
A Details on Computation of Lower Bounds on Size

Without loss of generality, let the order of the clusters be such that the 1-1 element of

�j increases weakly in j. In the generic regression design, we computed the null rejection

probability for f	jgqj=1 of the form 	j = 1[j � l]vv0, l = 1; : : : ; q or 	j = 1[j � l]vv0 for

l = 2; : : : ; q and v = 1 for k = 1, v = (1; s1)0 for k = 2 and v = (1; s1; s2)0 for k = 3, where

si 2 f�1; 0; 1g, i = 1; 2. Thus, we computed the null rejection probability over (2q � 1)3k�1

values of f	jgqj=1. In the two-sample design,  j = 1[j � l] with l = 1; : : : ; q or  j = 1[j � l]

for l = 2; : : : ; q, so that we considered 2q � 1 di¤erent values of f	jgqj=1.
To avoid numerical inaccuracies stemming from bootstrap randomization, we simply

computed the exact CGM bootstrap distribution generated by 2q equally likely draws of

fUjgqj=1.
To speed up the computations, for each realization of f�jgqj=1, the null rejection proba-

bilities were initially computed for 2,500 draws of fZjgqj=1 for the values of f	jg
q
j=1 speci�ed

above. We then generated 10,000 new Monte Carlo draws of fZjgqj=1 under the maximizing
value of f	jgqj=1, and re-estimated the null rejection probability. The resulting 100 values
(one for each realization of f�jgqj=1) are summarized in Tables 1 and 2.

B Proof of Theorem 1

The following Lemma is used in the proof of Theorem 1.

Lemma 1 Let Z0; : : : ; Zk � iidN (0; 1), and l1,l2 non-negative integers such that k = l1 +

l2+1, and w0; w1; w2 > 0. De�ne the [0; 1] 7! R functions g(s) = s(l1+l2+3)=2(s+w0)
�1=2(s+

w1)
�l1=2(s + w2)

�l2=2, F1(s) = �2
p
1� s=

p
s and F2(s) = 2 arcsin(

p
s). Then, for any
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Proof. By Lemma 2 and the development on page 10 of Bakirov and Székely (2005),
the left hand side is equal to

1

�

Z 1

0

s�3=2(1� s)�1=2g(s)ds:

The function g : [0; 1] 7! R is convex, as can be checked by computing its second derivative.
Thus, for any choice of N � 1, the piecewise linear function �gN that interpolates g at

s = 0=N; 1=N; : : : ; N=N satis�es �g(s) � g(s) uniformly in s 2 [0; 1]. ThereforeZ 1

0

s�3=2(1� s)�1=2g(s)ds �
NX
i=1

Z i=N

(i�1)=N
s�3=2(1� s)�1=2�gn(s)ds:

The result follows, since the antiderivative of s�3=2(1 � s)�1=2 is F1, and the antiderivative

of s�1=2(1� s)�1=2 is F2.

Proof of Theorem 1:
The proof consists of 4 steps. First, we show that, by arguments similar to Bakirov

(1998) and Bakirov and Székely (2005) (�B&S(05)�in the following), the supremum of the

rejection probability is necessarily taken on for values of the variances that are either zero

or take on some common value in each of the two groups. The only non-discrete element

in the remaining parameter space is therefore the ratio of the non-zero variances of the two

groups.

In the second step, we analyze the behavior of the t-statistic as a function of the number

of non-zero variances in each group and the ratio of non-zero variances between the two

groups.

In a third step, we construct an upper bound for the rejection probability for cases where

the inequality P (jtj > cv) � � has some slack (equality is taken on when the smaller group

has all equal and positive variances, and the larger group has all variances equal to zero).

Given the slack, this can be done relatively easily by deriving upper bounds of the rejection

probability on small ranges for the value of the ratio of the variances. These upper bounds

are then shown to be below � via Lemma 1 and a direct computation.

The fourth step deals with the remaining �hard� part of the parameter space, where

P (jtj > cv) is tangent to �. Here, an analytical inequality is derived (with no slack at

the point P (jtj > cv) � �). This inequality is then shown to be convex in the ratio of the

variances, reducing the problem to checking the inequality for the extreme values. The result
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then follows from what is obtained in B&S(05) (since the two sample t-statistic reduces to the

one sample t-statistic if the ratio of the variances is zero), and another direct computation

via Lemma 1.

Step 1: Without loss of generality, set �1 = �2 = 0. Let n = q1 and m = q2, D =

diag(�1;1; � � � ; �1;n; �2;1; � � � ; �2;m); and Z � N (0; In+m), in notation similar to B(98). Let el
be a l � 1 vector of ones, and Ml = Il � l�1ele

0
l. For any critical value cv

P (jtj > cv) = Pr

�
( �X1 � �X2)
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!
:

Further, the characteristic polynomial of DAD is

f(�) = det(�In+m �DAD)

= � det(D2) det(��D�2 + A):

By Proposition 1 of Bakirov (1998), this evaluates to
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where

r = �
�
m

n
+ cv

m

n(n� 1)

�
d = �

�
n

m
+ cv

n

m(m� 1)

�
xi = cv

m

n� 1�
2
1;i

yi = cv
n

m� 1�
2
2;i

a =

m
n
+ cv m

n(n�1)

cv m
n�1

=
n� 1 + cv

n cv

b =

n
m
+ cv n

m(m�1)

cv n
m�1

=
m� 1 + cv

m cv

C = ab� 1

cv m
n�1 cv

n
m�1

=
cv�2 +m+ n

cvmn

Thus f; viewed as a function of fxigni=1 only, has the same form as in B&S(05), and one can
argue analogously that the largest rejection probability is obtained with all variances �1;i to

be the same or zero. More speci�cally, note that f has a single negative root. Without loss

of generality, normalize �1;i and �2;i such that this root takes on the value �1. This amounts
to

a
nX
i=1

xi
xi + 1

+ b
mX
i=1

yi
yi + 1

� C

 
nX
i=1

xi
xi + 1

!
mX
i=1

yi
yi + 1

= 1: (B1)

Apply Lemma 2 and the development on page 10 of B&S(05) to obtain

P (jtj > cv) = 1

�

Z 1

0

s
n+m
2
�1p

f(�s)
ds:

Now �x all xj, j � 3 and yj, j � 1, and consider x2 as a function of x1 via (B1). Since as a
function of x1 and x2, f(�s) and (B1) have the same functional form as in B&S (05), their

reasoning in (9)-(12) and their Lemma 3 still holds. We can conclude that at the point of

maximum, either x1 = x2, or x1x2 = 0. Applying the same argument to arbitrary xi; xj,

and also to arbitrary pairs of yi; yj, we conclude that P (jtj > cv) takes on the largest value
if n� � n values of �21;j are equal to 1, the remaining values of �

2
1;j are zero, m

� � m values

of �22;j are equal to �
2, � � 0, and the remaining ones are equal to zero.

Step 2: For min(m�; n�) = 1 the result follows from B&S(05), since the t-statistic then

reduces to a one-sample t-statistic. Therefore, assume min(m�; n�) > 1 in the following.
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Further, assume � � 1 without loss of generality, as we do not put any constraint on whether
m � n or n � m. Finally, again without loss of generality, let Xi = Yj = 0 almost surely for

i > n�; j > m�: The remainder of the proof considers all possible values for cv, n, m, n� and

m� that satisfy these conditions. The only continuous variable that we have to consider is �.

With ~X = n��1
Pn�

i=1Xi, we have

nX
i=1

(Xi � �X)2 =

n�X
i=1

(Xi � �X)2 + (n� n�) �X2

=
n�X
i=1

(Xi � ~X)2 +
(n� n�)n

n�
�X2

and also
mX
i=1

(Yi � �Y )2 =
m�X
i=1

(Yi � ~Y )2 +
(m�m�)m

m�
�Y 2:

Note that
Pn�

i=1(Xi� ~X)2 is independent of �X, and also
Pm�

i=1(Yi� ~Y )2 is independent of �Y .
Now

P ( jtj > cv) = P
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!
and, with Z� = (Z1; : : : ; Zn� ; Zn; � � � ; Zn+m�)0 � N (0; In�+m�),
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H(�) has at most two non-zero eigenvalues. If both of them are (weakly) negative, then we

have nothing to prove (since then P (jtj > cv) = 0). The largest eigenvalue is positive if for
some v(s) = (e0n� ;�se0m�)0 with s 2 R;

v(s)0H(�)v(s) > 0.

This evaluates to

v(s)0H(�)v(s) = dn + s
2m�n�

mn
�+ s2dm�

2 > 0 (B2)

so that either dm � 0, or with

s� =
m�n�

mn

�dm
1

�
= � m�n�

mndm

1

�

condition (B2) becomes

dn � 2
(m�n�)2

(mn)2dm
+
(m�n�)2

(mn)2d2m
dm > 0

sign(dm)(dndm �
(m�n�)2

(mn)2
) > 0:

Thus, if for a given set of (cv;m;m�; n; n�),

dm < 0 and sign(dm)(dndm �
(m�n�)2

(mn)2
) � 0 (B3)

then we have nothing to prove.

Otherwise, let �(�) be the non-negative eigenvalue, and ��(�) be the weakly negative
eigenvalue of H(�), so that

Z�0H(�)Z� � �(�)Z20 � �(�)Z2�1

with Z0; Z�1 independent N (0; 1), and independent of Z and Z�.
We �rst show that � and � are (weakly) increasing in �. We have

�(�) = max
s

v(s)0H(�)v(s)

v(s)0v(s)

= max
s

dn + s2m
�n�

mn
�+ s2dm�

2

n� + s2m� :

Let s�0 = argmaxs
v(s)0H(�0)v(s)
v(s)0v(s) . Then, for 0 � �0 < �1, with s1 = s�0�0=�1

�(�0) = max
s

v(s)0H(�0)v(s)

v(s)0v(s)
=
dn +

2m�n�

mn
s�0�0 + dms

�2
0 �

2
0

n� + s�20 m
�
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=
dn +

2m�n�

mn
s1�1 + dms

2
1�
2
1

n� +m�s21�
2
1=�

2
0

�
dn +

2m�n�

mn
s1�1 + dms

2
1�
2
1

n� +m�s21

� max
s

v(s)0H(�1)v(s)

v(s)0v(s)
= �(�1)

and, using the same argument,

�(�0) = max
s

v(s)0(�H(�0))v(s)
v(s)0v(s)

� max
s

v(s)0(�H(�1))v(s)
v(s)0v(s)

= �(�1).

Step 3: Suppose that dn < 0. We can write

P ( jtj > cv) = P

 
( �X � �Y )2 � cv (n�n�)

n�(n�1)
�X � cv (m�m�)

m�(m�1)
�Y

1
n(n�1)

Pn�

i=1(Xi � ~X)2 + 1
m(m�1)
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� cv

!

= P
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1
n(n�1)

Pn�

i=1(Xi � ~X)2 + 1
m(m�1)�

2
Pm�

i=1(Zi � �Z)2
� cv

!
:

Since � and � are increasing in 0 � � � 1, for any M , and i = 1; : : : ;M ,

P (jtj > cv) � P

 
(

�(i=M)Z20 � �((i� 1)=M)Z2�1
cv

n(n�1)
Pn�

i=1(Xi � ~X)2 + cv
m(m�1)(

i�1
M
)2
Pm�

i=1(Zi � �Z)2
� 1)

!
:

A direct computation using Lemma 1 now shows that for N = 100, the right-hand side is

smaller than � for all i = 1; : : : ;M with su¢ ciently large M . (It is numerically convenient

to �rst try smaller M , and only increase it if the inequality does not hold. M = 10; 000

yields the required inequality in all cases, though.)

Step 4: We are left two show the result for dn > 0. Let

�0 =
dn
n�

and �1 = max

�
dm
m� ;

m�n�2

dnm2n2

�
.

We �rst show that

�(�) � �0 + �1�
2

uniformly in 0 � � � 1. With v(s) = (e0n� ;�se0m�)0 for s 2 R, this is equivalent to

(�0 + �1�
2)v(s)0v(s)� v(s)0H(�)v(s) � 0
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for all s 2 R, which evaluates to

(�0 + �1�
2)(n� + s2m�)� dn � 2s�

m�n�

mn
� s2�2dm � 0: (B4)

The coe¢ cient on s2 then is

�0n
� + �2(m��1 � dm): (B5)

By de�nition of �0 and �1, (B5) is positive for all 0 � � � 1. The smallest value of (B4) is
hence taken on at

s =
�m

�n�

mn

�0m� + �2(m��1 � dm)
:

Plugging this into (B4) and some rearranging yields a non-negative number for all 0 � � � 1,
so that �(�) � �0 + �1�

2.

Furthermore we will show that

�(�) �  0
�2

�0 + �1�2
:

To this end, de�ne

h2 =
m��1
n��0

and consider v = (�he0n� ; e
0
m�)0. Then

�(�) � v0(�H(�))v
v0v

= ��2
dnh

2 � 2hm�n�

mn
+ dm

m�

�0
(�0 + �1�2)

=  0
�2

�0 + �1�2

with

 0 = ��0
dnh

2 � 2hm�n�

mn
+ dm

m� .

Now due to these inequalities, we have that

P ( jtj > cv) = P

 
( �X � �Y )2 � cv (n�n�)

n�(n�1)
�X � cv (m�m�)

m�(m�1)
�Y

1
n(n�1)

Pn�

i=1(Xi � ~X)2 + 1
m(m�1)

Pm�

i=1(Yi � ~Y )2
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!

= P

 
�(�)Z20 � �(�)Z2�1
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Pn�
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m(m�1)

Pm�

i=1(Yi � ~Y )2
� 1
!
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� P

 
(�0 + �1�
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�2

�0+�1�2
Z2�1
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Pn�
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m(m�1)�

2
Pm�
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� 1
!

= P
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n�X
i=1

(Xi � ~X)2+
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m(m� 1)�
2

m�X
i=1

(Zi � �Z)2

!

and, with

�2 =
1

�0 + �1�2
cv

n(n� 1)

�1 =
�2

�0 + �1�2
cv

m(m� 1)

�0 =
�2

(�0 + �1�2)2
 0

by Lemma 2 and the development on page 10 of B&S(05), we �nd

P (jtj > cv) � 1

�

Z 1

0

(1�s)�1=2s�1=2s(n�+m��1)=2(s+�0)
�1=2(s+�2)

�(n��1)=2(s+�1)
�(m��1)=2ds:

(B6)

Now de�ne

z =
�2

�0 + �1�2
; so that

1

�0 + �1�2
=
1� �1z

�0

so that

�2 =
cv

n(n� 1)
1� �1z

�0

�1 =
cv

m(m� 1)z

�0 =
z � �1z

2

�0
 0.

By inspection of the second derivative, the function

z 7! (s+
z � �1z

2

�0
 0)

�1=2(s+
cv

m(m� 1)z)
�(n��1)=2(s+

cv

n(n� 1)
1� �1z

�0
)�(m

��1)=2

is seen to be log-convex for all s 2 [0; 1]; so that the integral on the right-hand side of (B6)
is also a convex function of z. Since dz=d� > 0 for all 0 < � � 1, the extreme values for
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P (jtj > cv) thus arise with � = 0 or � = 1: For � = 0, we obtain

P (jtj > cv) �
 

�0Z
2
0

cv
n(n�1)

Pn�

i=1(Xi � ~X)2
� 1
!

= P

 (cv+n�1)n��cvn
n(n��1)n� Z20

1
n�(n��1)

Pn�

i=1(Xi � ~X)2
� cv

!

� P

 
Z20

1
n�(n��1)

Pn�

i=1(Xi � ~X)2
� cv

!

and the inequality of the Theorem follows from B&S(05). For � = 1, we obtain

P (jtj > cv) � P

 
(�0 + �1)Z

2
0

 0
1

�0+�1
Z2�1 +

cv
n(n�1)

Pn�

i=1(Xi � ~X)2 + cv
m(m�1)

Pm�

i=1(Zi � �Z)2
� 1
!

and a direct calculation using Lemma 1 with N = 100 shows that the inequality of the

Theorem holds.

10




