no additional homogeneity
assumptions on second moments are required. The approx-
imate Gaussianity follows from a central limit theorem if
each group contains a reasonably large number of suffi-
ciently independent observations or if few observations in
each group are already averages over sufficiently (observed
or unobserved) independent quantities. The appropriateness
of such an assumption can be hard to assess in practice.
At the same time, some assumption seems necessary. The
results of Bahadur and Savage (1956) show that without any
constraint on the distribution, it is impossible to conduct
inference about the population mean and, thus a fortiori, also
about differences between population means. Nonparametric
alternatives, such as the Mann-Whitney U test or permuta-
tion tests, require that under the null hypothesis, treated and
control sample have identical distributions and not just iden-
tical means, which can also be quite unappealing in many
contexts. We consider the transparency and familiarity of ¢-
statistic-based inference an attractive feature of our proposal
and believe that approximate Gaussianity of estimators from
each group may at least be a reasonable starting point in
many applications.

IT]f one is willing to assume that firms within a cluster have a common
firm fixed effect k; j; = k; ;, then one could drop the firm fixed effects from
the cluster-specific regressions. Since k; ; still cancels in E[@,-,j] =3d; +mr,
equation (13) remains applicable.

12 As mentioned at the end of section IIIB, many forms of heavy-tailed dis-
tributions do not actually pose a problem for our approach, but asymmetric
distributions generally do.
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