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Applied work routinely relies on heteroscedasticity and autocorrelation consistent (HAC) standard errors
when conducting inference in a time series setting. As is well known, however, these corrections perform
poorly in small samples under pronounced autocorrelations. In this article, I first provide a review of
popular methods to clarify the reasons for this failure. I then derive inference that remains valid under a
specific form of strong dependence. In particular, I assume that the long-run properties can be approximated
by a stationary Gaussian AR(1) model, with coefficient arbitrarily close to one. In this setting, I derive
tests that come close to maximizing a weighted average power criterion. Small sample simulations show
these tests to perform well, also in a regression context.
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1. INTRODUCTION

A standard problem in time series econometrics is the deriva-
tion of appropriate corrections to standard errors when con-
ducting inference with autocorrelated data. Classical references
include Berk (1974), Newey and West (1987), and Andrews
(1991), among many others. These articles show how one
may estimate “heteroscedasticity and autocorrelation consis-
tent” (HAC) standard errors, or “long-run variances” (LRV) in
econometric jargon, in a large variety of circumstances.

Unfortunately, small sample simulations show that these cor-
rections do not perform particularly well as soon as the underly-
ing series displays pronounced autocorrelations. One potential
reason is that these classical approaches ignore the sampling
uncertainty of the LRV estimator (i.e., t- and F-tests based on
these corrections employ the usual critical values derived from
the normal and chi-squared distributions, as if the true LRV
was plugged in). While this is justified asymptotically under
the assumptions of these articles, it might not yield accurate
approximations in small samples.

A more recent literature, initiated by Kiefer, Vogelsang, and
Bunzel (2000) and Kiefer and Vogelsang (2002a, 2005), seeks
to improve the performance of these procedures by explicitly
taking the sampling variability of the LRV estimator into ac-
count. (Also see Jansson 2004; Müller 2004, 2007; Phillips
2005; Phillips, Sun, and Jin 2006, 2007; Sun, Phillips, and Jin
2008; Gonalves and Vogelsang 2011; Atchade and Cattaneo
2012; Sun and Kaplan 2012.) This is accomplished by con-
sidering the limiting behavior of LRV estimators under the as-
sumption that the bandwidth is a fixed fraction of the sample
size. Under such “fixed-b” asymptotics, the LRV estimator is no
longer consistent, but instead converges to a random matrix. The
resulting t- and F-statistics have limiting distributions that are
nonstandard, with randomness stemming from both the param-
eter estimator and the estimator of its variance. In these limiting
distributions, the true LRV acts as a common scale factor that
cancels, so that appropriate nonstandard critical values can be
tabulated.

While this approach leads to relatively better size control
in small sample simulations, it still remains the case that strong

underlying autocorrelations lead to severely oversized tests. This
might be expected, as the derivation of the limiting distributions
under fixed-b asymptotics assumes the underlying process to
display no more than weak dependence.

This article has two goals. First, I provide a review of con-
sistent and inconsistent approaches to LRV estimation, with an
emphasis on the spectral perspective. This clarifies why com-
mon approaches to LRV estimation break down under strong
autocorrelations.

Second, I derive valid inference methods for a scalar pa-
rameter that remain valid even under a specific form of strong
dependence. In particular, I assume that the long-run properties
are well approximated by a stationary Gaussian AR(1) model.
The AR(1) coefficient is allowed to take on values arbitrarily
close to one, so that potentially, the process is very persistent.
In this manner, the problem of “correcting” for serial correla-
tion remains a first-order problem also in large samples. I then
numerically determine tests about the mean of the process that
(approximately) maximize weighted average power, using in-
sights of Elliott, Müller, and Watson (2012).

By construction, these tests control size in the AR(1) model
in large samples, and this turns out to be very nearly true also in
small samples. In contrast, all standard HAC corrections have
arbitrarily large size distortions for values of the autoregres-
sive root sufficiently close to unity. In more complicated set-
tings, such as inference about a linear regression coefficient,
the AR(1) approach still comes fairly close to controlling size.
Interestingly, this includes Granger and Newbold’s (1974) clas-
sical spurious regression case, where two independent random
walks are regressed on each other.

The remainder of the article is organized as follows. The next
two sections provide a brief overview of consistent and inconsis-
tent LRV estimation, centered around the problem of inference
about a population mean. Section 4 contains the derivation of
the new test in the AR(1) model. Section 5 relates these results
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to more general regression and generalized method of moment
(GMM) problems. Section 6 contains some small sample results,
and Section 7 concludes.

2. CONSISTENT LRV ESTIMATORS

For a second-order stationary time series yt with popula-
tion mean E[yt ] = μ, sample mean μ̂ = T −1 ∑T

t=1 yt , and ab-
solutely summable autocovariances γ (j ) = E[(yt − μ)(yt−j −
μ)], the LRV ω2 is defined as

ω2 = lim
T →∞

var[T 1/2μ̂] =
∞∑

j=−∞
γ (j ). (1)

With a central limit theorem (CLT) for μ̂, T 1/2(μ̂ − μ) ⇒
N (0, ω2), a consistent estimator of ω2 allows the straightfor-
ward construction of tests and confidence sets about μ.

It is useful to take a spectral perspective on the prob-
lem of estimating ω2. The spectral density of yt is given by
the even function f : [−π, π ] �→ [0,∞) defined via f (λ) =

1
2π

∑∞
j=−∞ cos(jλ)γ (j ), so that ω2 = 2πf (0). Assume T odd

for notational convenience. The discrete Fourier transform is a
one-to-one mapping from the T values {yt }Tt=1 into μ̂, and the
T − 1 trigonometrically weighted averages {Zcos

l }(T −1)/2
l=1 and

{Zsin
l }(T −1)/2

l=1 , where

Zcos
l = T −1/2

√
2

T∑
t=1

cos(2πl(t − 1)/T )yt ,

Zsin
l = T −1/2

√
2

T∑
t=1

sin(2πl(t − 1)/T )yt . (2)

The truly remarkable property of this transformation (see Propo-
sition 4.5.2 in Brockwell and Davis 1991) is that all pairwise cor-
relations between the T random variables T 1/2μ̂, {Zcos

l }(T −1)/2
l=1

and {Zsin
l }(T −1)/2

l=1 converge to zero as T → ∞, and

sup
l≤(T −1)/2

|E[(Zcos
l )2] − 2πf (2πl/T )| → 0,

sup
l≤(T −1)/2

|E[(Zsin
l )2] − 2πf (2πl/T )| → 0. (3)

Thus, the discrete Fourier transform converts autocorrelation in
yt into heteroscedasticity of (Zsin

l , Zcos
l ), with the shape of the

heteroscedasticity governed by the spectral density.
This readily suggests how to estimate the LRV ω2: collect the

information about the frequency 2πl/T in the lth periodogram
ordinate pl = 1

2 ((Zcos
l )2 + (Zsin

l )2), so that pl becomes an ap-
proximately unbiased estimator of 2πf (2πl/T ). Under the as-
sumption that f is flat over the frequencies [0, 2πn/T ] for some
integer n, one would naturally estimate ω̂2

p,n = n−1 ∑n
l=1 pl

(the subscript p of ω̂2
p,n stands for “periodogram” ). Note that

asymptotically, it is permissible to choose n = nT → ∞ with
nT /T → 0, since any spectral density continuous at 0 becomes
effectively flat over [0, 2πnT /T ]. Thus, a law of large numbers

(LLN) applied to {pl}nT

l=1 yields ω̂2
p,nT

p→ ω2.
Popular consistent LRV estimators are often written as

weighted averages of sample autocovariances, mimicking the

definition (1)

ω̂2
k,ST

=
T −1∑

j=−T +1

k(j/ST )γ̂ (j ), (4)

where γ̂ (j ) = T −1 ∑T
t=|j |+1(yt − μ̂)(yt−|j | − μ̂) and k is an

even weight function with k(0) = 1 and k(x) → 0 as |x| →
∞, and the bandwidth parameter ST satisfies ST → ∞ and
ST /T → 0 (the subscript k of ω̂2

k,ST
stands for “kernel”). The

Newey and West (1987) estimator, for instance, has this form
with k equal to the Bartlett kernel k(x) = max(1 − |x|, 0). Up to
some approximation ω̂2

k,ST
can be written as a weighted average

of periodogram ordinates

ω̂2
k,ST

≈
(T −1)/2∑

l=1

KT,lpl , KT,l = 2

T

T −1∑
j=−T +1

cos(2πjl/T )k(j/ST ),

(5)

where the weights KT,l approximately sum to one,∑(T −1)/2
l=1 KT,l → 1. See Appendix for details. Since

(T/ST )KT,lT = O(1) for lT = O(T/ST ), these estimators are
conceptionally close to ω̂2

p,nT
with nT ≈ T/ST → ∞.

As an illustration, consider the problem of constructing a con-
fidence interval for the population mean of the U.S. unemploy-
ment rate. The data consist of T = 777 monthly observations
and is plotted in the left panel of Figure 1. The right panel shows
the first 24 log-periodogram ordinates log(pj ), along with the
corresponding part of the log-spectrum (scaled by 2π ) of a fitted
AR(1) process.

Now consider a Newey–West estimator with bandwidths cho-
sen as ST = 0.75T 1/3 ≈ 6.9 (a default value suggested in Stock
and Watson’s (2011) textbook for weakly autocorrelated data)
and ST = 115.9 (the value derived in Andrews (1991) based on
the AR(1) coefficient 0.973). The normalized weights KT,l/KT,1

of (5) for the first 24 periodogram ordinates, along with the
AR(1) spectrum normalized by 2π/ω2, are plotted in Figure 2.
Assuming the AR(1) model to be true, it is immediately apparent
that both estimators are not usefully thought of as approximately
consistent: the estimator with ST = 6.9 is severely downward bi-
ased, as it puts most of its weight on periodogram ordinates with
expectation much below ω2. The estimator with ST = 115.9 is
less biased, but it has very substantial sampling variability, with
75% of the total weight on the first three periodogram ordinates.

The example demonstrates that there is no way of solving
the problem with a more judicious bandwidth choice: to keep
the bias reasonable, the bandwidth has to be chosen very large.
But such a large bandwidth makes ω̂2

k,ST
effectively an average

of very few periodogram ordinates, so that the LLN provides
a very poor approximation, and sampling variability of ω̂2

k,ST

cannot reasonably be ignored.
An alternative approach (Berk 1974; den Haan and Levin

1997) is to model yt as an autoregressive moving average
(ARMA) process with parameter θ and spectrum fARMA(λ; θ ),
say, and to estimate ω2 from the implied spectrum ω̂2

ARMA =
2πfARMA(0; θ̂ ). The discrete Fourier approximation (3) implies
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Müller: HAC Corrections for Strongly Autocorrelated Time Series 313

Figure 1. U.S. unemployment. Notes: Series LNS14000000 of the Bureau of Labor Statistics from 1948:1 to 2012:9. The AR(1) log-spectral
density has coefficient 0.973 and variance 0.182, the MLEs from a “low-frequency likelihood” (Equation (11) of Section 4 with q = 48).

Whittle’s (1957, 1962) log-likelihood approximation

T

2
log(2π ) −

(T −1)/2∑
l=1

log(2πfARMA(2πl/T ; θ ))

−
(T −1)/2∑

l=1

pl

2πfARMA(2πl/T ; θ )

to the Gaussian ARMA log-likelihood. The (quasi-) maximum
likelihood estimator (MLE) θ̂ that defines ω̂2

ARMA is thus deter-
mined by information about all frequencies, as encoded by the
whole periodogram. This is desirable if there are good reasons
to assume a particular spectral shape for yt ; otherwise, it leads
to potential misspecification, as θ̂ maximizes fit on average, but
not necessarily for frequencies close to zero.

Also note that this approach only delivers a useful “con-
sistent” estimator for ω2 if the estimation uncertainty in θ̂ is
relatively small. The LRV of an AR(1) model, for instance,
is given by ω2 = σ 2/(1 − ρ)2. This mapping is very sensitive
to estimation errors if ρ is close to one. As an illustration,

Figure 2. Newey–West weights on periodogram ordinates and nor-
malized AR(1) spectral density. Notes: The dots and crosses correspond
to the approximate weights on the first 24 periodogram ordinates of
a Newey–West LRV estimator with bandwidth equal to ST , normal-
ized by the weight on the first periodogram ordinate. Total weight∑(T −1)/2

l=1 KT,l is 0.99 and 0.85 for ST = 6.9 and 115.9, respectively.
The line is the spectral density of an AR(1) process with coefficient
0.973, scaled by 2π/ω2.

consider the AR(1) model for the unemployment series with
ρ = 0.973. An estimation error of one standard error in ρ̂,√

(1 − ρ2)/T ≈ 0.008, leads to an estimation error in ω̂2
AR(1)

by a factor of 0.6 and 2.0, respectively. So even if the AR(1)
model was known to be correct over all frequencies, one would
still expect ω̂2

AR(1) to have poor properties for ρ close to one.
A hybrid approach between kernel and parametric estima-

tors is obtained by so-called prewhitening. The idea is to use a
parsimonious parametric model to get a rough fit to the spectral
density, and to then apply kernel estimator techniques to account
for the misspecification of the parametric model near frequency
zero. For instance, with AR(1) prewhitening, the overall LRV
estimator is given by ω̂2 = ω̂2

e/(1 − ρ̂)2, where ρ̂ is the esti-
mated AR(1) coefficient, and ω̂2

e is a kernel estimator applied to
the AR(1) residuals. Just as for the fully parametric estimator,
this approach requires the estimation error in the prewhitening
stage to be negligible.

3. INCONSISTENT LRV ESTIMATORS

The above discussion suggests that for inference with persis-
tent time series, one cannot safely ignore estimation uncertainty
in the LRV estimator. Under the assumption that the spectral
density is approximately flat over some thin frequency band
around zero, one might still rely on an estimator of the type
ω̂2

p,n = n−1 ∑n
l=1 pl introduced in the last section. But in con-

trast to the discussion there, one would want to acknowledge
that reasonable n are small, so that no LLN approximation
holds. The randomness in the t-statistic

√
T (μ̂ − μ)/ω̂p,n then

not only stems from the numerator, as usual, but also from the
denominator ω̂p,n.

To make further progress, a distributional model for the peri-
odogram ordinates is needed. Here, a central limit argument may
be applied: under a linear process assumption for yt , say, the line
of reasoning in Theorems 10.3.1 and 10.3.2 of Brockwell and
Davis (1991) implies that any finite set of the trigonometrically
weighted averages (Zsin

l , Zcos
l ) is asymptotically jointly normal.

As a special case, the approximation (3) is thus strengthened to
(Zsin

l , Zcos
l )′ distributed approximately independent and normal

with covariance matrix 2πf (2πl/T )I2, l = 1, . . . , n. With an
assumption of flatness of the spectral density over the frequen-
cies [0, 2πn/T ], that is, 2πf (2πl/T ) ≈ ω2 for l = 1, . . . , n,
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one therefore obtains ω̂2
p,n to be approximately distributed chi-

squared with 2n degrees of freedom, scaled by ω2. Since the
common scale ω cancels from the numerator and denomina-
tor, the t-statistic

√
T (μ̂ − μ)/ω̂p,n is then approximately dis-

tributed Student-t with 2n degrees of freedom. The difference
between the critical value derived from the normal distribution,
and that derived from this Student-t distribution, accounts for
the estimation uncertainty in ω̂p,n.

Very similar inconsistent LRV estimator have been suggested
in the literature, although they are based on trigonometrically
weighted averages slightly different from (Zsin

l , Zcos
l ). In partic-

ular, the framework analyzed in Müller (2004, 2007) and Müller
and Watson (2008) led these authors to consider the averages

Yl = T −1/2
√

2
T∑

t=1

cos(πl(t − 1/2)/T )yt , l ≥ 1, (6)

so that for integer l, Y2l = Zcos
l , but Zsin

l is replaced by Y2l+1, a
cosine weighted average of frequency just between 2πl/T and
2π (l + 1)/T . This difference is quite minor, though: just like
the discrete Fourier transform, (6) is a one-to-one transformation
that maps {yt }Tt=1 into the T variables μ̂ and {Yl}T −1

l=1 , and Y 2
l is

an approximately unbiased estimator of the spectral density at
frequency 2πf (πl/T ). Under the assumption of flatness of the
spectrum over the band [0, πq/T ], and a CLT for {Yl}ql=1, we
then obtain Müller’s (2004, 2007) estimator

ω̂2
Y,q = 1

q

q∑
l=1

Y 2
l , (7)

which implies an approximate Student-t distribution with q de-
grees of freedom for the t-statistic

√
T (μ̂ − μ)/ω̂Y,q . There is

an obvious trade-off between robustness and efficiency, as em-
bodied by q: choosing q small makes minimal assumptions
about the flatness of the spectrum, but leads to a very variable
ω̂2

Y,q and correspondingly large critical value of the t-statistic√
T (μ̂ − μ)/ω̂Y,q . Similar approaches, for potentially differ-

ent weighted averages, are pursued in Phillips (2005) and Sun
(2013).

In the example of the unemployment series, one might, for
instance, be willing to assume that the spectrum is flat below
business cycle frequencies. Defining cycles of periodicity larger
than 8 years as below business cycle, this leads to a choice of
q equal to the largest integer smaller than the span of the data
in years divided by 4. In the example with T = 777 monthly
observations, (777/12)/4 ≈ 16.2, so that q = 16. Given the re-
lationship between Yl and (Zsin

l , Zcos
l ), this is roughly equivalent

to the assumption that the first eight periodogram ordinates in
Figure 1 have the same mean. Clearly, if the AR(1) model with
ρ = 0.973 was true, then this is a fairly poor approximation.
At the same time, the data do not overwhelmingly reject the
notion that {Yl}16

l=1 is iid mean-zero normal: Müller and Wat-
son’s (2008) low-frequency stationarity test, for instance, fails
to reject at the 5% level (although it does reject at the 10% level).

The inconsistent LRV estimators that arise by setting ST =
bT for some fixed b in (4) as studied by Kiefer and Vogelsang
(2005) are not easily cast in purely spectral terms, as Equation
(5) no longer provides a good approximation when ST = bT in
general. Interestingly, though, the original (Kiefer, Vogelsang,

and Bunzel 2000; Kiefer and Vogelsang 2002b) suggestion of
a Bartlett kernel estimator with bandwidth equal to the sample
size can be written exactly as

ω̂2
KVB =

T −1∑
l=1

κT,lY
2
l , (8)

where 1/κT,l = 4T 2 sin(πl/(2T ))2 → π2l2 (see Appendix for
details). Except for an inconsequential scale factor, the estima-
tor ω̂2

KVB is thus conceptually close to a weighted average of
periodogram ordinates (5), but with weights 1/(πl)2 that do not
spread out even in large samples. The limiting distribution un-
der weak dependence is nondegenerate and equal to a weighted
average of chi-square-distributed random variables, scaled by
ω2. Sixty percent of the total weight is on Y 2

1 , and another 30%
on Y 2

2 , . . . , Y 2
6 . So ω̂2

KVB can also usefully be thought of as a
close cousin of (7) with q very small.

As noted above, inference based on inconsistent LRV es-
timators depends on a distributional model for ω̂2, gener-
ated by CLT arguments. In contrast, inference based on con-
sistent LRV estimators only requires the LLN approxima-
tion to hold. This distinction becomes important when con-
sidering nonstationary time series with pronounced hetero-
geneity in the second moments. To fix these ideas, suppose
yt = μ + (1 + 1[t > T/2])εt with εt ∼ iid(0, σ 2), that is, the
variance of yt quadruples in the second half of the sample. It
is not hard to see that despite this nonstationarity, the estima-
tor (4) consistently estimates ω2 = limT →∞ var[T 1/2μ̂] = 5

2σ 2,
so that standard inference is justified. At the same time, the
nonstationarity invalidates the discrete Fourier approximation
(3), so that {(Zsin

l , Zcos
l )′}nl=1 are no longer uncorrelated, even

in large samples, and
√

T (μ̂ − μ)/ω̂p,n is no longer distributed
Student-t. The same holds for {Yl}ql=1 and

√
T (μ̂ − μ)/ω̂Y,q ,

and also the asymptotic approximations derived in Kiefer and
Vogelsang (2005) for fixed-b estimators are no longer valid. In
general, then, inconsistent LRV estimators require a strong de-
gree of homogeneity to justify the distributional approximation
of ω̂2, and are not uniformly more “robust” than consistent ones.

One exception is the inference method suggested by Ibragi-
mov and Müller (2010). In their approach, the parameter of in-
terest is estimated q times on q subsets of the whole sample. The
subsets must be chosen in a way that the parameter estimators
are approximately independent and Gaussian. In a time series
setting, a natural default for the subsets is a simple partition of
the T observations into q nonoverlapping consecutive blocks
of (approximately) equal length. Under weak dependence,
the q resulting estimators of the mean μ̂l are asymptotically
independent Gaussian with mean μ. The variances of μ̂l are
approximately the same (and equal to qω2/T ) when the time
series is stationary, but are generally different from each other
when the second moment of yt is heterogenous in time.
The usual t-statistic computed from the q observations μ̂l ,
l = 1, . . . , q,

√
q(μ̂ − μ)√

q−1
∑q

l=1(μ̂l − μ̂)2
(9)

with μ̂ = q−1 ∑q
l=1 μ̂l ≈ μ̂, thus has approximately the same

distribution as a t-statistic computed from independent and
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zero-mean Gaussian variates of potentially heterogenous vari-
ances. Now Ibragimov and Müller (2010) invoked a remarkable
result of Bakirov and Székely (2005), who showed that ignoring
potential variance heterogeneity in the small sample t-test about
independent Gaussian observations, that is, to simply employ
the usual Student-t critical value with q − 1 degrees of freedom,
still leads to valid inference at the 5% two-sided level and below.
Thus, as long as yt is weakly dependent, simply comparing (9)
to a Student-t critical value with q − 1 degrees of freedom leads
to approximately correct inference by construction, even under
very pronounced forms of second moment nonstationarities in
yt . From a spectral perspective, the choice of q in (9) roughly
corresponds to an assumption that the spectral density is flat
over [0, 1.5πq/T ]. The factor of 1.5 relative to the assumption
justifying ω̂2

Y,q in (7) reflects the relatively poorer frequency ex-
traction by the simple block averages μ̂l relative to the cosine
weighted averages Yl . See Müller and Watson (2013) for related
computations.

4. POWERFUL TESTS UNDER AR(1) PERSISTENCE

All approaches reviewed in the last two sections exploit flat-
ness of the spectrum close to the origin: the driving assumption
is that there are at least some trigonometrically weighted aver-
ages that have approximately the same variance as the simple
average

√
T μ̂. But as Figure 2 demonstrates, there might be only

very few, or even no such averages for sufficiently persistent yt .
An alternative approach is to take a stand on possible shapes

of the spectrum close to the origin, and to exploit that restric-
tion to obtain better estimators. The idea is analogous to using
a local polynomial estimator, rather than a simple kernel es-
timator, in a nonparametric setting. Robinson (2005) derived
such consistent LRV estimators under the assumption that the
underlying persistence is of the “fractional” type. This section
derives valid inference when instead the long-run persistence is
generated by an autoregressive root close to unity. In contrast to
the fractional case, this precludes consistent estimation of the
spectral shape, even if this parametric restriction is imposed on
a wide frequency band.

4.1. Local-To-Unity Asymptotics

For very persistent series, the asymptotic independence be-
tween {(Zsin

l , Zcos
l )′}nl=1, or {Yl}ql=1, no longer holds. So we be-

gin by developing a suitable distributional theory for {Yl}ql=0 for
fixed q, where Y0 = √

T μ̂.
Suppose initially that yt is exactly distributed as a station-

ary Gaussian AR(1) with mean μ, coefficient ρ, |ρ| < 1, and
variance σ 2: with y = (y1, . . . , yT )′ and e = (1, . . . , 1)′,

y ∼ N (μe, σ 2�(ρ)),

where �(ρ) has elements �(ρ)i,j = ρ|i−j |/(1 − ρ2). Define H
as the T × (q + 1) matrix with first column equal to T −1/2e,
and (l + 1)th column with elements T −1/2

√
2 cos(πl(t −

1/2)/T ), t = 1, . . . , T , and ι1 as the first column of Iq+1.

Then Y = (Y0, . . . , Yq)′ = H ′y ∼ N (T 1/2μι1, σ
2
(ρ)) with


(ρ) = H ′�(ρ)H .
The results reviewed above imply that for any fixed q and

|ρ| < 1, as T → ∞, σ 2
(ρ) becomes proportional to Iq+1 (with

proportionality factor equal to ω2 = σ 2/(1 − ρ)2). But for any
fixed T , there exists a ρ sufficiently close to one for which 
(ρ)
is far from being proportional to Iq+1. This suggests that asymp-
totics along sequences ρ = ρT → 1 yield approximations that
are relevant for small samples with sufficiently large ρ.

The appropriate rate of convergence of ρT turns out to be
ρT = 1 − c/T for some fixed number c > 0, leading to so-
called “local-to-unity” asymptotics. Under these asymptotics,
a calculation shows that T −2
(ρT ) → 
0(c), where the (l +
1), (j + 1) element of 
0(c) is given by

1

2c

∫ 1

0

∫ 1

0
φl(s)φj (r)e−c|r−s|dsdr (10)

with φl(s) = √
2 cos(πls) for l ≥ 1 and φ0(s) = 1 . This expres-

sion is simply the continuous time analogue of the quadratic
form H ′�(ρ)H : the weighting functions φl corresponds to the
limit of the columns of H, T (1 − ρ2

T ) → 2c and e−c|r−s| corre-
sponds to the limit of ρ|i−j |.

Now the assumption that yt follows exactly a stationary
Gaussian AR(1) is obviously uncomfortably strong. So suppose
instead that yt is stationary and satisfies yt = ρT yt−1 + (1 −
ρT )μ + ut , where ut is some weakly dependent mean-zero dis-
turbance with LRV σ 2. Under suitable conditions, Chan and
Wei (1987) and Phillips (1987) showed that T −1/2(y[·T ] − μ)
then converges in distribution to an Ornstein–Uhlenbeck process
σJc(·), with covariance kernel E[Jc(r)Jc(s)] = e−c|r−s|/(2c).
Noting that this is exactly the kernel in (10), the approximation

T −1Y ∼ N (T −1/2μι1, σ
2
0(c)) (11)

is seen to hold more generally in large samples. The di-
mension of Y , that is, the choice of q, reflects over which
frequency band the convergence to the Ornstein–Uhlenbeck
process is deemed an accurate approximation (see Müller
2011 for a formal discussion of asymptotic optimality un-
der such a weak convergence assumption). Note that for
large c, e−c|r−s| in (10) becomes very small for nonzero |r −
s|, so that

∫ 1
0

∫ 1
0 φl(s)φj (r)e−c|r−s|dsdr ∝ ∫ 1

0 φl(s)φj (s)ds =
1[i = j ], recovering the proportionality of 
0(c) to Iq+1 that
arises under a spectral density that is flat in the 1/T neigh-
borhood of the origin. For a given q, inference that remains
valid under (11) for all c > 0 is thus strictly more robust than
t-statistic-based inference with ω̂2

Y,q in (7).

4.2. Weighted Average Power Maximizing Scale
Invariant Tests

Without loss of generality, consider the problem of testing
H0 : μ = 0 (otherwise, simply subtract the hypothesized mean
from yt ) against H1 : μ 
= 0, based on the observation Y with
distribution (11). The derivation of powerful tests is complicated
by the fact that the alternative is composite (μ is not specified
under H1), and the presence of the two nuisance parameters σ 2

and c.
A useful device for dealing with the composite nature of the

alternative hypothesis is to seek tests that maximize weighted av-
erage power. For computational convenience, consider a weight-
ing function for μ that is mean-zero Gaussian with variance η2.
As argued by King (1987), it makes sense to choose η2 in a
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way that good tests have approximately 50% weighted aver-
age power. Now for c and T large, var[T −1Y0] ≈ T −2σ 2/(1 −
ρT )2 ≈ σ 2/c2. Furthermore, if σ and c were known, the best
5% level test would simply reject if |T −1Y0| > 1.96 · σ/c.
This motivates a choice of η2 = 10T σ 2/c2, since this would
induce this (infeasible) test to have power of approximately
2P (N (0, 11) > 1.96) ≈ 56%. Furthermore, by standard argu-
ments, maximizing this weighted average power criterion for
given σ and c is equivalent to maximizing power against the
alternative

T −1Y ∼ N (0, σ 2
1(c)) (12)

with 
1(c) = 
0(c) + (10/c2)ι1ι′1.
The testing problem has thus been transformed into H ′

0 :
T −1Y ∼ N (0, σ 2
0(c)) against H ′

1 : T −1Y ∼ N (0, σ 2
1(c)),
which is still complicated by the presence of the two nuisance
parameters σ 2 and c. For σ 2, note that in most applications, it
makes sense to impose that if the null hypothesis is rejected for
some observation Y , then it should also be rejected for the ob-
servation aY , for any a > 0. For instance, in the unemployment
example, this ensures that measuring the unemployment rate as
a ratio (values between 0 and 1) or in percent (values between
0 and a 100) leads to the same results. Standard testing theory
(see chap. 6 in Lehmann and Romano 2005) implies that any test
that satisfies this scale invariance can be written as a function
of Y s = Y/

√
Y ′Y . One might thus think of Y s as the effective

observation, whose density under H ′
i , i = 0, 1 is equal to (see

Kariya 1980; King 1980)

fi,c(ys) = κq |
i(c)|−1/2(ys′
i(c)−1ys)−(q+1)/2 (13)

for some constant κq .
A restriction to scale invariant tests has thus further trans-

formed the testing problem into H ′′
0 :“Y s has density f0,c”

against H ′′
1 : “Y s has density f1,c.” This is a nonstandard prob-

lem involving the key nuisance parameter c > 0, which governs
the degree of persistence of the underlying time series. Elliott,
Müller, and Watson (2012) studied nonstandard problems of
this kind, and showed that a test that approximately maximizes
weighted average power relative to the weighting function F
rejects for large values of

∫
f1,c(Y s)dF (c)/

∫
f0,c(Y s)d�̃(c),

where �̃ is a numerically determined approximately least
favorable distribution. I implement this approach with F dis-
crete and uniform on the 15 points cj = e(j−1)/2, j = 1, . . . , 15,
so that weighted average power is approximately maximized
against a uniform distribution on log(c) on the interval [0, 7].
The endpoints of this interval are chosen such that the whole
span of very nearly unit root behavior (c = 1) to very nearly
stationary behavior (c = e7 ≈ 1097) is covered. The substantial
mass on relatively large values of c induces good performance
also under negligible degrees of autocorrelation.

Figure 3 plots the power of these tests for q ∈ {12, 24, 48}
against the alternatives (12) as a function of log(c). As can
be seen from Figure 3, none of these tests have power when
c → 0. To understand why, go back to the underlying station-
ary AR(1) model for yt . For small c (say, c < 1), yt − y1 is
essentially indistinguishable from a random walk process. De-
creasing c further thus leaves the distribution of {yt − y1}Tt=1
largely unaffected, while it still increases the variance of y1,
var[y1] = σ 2/(1 − ρ2

T ) ≈ σ 2T/(2c). But for a random walk, the

Figure 3. Asymptotic weighted average power of tests under AR(1)
persistence. Notes: Asymptotic weighted average power of 5% level
hypothesis tests about the mean of an AR(1) model with unit innova-
tion variance and coefficient ρ = ρT = 1 − c/T with anN (0, 10T/c2)
weighting function on the difference between population and hypothe-
sized mean, based on q low-frequency cosine weighted averages of the
original data.

initial condition y1 − μ and the mean μ are not separately iden-
tified, as they both amount to translation shifts. With the mean-
zero Gaussian weighting on μ, and under scale invariance, the
alternative H ′′

1 :“Y s has density f1,c” for some small c = c1 is
thus almost indistinguishable from the null H ′′

0 : “Y s has density
f0,c0 ” for some c0 < c1, so that power under such alternatives
cannot be much larger than the nominal level. As a consequence,
if the tests are applied to an exact unit root process (c = 0, which
is technically ruled out in the derivations here) with arbitrary
fixed initial condition, they only reject with 5% probability.
This limiting behavior might be considered desirable, as the
population mean of a unit root process does not exist, so a
valid test should not systematically rule out any hypothesized
value.

The differences in power for different values of q in Figure 3
reflect the value of the additional information contained in Yl , l
large, for inference about μ. This information has two compo-
nents: on the one hand, additional observations Yl help to pin
down the common scale, analogous to the increase in power of
tests based on ω̂2

Y,q in (7) as a function of q. On the other hand,
additional observations Yl contain information about the shape
parameter c. For instance, as noted above, c → ∞ corresponds
to flatness of the spectral density in the relevant 1/T neigh-
borhood of the origin. The tests based on ω̂2

Y,q dogmatically
impose this flatness and have power of {52.4%, 54.0%, 54.7%}
for q ∈ {12, 24, 48} against the alternative (12) with c → ∞.
For q = 12 , this power is 9.4% larger than the power of the
test in Figure 3 for c large, reflecting that 12 observations are
not sufficient to learn about the flatness of the spectrum. For
q = 24 and q = 48, however, the difference is only 3.3% and
1.6%, respectively.

Even with q → ∞, the shape of the spectral density cannot
be consistently estimated under local-to-unity asymptotics. In
unreported results, I derive weighted average power maximizing
tests based on all observations of a Gaussian AR(1), and find
that asymptotic overall weighted average power in this q = ∞
case is only 1.9% larger than what is obtained with q = 48. As a
practical matter, it thus makes little sense to consider tests with
q larger than 48.
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Table 1. Constants for computation of Sq

q B cv0.01 cv0.05 cv0.10 δ1 δ2 δ3 δ4 δ5

12 6.2 0.70 1.00 3.25 1.74 −0.44 0.75 2.11 1.80
24 10.0 0.74 1.00 4.23 1.72 −2.16 0.95 1.45 0.96
48 12.0 0.68 1.00 4.27 1.64 −0.81 1.04 1.18 0.49

δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15

12 1.75 1.82 1.27 0.32 −0.12 −0.54 −0.80 −1.07 −1.47 −1.82
24 0.01 1.33 1.45 1.48 1.52 0.28 −0.44 −0.90 −1.36 −1.70
48 0.90 0.52 0.89 0.65 1.10 1.29 0.97 −0.01 −0.66 −0.77

4.3. Suggested Implementation and Empirical
Illustration

The suggested test statistic is a slightly modified version of∫
f1,c(Y s)dF (c)/

∫
f0,c(Y s)d�̃(c). A first modification approx-

imates 
0(c) by diagonal matrices with elements 1/(c2 + π2j 2);
these diagonal values correspond to the suitably scaled limit
of the spectral density of an AR(1) process with ρ = ρT =
1 − c/T at frequency πj/T . This avoids the slightly cumber-
some determination of the elements of 
0(c) as a double integral
in (10). The second modification bounds the value of |Y0| relative
to (Y1, . . . , Yq)′. The bound is large enough to leave weighted
average power almost completely unaffected, but it eliminates
the need to include very small values of c in the support of
�̃, and helps to maintain the power of the test against distant
alternatives when c is large. (Without this modification, it turns
out that power functions are not monotone for c large.) Taken
together, these modifications lead to a loss in overall weighted
average power relative to the 5% level test reported in Figure 3
of approximately one percentage point for all considered values
of q.

In detail, the suggested test about the population mean H0 :
μ = μ0 of an observed scalar time series {yt }Tt=1 is computed as
follows.

1. Compute the q + 1 values Y0 = T −1/2 ∑T
t=1(yt − μ0) and

Yl = T −1/2
√

2
∑T

t=1 cos(πl(t − 1/2)/T )yt , l = 1, . . . , q.
(So that Y0 = √

T (μ̂ − μ0), and Yl, l ≥ 1 is as in (6).)

2. Replace Y0 by min(|Y0|, B
√

q−1
∑q

l=1 Y 2
l ), where B is given

in Table 1. (For reasons described above.)
3. Define d0

i,l = (c2
i + (πl)2)/c2

i , where ci = e(i−1)/2, and d1
i,l =

d0
i,l for l ≥ 1, and d1

i,0 = 1/11, i = 1, . . . , 15. (These are
the elements of the diagonal approximations to 
0(c)−1 and

1(c)−1, scaled by 1/c2 for convenience.)

4. Compute

Sq =
∑15

i=1(
∏q

l=0 d1
i,l)

1/2(
∑q

l=0 d1
i,lY

2
l )−(q+1)/2∑15

i=1 exp(δi)(
∏q

l=0 d0
i,l)

1/2(
∑q

l=0 d0
i,lY

2
l )−(q+1)/2

,

where δi depends on q and is given in Table 1. (This corre-
sponds to the ratio of

∫
f1,c(Y s)dF (c)/

∫
f0,c(Y s)d�̃(c) with

fi,c as in (13) and �̃ is described by point masses at ci with
relative weights eδi .)

5. Reject the null hypothesis at level α if Sq > cvα , where the
critical values cvα for α ∈ {0.01, 0.05, 0.10} are given in
Table 1. (The 5% level critical values are all equal to one,
as the appropriate cut-off value for the (approximate) ratio∫

f1,c(Y s)dF (c)/
∫

f0,c(Y s)d�̃(c) is subsumed in δi .)

The values of B, δi , and cvα are numerically determined such
that the test Sq is of nominal level under (11), for arbitrary c > 0,
and that it come close to maximizing weighted average power
relative to the weighting function F and (12) at the 5% level.

A confidence interval for μ can be constructed by inverting
this test, that is, by determining the set of values of μ0 for which
the test does not reject. This is most easily done by a simple grid
search over plausible values of μ0 (note that different values of
μ0 leave Yl , l ≥ 1 unaffected). Numerical calculations suggest
that 95% confidence intervals are never empty, as Sq does not
seem to take on values larger than the critical value whenever
Y0 = 0, that is, when μ0 = μ̂. They can be equal to the real
line, though, as Sq might not reject for any value of μ0. When
ρ is very close to one (c is very small), this happens necessarily
for almost 95% of the draws, as such series contain essentially
no information about the population mean. Under asymptotics
that correspond to weak dependence (c → ∞), unbounded 95%
confidence intervals still arise for 8.6% of the draws by inverting
S12, but essentially never (< 0.05%) when inverting S24 or S48.

Table 2 reports 95% confidence intervals for the population
mean of U.S. unemployment using this test. As a comparison,
the table also includes 95% confidence intervals based on three
“consistent” estimators (i.e., standard normal critical values are
employed) and five “inconsistent” estimators. Specifically, the
first group includes Andrews’ (1991) estimator ω̂2

A91 with a
quadratic spectral kernel k and bandwidth selection using an
AR(1) model; Andrews and Monahan’s (1992) ω̂2

AM suggestion
of the same estimator, but after prewhitening with an AR(1)
model; and the fully parametric estimator ω̂2

AR(12) based on an

Table 2. 95% confidence intervals for unemployment population mean

S12 S24 S48 ω̂2
A91 ω̂2

AM ω̂2
AR(12) ω̂2

KVB ω̂2
Y,12 ω̂2

Y,24 ω̂2
SPJ IM8 IM16

m.e. ∞ 1.31 1.34 0.75 2.21 0.88 1.46 0.85 0.65 2.69 1.02 0.77

NOTES: Unemployment data same as in Figure 1. All confidence intervals are symmetric around the sample mean μ̂ = 5.80 with endpoints μ̂±m.e., where the margin of error m.e. is
reported in the table.
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AR(12) model. The second group includes Kiefer, Vogelsang,
and Bunzel’s (2000) Bartlett kernel estimator with lag-length
equal to sample size ω̂2

KVB; Müller’s (2007) estimators ω̂2
Y,12 and

ω̂2
Y,24; Sun, Phillips, and Jin’s (2008) quadratic spectral estimator

ω̂2
SPJ with a bandwidth that trades off asymptotic Type I and Type

II errors in rejection probabilities, with the shape of the spectral
density approximated by an AR(1) model and with their weight
parameter w equal to 30; and Ibragimov and Müller’s (2010)
inference with 8 and 16 groups, IM8 and IM16. The confidence
interval based on S12 is equal to the whole real line; the 12
lowest cosine transforms (6) of the unemployment rate do not
seem to exhibit sufficient evidence of mean reversion for the
test to reject any value of the population mean. The full sample
AR(1) coefficient estimate is equal to 0.991; this very large value
seems to generate the long intervals based on ω̂2

AM and ω̂2
SPJ.

5. GENERALIZATION TO REGRESSION AND GMM
PROBLEMS

The discussion of HAC corrections has so far focused on the
case of inference about the mean μ of an observable time series
{yt }Tt=1. But the approaches can be generalized to inference about
scalar parameters of interest in regression and GMM contexts.

Consider first inference about a regression parameter. Denote
by β the k × 1 regression coefficient, and suppose we are in-
terested in its first element β1 = ι′1β, where in this section, ι1
denotes the first column of Ik . The observable regressand Rt and
k × 1 regressors Xt are assumed to satisfy

Rt = X′
tβ + et , E[et |Xt−1, Xt−2, . . .] = 0, t = 1, . . . , T .

Let �̂X = T −1 ∑T
t=1 XtX

′
t , and let β̂ be the ordinary least-

square (OLS) estimator β̂ = �̂−1
X T −1 ∑T

t=1 XtRt . Under suit-

able regular conditions, �̂X
p→ �X, so that

√
T (β̂1 − β1) has

variance

var[
√

T β̂1] ≈ ι′1�
−1
X var[T −1/2

T∑
t=1

Xtet ]�
−1
X ι1

= var[T −1/2
T∑

t=1

ỹt ],

where ỹt = ι′1�
−1
X Xtet . The problem of estimating the variance

of β̂1 is thus cast in the form of estimating the LRV of the scalar
series ỹt .

The series ỹt is not observed, however. So consider instead the
observable series ŷt = ι′1�̂

−1
X Xt êt , with êt = Rt − X′

t β̂ the OLS
residual, and suppose the HAC corrections discussed in Sections
2 and 3 are computed for yt = ŷt . The difference between ỹt

and ŷt is given by

ŷt = ỹt + ι′1(�̂−1
X − �−1

X )Xtet − ι′1�̂
−1
X XtX

′
t (β̂ − β). (14)

With �̂X
p→ �X, the middle term on the right-hand side of (14)

is asymptotically negligible. Furthermore, since β̂
p→ β, the last

term cannot substantially affect many periodogram ordinates at
the same time, so that for consistent LRV estimators the under-
lying LLN still goes through. For inconsistent estimators, one
obtains the same result as discussed in Section 3 if averages
of XtX

′
t are approximately the same in all parts of the sample,

(rT − sT )−1 ∑rT
t=sT +1 XtX

′
t

p→ �X, for all 0 ≤ s < r ≤ 1. Un-

der this homogeneity assumption, �̂−1
X XtX

′
t averages in large

samples to Ik when computing Fourier transforms (2), or co-
sine transforms (6), for any fixed l. Thus, ŷt behaves just
like the demeaned series ỹt − T −1 ∑T

s=1 ỹs ≈ ỹt − (β̂1 − β1).
Consequently, ω̂2

p,n, ω̂2
Y,q , or ω̂2

KVB computed from yt = ŷt are
asymptotically identical to the infeasible estimators computed
from yt = ỹt , as the underlying weights are all orthogonal to a
constant. One may thus rely on the same asymptotically justi-
fied critical values; for instance, under weak dependence, the
t-statistic

√
T (β̂1 − β1)/ω̂Y,q is asymptotically Student-t with q

degrees of freedom.
The appropriate generalization of the Ibragimov and Müller

(2010) approach to a regression context requires q estimations
of the regression on the q blocks of data, followed by the com-
putation of a simple t-statistic from the q estimators of β1.
For the tests Sq derived in Section 4, suppose the hypothesis
to be tested is H0 : β1 = β1,0. One would expect that under the
null hypothesis, the product of the OLS residuals of a regres-
sion of Rt − ι′1Xtβ1,0 and ι′1Xt on PXt , respectively, where the
k × (k − 1) matrix P collects the last k − 1 columns of Ik , forms
a mean-zero series, at least approximately. Some linear regres-
sion algebra shows that this product, scaled by 1/ι′1�̂

−1
X ι1, may

equivalently be written as

yt = ι′1�̂
−1
X Xt êt + ι′1�̂

−1
X XtX

′
t �̂

−1
X ι1

ι′1�̂
−1
X ι1

(β̂1 − β1,0). (15)

Thus, the suggestion is to compute (15), followed by the imple-
mentation described in Section 4.3. If Xt = 1, this reduces to
what is suggested there for inference about a population mean.

The construction of the tests Sq assumes yt to have low-
frequency dynamics that resemble those of a Gaussian AR(1)
with coefficient possibly close to one, and that alternatives cor-
respond to mean shifts of yt . This might or might not be a
useful approximation under (15), depending on the long-run
properties of Xt and et . For instance, if Xt and et are scalar
independent stationary AR(1) processes with the same coeffi-
cient close to unity, then yt in (15) follows a stationary AR(1)
with a slightly smaller coefficient, but it is not Gaussian, and
incorrect values of β1,0 do not amount to translation shifts of
yt . Neither the validity nor the optimality of the tests Sq thus
goes through as such. One could presumably derive weighted
average power maximizing tests that are valid by construction
for any particular assumption of this sort. But in practice, it is
difficult to specify strong parametric restrictions for the joint
long-run behavior Xt and et . And for any given realization Xt ,
yt in (15) may still follow essentially any mean-zero process via
a sufficiently peculiar conditional distribution of {et }Tt=1 given
{Xt }Tt=1. Finally, under the weak dependence and homogeneity
assumptions that justify inconsistent estimators in a linear re-
gression context, Yl for l ≥ 1 computed from ŷt = ι′1�̂

−1
X Xt êt ,

and Yl computed from yt in (15), are asymptotically equivalent,
and they converge to mean-zero-independent Gaussian variates
of the same variance as

√
T (β̂1 − β1). Since iid Gaussian Yl cor-

responds to the special case of c → ∞ in the analysis of Section
4, the tests Sq are thus also valid under such conditions. So as
practical matter, the tests Sq under definition (15) might still be
useful to improve the quality of small sample inference, even if
the underlying assumptions are unlikely to be met exactly for
finite c in a regression context.
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Now consider a potentially overidentified GMM problem.
Let θ be the k × 1 parameter, and suppose the hypothesis of
interest concerns the scalar parameter θ1 = ι′1θ , H0 : θ1 = θ1,0.
Let θ̂ be the k × 1 GMM estimator, based on the r × 1
moment condition gt (θ ) with r × k derivative matrix Ĝ =
T −1 ∑T

t=1 ∂gt (θ )/∂θ ′|θ=θ̂ and r × r weight matrix W. In this
notation, the appropriate definition for ŷt is

ŷt = −ι′1(Ĝ′WĜ)−1Ĝ′Wgt (θ̂).

For the analogue of yt , define θ̂0 as the GMM estimator under
the constraint θ1 = θ1,0, and Ĝ0 = T −1 ∑T

t=1 ∂gt (θ )/∂θ ′|θ=θ̂0 .
Then set

yt = −ι′1(Ĝ0′WĜ0)−1Ĝ0′Wgt (θ̂
0).

These definitions reduce to what is described above for the
special case of a linear regression.

6. SMALL SAMPLE COMPARISON

This section contains some evidence on the small sample
size and power performance of the different approaches to HAC
corrections.

In all simulations, the sample size is T = 200. The first
two simulations concern the mean of a scalar time series.
In the “AR(1)” design, the data are a stationary Gaussian
AR(1) with coefficient ρ and unit innovation variance. In the
“AR(1) + Noise” design, the data are the sum of such an AR(1)
process and independent Gaussian white noise of variance 4.

Table 3 reports small sample size and size-adjusted power
of the same 12 two-sided tests of 5% nominal level that were
reported in Table 2 of Section 4.3 in the unemployment illus-
tration. Due to the much smaller sample size in the simula-
tion, the parametric estimator ω̂2

AR is based on 4 lags, how-
ever. The size-adjustment is performed on the ratio of test
statistic and critical value; this ensures that data-dependent
critical values are appropriately subsumed in the effective
test.

The AR(1) design is exactly the data-generating process for
which the test Sq was derived, and correspondingly, size control
is almost exact. All other approaches lead to severely oversized
tests as ρ becomes large. (All LRV estimators ω̂2 considered
here are translation invariant, so that for fixed T , they have a well-
defined limiting distribution as ρ → 1. At the same time, for any
M, P (|μ̂ − μ| > M) → 1 as ρ → 1. Thus, all LRV-based tests
have arbitrarily poor size control for ρ sufficiently close to one,
and the same also holds for the IMq tests.) By construction,

Table 3. Small sample performance for inference about population mean

ρ S12 S24 S48 ω̂2
A91 ω̂2

AM ω̂2
AR(4) ω̂2

KVB ω̂2
Y,12 ω̂2

Y,24 ω̂2
SPJ IM8 IM16

Size under AR(1)

0.0 4.7 4.9 5.0 5.5 5.5 6.7 5.0 5.2 5.2 5.1 5.1 5.1
0.7 4.9 4.9 5.0 10.0 7.0 8.1 6.1 6.3 8.8 5.5 6.0 8.1
0.9 5.0 4.8 5.3 17.2 10.7 12.0 8.9 13.8 24.7 6.6 10.5 19.1
0.95 5.0 5.0 5.1 25.5 15.3 16.8 13.0 25.8 41.3 8.8 18.6 32.8
0.98 4.9 4.7 5.0 44.2 26.5 27.7 23.0 48.3 62.0 13.0 37.3 54.3
0.999 4.8 4.6 4.5 87.7 68.1 68.7 71.2 88.1 92.0 44.5 84.3 89.7

Size-adjusted power under AR(1)
0.0 35.7 42.8 47.1 50.0 49.9 47.6 37.3 44.3 47.4 48.8 40.1 45.8
0.7 34.8 41.7 44.8 46.4 47.0 45.1 36.2 45.1 47.8 39.9 41.5 46.4
0.9 28.8 34.5 35.6 42.7 41.4 41.9 34.7 46.4 48.5 31.6 42.7 46.7
0.95 21.0 23.2 25.3 40.3 38.5 38.6 33.9 46.9 48.5 27.9 43.6 47.0
0.98 11.3 12.5 12.2 40.0 38.1 37.6 35.1 51.4 52.9 26.9 47.2 51.4
0.999 5.6 5.6 5.6 92.6 74.3 73.9 80.0 98.5 99.0 53.6 97.4 98.5

Size under AR(1)+Noise

0.0 4.6 4.7 4.8 5.3 5.3 6.4 4.8 5.1 4.7 4.8 4.9 5.0
0.7 4.9 5.2 5.9 12.6 13.1 8.1 5.9 5.8 7.4 6.4 5.8 7.1
0.9 5.2 5.7 9.5 27.7 37.5 14.5 8.8 12.8 23.1 10.6 10.0 17.8
0.95 5.3 6.7 12.6 38.0 52.4 21.1 12.8 25.5 40.1 15.9 18.3 31.8
0.98 5.4 7.1 15.1 52.5 67.9 33.6 23.1 47.9 61.5 26.3 37.3 53.8
0.999 5.4 7.4 17.7 86.2 91.9 73.6 71.1 88.1 91.9 68.0 84.2 89.6

Size-adjusted power under AR(1)+Noise

0.0 35.9 43.9 48.6 51.3 51.0 48.9 37.5 44.8 49.5 50.2 40.9 46.5
0.7 34.4 41.9 46.2 48.9 49.6 46.6 35.8 45.5 48.3 46.0 41.4 46.8
0.9 28.9 35.8 39.0 46.1 48.6 43.0 34.5 46.8 48.9 42.6 42.3 47.6
0.95 21.3 23.5 26.7 43.2 47.2 39.9 34.0 47.6 49.4 39.2 43.6 48.3
0.98 11.8 12.0 12.6 43.0 48.8 39.5 35.5 51.5 53.5 37.7 47.9 51.3
0.999 5.54 5.56 5.53 85.6 91.0 76.8 80.7 98.7 99.1 72.2 97.3 98.6

NOTES: Entries are rejection probability in percent of nominal 5% level tests. Under the alternative, the population mean differs from the hypothesized mean by 2T −1/2(1 − ρ)−1 and
2T −1/2(4 + (1 − ρ)−2)1/2, respectively. Based on 20,000 replications.
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Table 4. Small sample performance for inference about regression coefficient

ρ S12 S24 S48 ω̂2
A91 ω̂2

AM ω̂2
AR(4) ω̂2

KVB ω̂2
Y,12 ω̂2

Y,24 ω̂2
SPJ IM8 IM16

Size under scalar nonconstant regressor

0.0 4.7 4.9 5.0 5.9 6.0 7.1 5.1 5.4 5.5 5.5 5.0 5.1
0.7 5.1 5.0 5.1 10.2 8.0 9.6 6.7 7.3 8.2 7.3 5.3 5.5
0.9 5.2 4.6 4.4 17.9 12.8 14.5 10.9 12.2 17.2 10.3 5.7 5.8
0.95 5.0 4.3 4.2 25.4 18.1 20.2 15.4 19.3 28.5 13.8 5.6 5.5
0.98 4.2 3.5 3.6 36.4 26.0 28.2 22.4 31.2 43.2 19.0 5.2 5.2
0.999 2.9 2.3 2.6 51.6 37.0 39.5 33.6 47.1 58.9 26.3 4.8 5.2

Size-adjusted power under scalar nonconstant regressor

0.0 47.9 59.1 64.6 68.9 68.7 66.3 51.9 62.1 66.0 67.2 53.7 54.6
0.7 36.0 44.8 49.0 49.9 49.4 48.4 38.6 46.4 49.9 45.5 45.8 53.3
0.9 30.6 36.8 39.6 41.0 39.1 40.1 32.8 41.2 43.1 34.9 53.4 73.6
0.95 27.5 31.3 33.1 40.5 36.6 38.0 33.4 41.0 42.9 32.5 70.3 91.2
0.98 25.9 29.7 29.8 44.6 39.3 40.5 38.0 46.4 48.7 34.6 93.2 99.7
0.999 31.2 37.4 36.5 93.6 87.4 87.6 89.1 95.3 95.8 81.5 100 100

Size under four-dimensional nonconstant regressor

0.0 4.8 5.1 5.2 6.0 6.0 7.1 5.2 5.7 5.6 5.6 4.9 4.8
0.7 5.9 5.8 5.8 11.0 8.8 10.5 7.5 8.1 8.6 8.0 5.3 5.3
0.9 7.2 7.0 6.8 20.3 15.6 17.6 12.7 14.7 18.8 12.9 5.4 5.1
0.95 8.4 8.2 8.1 28.7 22.1 24.6 18.3 22.1 28.5 17.9 5.2 4.9
0.98 10.7 10.3 10.2 38.6 30.3 33.0 25.6 31.4 39.6 24.9 4.9 4.6
0.999 13.4 12.9 12.7 45.5 36.3 39.9 31.7 38.3 46.2 30.7 4.7 4.7

Size-adjusted power under four-dimensional nonconstant regressor

0.0 47.2 57.9 63.5 67.9 67.6 64.9 51.4 60.8 64.8 66.2 47.9 41.7
0.7 35.5 44.5 47.9 49.3 49.0 47.9 37.4 45.9 48.6 45.2 45.3 48.9
0.9 31.7 38.4 40.2 42.4 40.4 41.2 34.6 41.7 43.8 37.2 64.8 80.2
0.95 30.9 36.9 38.0 44.4 41.6 42.8 36.6 44.0 45.9 38.2 85.2 95.9
0.98 34.0 40.4 41.4 55.6 52.3 53.1 45.6 55.7 57.8 46.5 98.8 99.9
0.999 47.2 56.8 57.5 99.6 98.4 98.4 97.4 99.6 99.8 96.8 100 100

NOTES: Entries are rejection probability in percent of nominal 5% level tests. Under the alternative, the population regression coefficient differs from the hypothesized coefficient by
2.5T −1/2(1 − ρ2)−1/2. Based on 20,000 replications.

the tests Sq come close to maximizing weighted average power.
Yet their size-adjusted power is often substantially below those
of other tests. This is no contradiction, as size adjustment is
not feasible in practice; a size-adjusted test that rejects if, say,
|μ̂ − μ| is large is, of course, as good as the oracle test that uses
a critical value computed from knowledge of ρ.

The addition of an independent white-noise process to an
AR(1) process translates the AR(1) spectral density upward.
The peak at zero when ρ is large is then “hidden” by the noise,
making appropriate corrections harder. This induces size distor-
tions in all tests, including those derived here. The distortions
of Sq are quite moderate for q = 12, but more substantive for
larger q. Assuming the AR(1) approximation to hold over a
wider range of frequencies increases power, but, if incorrect,
induces more severe size distortions.

The second set of simulations concerns inference about a
scalar regression coefficient. The regressions all contain a con-
stant, and the nonconstant regressors and regression distur-
bances are independent mean-zero Gaussian AR(1) processes
with common coefficient ρ and unit innovation variance. The
parameter of interest is the coefficient on the first nonconstant
regressor. Table 4 reports the small sample performance of the
same set of tests, implemented as described in Section 4, for
a scalar nonconstant regressor, and a four-dimensional noncon-

stant regressor. The tests Sq continue to control size well, at least
with a single nonconstant regressor. Most other tests overreject
substantively for sufficiently large ρ.

The marked exception is the IMq test, which has outstanding
size and power properties in this design. As a partial explanation,
note that if the regression errors follow a random walk, then the
q estimators of the parameter of interest from the q blocks of
data are still exactly independent and conditionally Gaussian,
since the block-specific constant terms of the regression soak
up any dependence that arises through the level of the error
term. The result of Bakirov and Székely (2005) reviewed in
Section 3 thus guarantees coverage for both ρ = 0 and ρ → 1.
(I thank Don Andrews for this observation). At the same time,
this stellar performance of IMq is partially due to the specific
design; for instance, if the zero-mean AR(1) regression error
is multiplied by the regressor of interest (which amounts to a
particular form of heteroscedasticity), unreported results show
IMq to be severely oversized, while Sq continues to control size
much better.

7. CONCLUSION

Different forms of HAC corrections can lead to substantially
different empirical conclusions. For instance, the lengths of
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standard 95% confidence intervals for the population mean of
the U.S. unemployment rate reported in Section 4.3 vary by
a factor of three. It is therefore important to understand the
rationale of different approaches.

There are good reasons to be skeptical of methods that
promise to automatically adapt to any given dataset. All in-
ference requires some a priori knowledge of exploitable reg-
ularities. The more explicit and interpretable these driving as-
sumptions, the easier it is to make sense of empirical results.

In my view, the relatively most interpretable way of express-
ing regularity for deriving HAC corrections is in spectral terms.
Under an assumption that the spectral density is flat over a thin
frequency band around the origin, an attractive approach is to
perform inference with the estimator derived in Müller (2007).
For instance, for empirical analyses involving macroeconomic
variables, a natural starting point is the assumption that the spec-
trum is flat below business cycle frequencies. Roughly speaking,
this means that business cycles are independent from one an-
other. With a business cycle frequency cut-off of 8 years, this
suggests using Müller’s (2007) estimator with the number of
cosine weighted averages equal to the span of the sample in
years divided by four.

This article derives an alternative approach, where the regu-
larity consists of the assumption that an AR(1) model provides a
good approximation to the spectral density over a thin frequency
band. Flatness of the spectral density over this band is covered
as a special case, so that the resulting inference is strictly more
robust than that based on Müller’s (2007) estimator. It is not
obvious over which frequencies one would necessarily want to
make this assumption, but the numerical evidence of this article
suggests the particular test S24 to be a reasonable default.

Especially if second moment instabilities are a major con-
cern, another attractive approach is to follow the suggestion of
Ibragimov and Müller (2010). The regularity condition there is
that estimating the model on consecutive blocks of data yields
approximately independent and Gaussian estimators of the pa-
rameter of interest. In contrast to other approaches to inconsis-
tent LRV estimation, no assumption about the homogeneity of
second moments is required for this method. Under an assump-
tion of a flat spectrum below 8 year cycles, it makes sense to
choose equal-length blocks of approximately 10 years of data.

Econometrics only provides a menu of inference methods de-
rived under various assumptions. Monte Carlo exercises, such
as the one in Section 6 above, are typically performed with very
smooth spectra in simple parametric families, and it remains un-
clear to which extent their conclusions about the “empirically”
best HAC corrections are relevant for applied work. Ultimately,
researchers in the field have to judge which set of regularity
conditions makes the most sense for a specific problem.

APPENDIX

Approximation (5)

Since for |j | < T − 1, 2
T

∑(T −1)/2
l=1 cos(2πjl/T )pl =

γ̂ (j ) + γ̂ (T − |j |) (cf. equation (7.6.10) in Priestley (1981)),
one can write ω̂2

k,ST
= ∑(T −1)/2

l=1 KT,lpl − ∑T −1
j=−T +1 k(j/ST )γ̂ (T − j ).

With ST � T , the remainder term
∑T −1

j=−T +1 k(j/ST )γ̂ (T − j ) is

typically small, as γ̂ (T − j ) is small for j � T , and k(j/ST ) is small
for j � ST .

Furthermore, note that for 0 < |j | < T ,
∑(T −1)/2

l=1 cos(2πjl/T ) =
−1/2, so that

∑(T −1)/2
l=1 KT,l = (T − 1)/T − 2T −1

∑T −1
j=1 k(j/ST ) ≈ 1.

Equation (8)

Note that with φl(t) equal to either
√

2 cos(πl(t − 1/2)/T ) or√
2 sin(πlt/T ),

∑T
t=1 φj (t)φl(t) = 1[l = j ]T for j, l = 1, . . . , T − 1.

Thus, yt − μ̂ = √
2T −1/2

∑T
l=1 cos(πl(t − 1/2)/T )Yl , and by a di-

rect calculation,
∑t

s=1(ys − ȳ) = T −1/2
∑T

l=1

√
2 sin(πlt/T )

2 sin(πl/(2T )) Yl , so that

ω̂2
KV B = T −2

∑T
t=1(

∑t
s=1(ys − ȳ))2 = ∑T

l=1 κT,lY
2
l .
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Nicholas M. KIEFER
Departments of Economics and Statistical Science, Cornell University, Ithaca, NY 14853 and CREATES, University
of Aarhus, Aarhus, Denmark (nicholas.kiefer@cornell.edu)

1. INTRODUCTION

Müller looks at the problems of interval estimation and hy-
pothesis testing in autocorrelated models from a frequency do-
main point of view. This leads to good insights as well as pro-
posals for new methods. The new methods may be more robust
than existing approaches, though this is more suggested than
firmly established. This discussion begins with a speculative
overview of the problem and the approach. The theme is that
the issue involved is essentially the choice of a conditioning
ancillary. Then I turn, perhaps more usefully, to some specific
technical comments. Finally, I agree wholeheartedly with the
general point that comes through clearly: the more we know or
are willing to assume about the underlying process the better
we can do.

2. ASYMPTOTICS AND CONDITIONING

The point of asymptotic theory is sometimes lost, especially
when new approaches are being considered. The goal is to find
a manageable approximation to the sampling distribution of a
statistic. The approximation should be as accurate as possible.
The assumptions needed to develop the asymptotics are not a
model of any actual physical process.

The “trick” is to model the rate of information accumulation
leading to the asymptotic approximation, so that the resulting
limit distribution can be calculated and as accurately as possible

mimics the sampling distribution of interest. There are many
ways to do this. These are not “correct” or “incorrect,” just
different models. What works?

One way to frame the choice of assumptions is as specification
of an ancillary statistic. An example will make this specific.
Suppose we are estimating μ and the sufficient statistic is S.
Suppose S can be partitioned into (μ̂, a) with a ancillary. With
data y sufficiency implies the factorization

p(y|μ) = g(y)p(S|μ)

and ancillarity implies

p(S|μ) = p(μ̂|a, μ)p(a).

The key is choosing a so its distribution does not depend on μ—
or in the local case, does not depend “much.” See Christensen
and Kiefer (1994). S may have the dimension of the dataset.

It is widely agreed—mostly from examples, not theorems—
that inference can (and perhaps should) be based on the condi-
tional distribution. See Barndorff-Nielsen (1984), Berger et al.
(1988), and the review by Reid (1995). In the normal mean
model, we could set a = (s2, a′) and condition on a, obtaining
normal inference, or condition on a′ alone obtaining the t. With
autocorrelation, a = (ρ̂, s2, a′) = (ψ, a′) and conditioning on a
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