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Nicholas M. KIEFER
Departments of Economics and Statistical Science, Cornell University, Ithaca, NY 14853 and CREATES, University
of Aarhus, Aarhus, Denmark (nicholas.kiefer@cornell.edu)

1. INTRODUCTION

Müller looks at the problems of interval estimation and hy-
pothesis testing in autocorrelated models from a frequency do-
main point of view. This leads to good insights as well as pro-
posals for new methods. The new methods may be more robust
than existing approaches, though this is more suggested than
firmly established. This discussion begins with a speculative
overview of the problem and the approach. The theme is that
the issue involved is essentially the choice of a conditioning
ancillary. Then I turn, perhaps more usefully, to some specific
technical comments. Finally, I agree wholeheartedly with the
general point that comes through clearly: the more we know or
are willing to assume about the underlying process the better
we can do.

2. ASYMPTOTICS AND CONDITIONING

The point of asymptotic theory is sometimes lost, especially
when new approaches are being considered. The goal is to find
a manageable approximation to the sampling distribution of a
statistic. The approximation should be as accurate as possible.
The assumptions needed to develop the asymptotics are not a
model of any actual physical process.

The “trick” is to model the rate of information accumulation
leading to the asymptotic approximation, so that the resulting
limit distribution can be calculated and as accurately as possible

mimics the sampling distribution of interest. There are many
ways to do this. These are not “correct” or “incorrect,” just
different models. What works?

One way to frame the choice of assumptions is as specification
of an ancillary statistic. An example will make this specific.
Suppose we are estimating μ and the sufficient statistic is S.
Suppose S can be partitioned into (μ̂, a) with a ancillary. With
data y sufficiency implies the factorization

p(y|μ) = g(y)p(S|μ)

and ancillarity implies

p(S|μ) = p(μ̂|a, μ)p(a).

The key is choosing a so its distribution does not depend on μ—
or in the local case, does not depend “much.” See Christensen
and Kiefer (1994). S may have the dimension of the dataset.

It is widely agreed—mostly from examples, not theorems—
that inference can (and perhaps should) be based on the condi-
tional distribution. See Barndorff-Nielsen (1984), Berger et al.
(1988), and the review by Reid (1995). In the normal mean
model, we could set a = (s2, a′) and condition on a, obtaining
normal inference, or condition on a′ alone obtaining the t. With
autocorrelation, a = (ρ̂, s2, a′) = (ψ, a′) and conditioning on a
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is “too much” conditioning in that confidence intervals are too
small under repeated sampling. There are two sources of error
here:

• Specification error: dependence is more general than
AR(1).

• Too much conditioning.

3. GLS, HAC, AND KVB

Following Müller, let ω2 = ∑j=∞
j=−∞ γ (j ) with γ (j ) =

E(yt − μ)(yt−j − μ). The generalized least squares approach
essentially parameterizes ω by parameterizing the γ (j ), for ex-
ample, with ρ in a first-order autocorrelation model. GLS then
conditions on the estimate ρ̂. There is a clear possibility of speci-
fication error if the dependence is different from AR(1). Further,
conditioning on ρ̂ is probably too much conditioning, as it often
leads to understatement of sampling errors in μ̂. Essentially ρ̂ is
not close enough to being ancillary (Skovgaard 1986). Address-
ing specification error, the HAC estimators generalize to an NP
estimate of the variance, as (4) in Müller (e.g., Newey-West).
Thus, the specification error question is addressed. But the con-
ditioning on ω̂ is still too much for our purposes—intervals are
too small under repeated sampling. KVB and KV uncondition,
in the same way that the “t” distribution generalizes the normal
distribution conditional on σ̂ by unconditioning, thus improv-
ing the approximation to the sampling distribution. Still there
is conditioning—the distant γ (j ) are zero and therefore do not
depend on parameters.

4. FREQUENCY DOMAIN

Müller represents the data as (μ̂, Zsin, Zcos) = (μ̂, a). Then a
is additionally factored as a = (p1, . . . , pn, a

′) with

pl = 1

2

(
(Zcos

l )2 + (Zsin
l )2

)
and again to a = (ω̂2, a′′) with ω̂2 = 1

n

∑
pl . Here, the natural

ancillarity assumption is on the interval around zero in which the
spectrum is constant. The choice of nT < T is like a bandwidth
choice. We would like an asymptotic theory that can guide the
choice of nT ? For strongly autocorrelated series, the procedure
apparently does not approximate the sampling distribution well
enough. More variation needs to be introduced in the asymptotic
approximation.

It is natural to consider possibilities for unconditioning. KVB
choose a method like specifying nT /T = b, so that the sampling
distribution of ω̂ does not disappear. Müller instead reduces the
per-observation information content of the data asymptotically.
He considers the case ρT = 1 − c/T for fixed c to get a local
to unity theory. This theory leads to a limit for the variance
that depends on c. Müller addresses this by marginalizing the

limit distribution using a distribution for c. Note that c has no
operational meaning—like a kernel or a bandwidth choice. Un-
conditioning is unquestionably a good idea here, and especially
good in hindsight, since the resulting statistics appear to per-
form competitively in simulations. However, I find it difficult
to think about a distribution for c. This has mean about 186.
What does this mean? Can it be translated into a mean for ρ (a
linear function of c)? The result might be a distribution easier
to specify plausibly.

5. MISCELLANEOUS COMMENTS

I am intrigued by the good performance of the Ibragimov-
Müller approach. Is it the case that the choice of bootstrap
method is like the choice of assumptions to use in an asymptotic
approximation? That is, the more we know, the better we can
do.

In practice, would not a persistent series be prewhitened?
This is given short shrift with the comment that “this approach
requires the estimation error in the prewhitening stage to be
negligible.” Why is that? The whole point of the NP part is to
mop up dependence, before or after prewhitening.

A minor complaint: It is certainly true that “inconsistent LRV
estimators require a strong degree of homogeneity to justify
the distributional approximation.” Why does it follow that they
“are not uniformly more ‘robust’ than consistent ones?” This
would require at least a definition of robust and some demon-
stration. A poor approximation can be better than a still poorer
approximation!

In short, this is a thought-provoking article, covering a lot of
ground. A pleasure to read. And, I have something to agree with
completely in the conclusion: “There are good reasons to be
skeptical of methods that promise to automatically adapt to any
given dataset. All inference requires some a priori knowledge
of exploitable regularities. The more explicit and interpretable
these driving assumptions, the easier it is to make sense of
empirical results.”

Ulrich will become a Bayesian in time.
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Richard K. CRUMP
Capital Markets Function, Federal Reserve Bank of New York, New York, NY 10045 (richard.crump@ny.frb.org)

1. INTRODUCTION

Conducting valid inference in a time series setting often
requires the use of a heteroscedasticity and autocorrelation
(HAC) robust variance estimator. Under mild dependence struc-
tures, the theory and practice of such estimators is well devel-
oped. However, under more severe forms of dependence, the
conventional distributional approximation usually employed to
describe the finite-sample properties of test statistics based on
these estimators tends to be poor. Professor Müller is to be
congratulated for this excellent article addressing the important
issue of conducting valid inference using HAC estimators in the
presence of strong autocorrelation. The class of tests introduced
in the article should prove useful both to applied practitioners
and as a foundation for future theoretical work.

This comment is comprised of two sections. First, we com-
pare the main contribution of Müller (2014) (hereafter, the “Sq

test”) to a theoretically valid approach based on the usual t-test.
More specifically, to gain further insight into the properties of
the Sq test, we compare its finite-sample properties to those of
a t-test with limiting distribution obtained under the local-to-
unity parameterization and fixed-b asymptotics. We use critical
values obtained from a Bonferroni-based procedure to control
size in the presence of the nuisance parameter governing the
degree of dependence. Second, we employ the new test in an
empirical application by revisiting the question of long-horizon
predictability in asset returns. We find that the Sq test provides
evidence of predictability of equity returns by the dividend yield
at shorter horizons when the sample is restricted to end in 1990.
The Sq test, when applied to bond returns, produces little evi-
dence of predictability in our application. In both applications
the conclusions drawn from the Sq test can be sensitive to the
choice of q, suggesting that further work will be necessary to
guide the use of the Sq test in empirical applications.

2. FIXED-b ASYMPTOTICS IN A LOCAL-TO-UNITY
SETTING

The new testing procedure of Müller (2014) is motivated by
the assumption that for a restricted class of frequencies, gov-
erned by the user-defined parameter q, the spectral density is
well approximated by the spectral density of a nearly integrated
autoregressive process. By focusing only on this band of fre-
quencies, the core assumption of the article is of the “semipara-
metric” variety. The exact form of the Sq test is then derived
under the assumption of scale invariance and maximization of

a weighted-average power criterion using the results of Elliott,
Müller, and Watson (2013).

Suppose that instead of making the semiparametric assump-
tion of Müller (2014), we assume {yt : t = 1, . . . , T } is gener-
ated by

yt = μ + εt , εt = ρεt−1 + ηt (2.1)

with initial condition ε0, where {ηt } is a weakly dependent pro-
cess. Furthermore, we impose the local-to-unity parameteriza-
tion, ρT = 1 − c/T , where c ∈ [0,∞). In words, we assume
that the data are generated by a nearly integrated autoregressive
process at all frequencies. As in Müller (2014), we are interested
in testing H0 : μ = μ0 versus the alternative that HA : μ = μ0.
We use the fixed-b asymptotics of Kiefer and Vogelsang (2005)
in this setting. Following, for example, Atchadé and Cattaneo
(2014), we can write the long-run variance estimator as

ω̂2
k,ST

= T −3
T∑

�=1

T∑
j=1

{
kb

(
� − j

ST

)
− vT (�) − vT (j ) + uT

}
× y�yj

vT (�) = T −1
T∑

i=1

kb

(
� − i

ST

)
, uT = T −2

T∑
i=1

T∑
j=1

kb

(
j − i

ST

)
,

where kb (·) is a kernel function. In the simulations, we use
a Parzen kernel, b = 0.5 or b = 1, and ST = T . Then, under
regularity conditions, and defining μ̂ = T −1 ∑T

t=1 yt , we have

τb = T −1/2 (μ̂ − μ)√
ω̂2

k,ST

d−→
∫ 1

0 Bc(r)dr∫ 1
0

∫ 1
0 Kb(s, t)Bc(s)Bc(t)dsdt

,

Kb(s, t) = kb(s − t) −
∫ 1

0
kb(s − w) dw −

∫ 1

0
kb(t − w) dw

+
∫ 1

0

∫ 1

0
kb(w1 − w2) dw1dw2,

where {Bc(s) : s ∈ [0, 1]} is an Ornstein–Uhlenbeck process.
For instance, this result may be obtained from similar steps as
in Tanaka (1996, chap. 5). The limiting distribution of the t-test,
τb, is then solely a function of the user-defined choice of kernel
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Table 1. AR(1), ε0 ∼ N (
0, σ 2

η /(1 − ρ2)
)

ρ S12 S24 S48 τ1/2 τ1 τ �
1/2 τ �

1

Panel A: size

0 4.9 4.7 4.7 5.5 5.3 5.5 5.7
0.7 5.0 4.9 4.8 5.2 5.1 5.2 5.5
0.9 5.0 5.0 5.2 4.1 3.9 4.2 4.3
0.95 5.0 5.1 5.2 3.5 3.4 3.5 3.3
0.98 4.9 4.9 5.1 5.0 5.4 3.1 2.9
0.999 4.4 4.4 4.2 48.0 41.6 5.2 4.9

Panel B: power

0 34.2 42.1 47.1 36.5 27.8 36.3 29.2
0.7 33.8 40.6 44.3 34.7 26.7 34.9 28.1
0.9 28.0 32.9 35.5 26.1 21.7 26.6 23.0
0.95 20.2 22.5 24.7 19.0 18.8 16.7 14.8
0.98 11.2 11.7 12.0 29.8 27.7 10.1 9.3
0.999 4.9 5.0 4.9 100.0 100.0 8.1 8.0

Panel C: size-adjusted power

0 34.6 43.1 47.9 34.0 26.7 34.0 26.7
0.7 33.6 40.9 45.1 34.6 26.2 34.6 26.2
0.9 27.8 33.0 34.3 34.6 27.8 34.6 27.8
0.95 20.1 22.1 23.4 34.3 28.2 34.3 28.2
0.98 11.4 12.2 11.7 36.1 27.9 36.1 27.9
0.999 5.6 5.8 5.8 92.1 80.4 92.1 80.4

and parameter b and the nuisance parameter c, which governs
the degree of persistence of the data. To conduct valid inference,
it is crucial to control the size of the test with respect to the value
of c. See, for example, Andrews and Guggenberger (2009) and
Andrews and Guggenberger (2010) for further discussion on
the importance of uniformly valid inference in econometrics.
We use the Bonferroni-based critical values introduced in Mc-
Closkey (2012). We view this approach as possibly the most
natural point of comparison to the Sq test.

Table 1 presents the simulation results for the strictly station-
ary AR(1) model and set of alternatives given in Müller (2014).
As in Müller (2014), we set σ 2

η = 1. The first three columns
present the size, power, and size-adjusted power (we show size-
adjusted power so the results for the Sq test are comparable to the
tables in Müller (2014). Size-adjusted power for the τb statistic
is (nearly) the same as inference when the value of c is known
and so should be interpreted with this in mind) for the Sq test
with q = 12, q = 24, and q = 48. The next two columns pro-
vide the results for the Bonferroni-based procedure with critical
values formed under the assumption that the initial condition is
negligible (written as τb). As an additional point of comparison,
the final two columns report results for the Bonferroni-based
procedure with the limiting distributions constructed under a
stationary initial condition (since c > 0 in this case, we imple-
mented the testing procedure by setting the lower and upper
critical values for μ equal to −∞ and ∞, respectively, when-
ever the confidence interval formed for c included the smallest
value in our grid. This approach thus requires a user-defined
minimum value of c. In our simulations, we chose cmin = 0.01)
(written as τ �

b ). The “S-Bonf-Adj” critical values are formed
with β = 0.15 (i.e., nominal coverage of the parameter c equal
to 1 − β). To form confidence intervals for c, we invert an ordi-

nary least square (OLS)-based augmented Dickey–Fuller (ADF)
test with lag length chosen by the modified Akaike information
criterion (MAIC) of Perron and Qu (2007). Refinements of our
procedure could include shifting to the “S-Bonf-Min” critical
values of McCloskey (2012), a different choice of confidence
interval for the local-to-unity parameter or an alternative test
statistic to τ . However, we prefer this formulation for simplicity
of interpretation. All results are based on 20,000 simulations.

The results of Table 1 are instructive on how to interpret
properties of the Sq test. First, the τb test statistic controls size
away from values of ρ close to one, but is severely size distorted
when ρ = 0.999. This reflects the fact that the critical values for
τb are constructed under the assumption that the initial condition
is negligible. Meanwhile, the τ �

b test statistic controls size well
across this grid of values of ρ. The power of the τ �

1/2 test is
comparable to that of the S12 test. However, the S24 and S48 tests
have higher power when ρ moves away from one. In Table 2,
we again consider the AR(1) specification but use the fixed
initial condition ε0 = 0. The pattern of the results is similar
to that of Table 1 except that the τb test statistic controls size
even in cases where the error terms are highly persistent. We
can also contrast the results from Tables 1 and 2 to those using
the least-favorable critical value. In this setting, because critical
values for τb grow as c ↓ 0, choosing to use the least-favorable
critical value produces severely undersized tests for all areas of
the parameter space except when ρ is very close to one.

In Table 3, we present results for the “AR(1) + noise” spec-
ification and set of alternatives given in Müller (2014). As in
Müller (2014), we set the variance of the additive noise term to
4. Similar to Table 1, the τb test is oversized when ρ is near one
with excessive size distortion when ρ = 0.999. In contrast, the
τ �
b test controls size well across the grid of ρ values and the τ �

1/2
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Table 2. AR(1), ε0 = 0

ρ S12 S24 S48 τ1/2 τ1 τ �
1/2 τ �

1

Panel A: size

0 4.8 4.8 4.8 5.6 5.4 5.5 5.7
0.7 5.0 4.9 4.8 5.3 5.1 5.3 5.5
0.9 5.3 5.1 5.5 4.2 4.0 4.4 4.5
0.95 5.4 5.4 5.6 3.6 3.5 3.5 3.4
0.98 5.0 4.8 5.0 4.1 4.7 3.3 3.0
0.999 2.5 2.4 2.3 6.0 5.3 3.0 2.5

Panel B: power

0 34.5 42.5 47.3 36.7 28.0 36.4 29.3
0.7 34.3 41.3 44.9 35.2 27.2 35.4 28.5
0.9 29.7 35.1 37.7 27.1 22.4 27.6 23.9
0.95 22.9 25.7 28.1 20.1 20.1 17.6 15.9
0.98 13.8 14.9 15.6 34.0 32.5 11.0 10.4
0.999 5.2 5.3 5.1 100.0 100.0 8.3 8.2

Panel C: size-adjusted power

0 35.0 43.1 48.1 34.3 27.5 34.3 27.5
0.7 34.4 41.6 45.8 34.9 27.4 34.9 27.4
0.9 28.9 34.5 35.5 35.7 28.7 35.7 28.7
0.95 21.6 23.9 25.4 37.7 29.9 37.7 29.9
0.98 13.8 15.9 15.4 48.7 38.1 48.7 38.1
0.999 10.2 12.6 11.1 100.0 100.0 100.0 100.0

statistic has comparable power properties to that of the S12 test.
The S24 and S48 tests suffer from size distortion for larger values
of ρ as discussed in Müller (2014). Table 4 reports the compan-
ion results under a zero initial condition. As in Table 3, the S12

test and the τ �
b control size well across these values of ρ. The

S24 and S48 tests show some size distortion as ρ moves above
0.90 whereas the τb test controls size except when ρ = 0.999.

There are three main observations from the limited sim-
ulation evidence we present. First, it is instructive to see
where power is directed by the Sq test. In particular, the
Sq test has little power when ρ is near 1 but much higher
power elsewhere. From a practitioner’s perspective, this is a
very appealing property (see next section) as the test controls
size well in exactly the region of the parameter space where

Table 3. AR(1) + Noise, ε0 ∼ N (
0, σ 2

η /(1 − ρ2)
)

ρ S12 S24 S48 τ1/2 τ1 τ �
1/2 τ �

1

Panel A: size

0 4.9 5.0 5.0 5.5 5.3 5.4 5.5
0.7 4.9 4.9 5.6 5.2 4.9 5.2 5.1
0.9 5.1 5.9 9.2 4.9 4.2 5.0 4.3
0.95 5.2 6.7 12.4 4.7 4.3 4.7 4.0
0.98 5.3 7.0 15.0 5.9 6.0 4.0 3.2
0.999 4.9 7.4 17.0 48.1 41.9 4.8 4.5

Panel B: power

0 34.4 42.7 47.2 35.5 27.1 35.1 27.9
0.7 34.1 42.5 49.1 33.9 26.3 33.7 26.8
0.9 28.7 37.9 53.7 27.1 22.8 26.7 21.6
0.95 22.0 29.8 50.0 21.2 20.7 17.6 14.7
0.98 12.4 17.8 37.3 30.9 28.7 9.6 8.6
0.999 5.5 8.4 19.4 100.0 100.0 6.8 6.7

Panel C: size-adjusted power

0 34.8 42.7 47.3 34.4 26.2 34.4 26.2
0.7 34.6 42.9 47.0 36.2 26.9 36.2 26.9
0.9 28.3 34.1 38.0 35.7 29.1 35.7 29.1
0.95 21.2 23.0 25.4 35.0 28.2 35.0 28.2
0.98 11.5 11.9 12.0 36.6 28.4 36.6 28.4
0.999 5.7 5.7 5.6 92.4 80.6 92.4 80.6
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Table 4. AR(1) + Noise, ε0 = 0

ρ S12 S24 S48 τ1/2 τ1 τ �
1/2 τ �

1

Panel A: size

0 4.9 4.9 5.0 5.5 5.3 5.4 5.6
0.7 4.9 4.9 5.5 5.2 4.9 5.1 5.1
0.9 5.3 6.0 9.6 4.9 4.5 5.0 4.6
0.95 5.6 7.1 12.6 4.7 4.4 4.6 4.1
0.98 5.4 6.9 14.7 5.4 5.5 4.5 3.6
0.999 2.9 4.0 9.8 7.1 6.3 3.7 2.8

Panel B: power

0 34.5 42.8 47.3 35.5 27.2 35.2 27.9
0.7 34.5 43.0 49.5 34.2 26.6 34.0 27.1
0.9 30.5 40.1 55.4 28.2 24.0 27.6 22.6
0.95 24.7 33.6 54.4 22.5 22.3 18.5 15.8
0.98 15.4 22.4 44.5 35.0 33.6 10.2 9.6
0.999 5.9 8.7 20.3 100.0 100.0 6.9 6.8

Panel C: size-adjusted power

0 34.8 43.1 47.2 34.4 26.1 34.4 26.1
0.7 34.9 43.2 47.0 36.7 27.4 36.7 27.4
0.9 29.3 35.9 39.6 36.4 28.4 36.4 28.4
0.95 22.8 25.3 27.4 37.9 30.2 37.9 30.2
0.98 14.1 14.6 15.5 47.7 38.3 47.7 38.3
0.999 10.1 11.6 10.7 100.0 100.0 100.0 100.0

inference is most difficult. Second, the results show clearly that
the underlying assumption of how the initial condition is gener-
ated plays a key role in the performance of testing procedures
for large values of ρ. In particular, procedures that may per-
form well in terms of size control when the initial condition is
negligible can have severe size distortion when the initial con-
dition is drawn from its unconditional distribution. This is not
a surprising result, but one that may not be fully appreciated
outside of the unit root testing literature. Third, the simulations
show that the choice of q can matter and so further guidance for
applied practitioners would be an important contribution for
future work.

3. APPLICATION: LONG-HORIZON RETURN
PREDICTABILITY

Conventional wisdom in applied time series would suggest
the presence of model misspecification when products of esti-
mated error terms are highly persistent. The consummate exam-
ple would be the omission of the lagged left-hand side variable
in the canonical spurious regression case. However, an impor-
tant situation where the prescription to add lags of the dependent
variable is unavailable is in long-horizon predictability regres-
sions, such as predicting h-period ahead stock and bond returns.
We revisit the question of longer-horizon return predictability
for equities and bonds using the Sq test. These two simple em-
pirical exercises demonstrate clearly the applicability of the new
testing procedure.

Long-horizon stock return predictability has been studied by
a number of authors (see, e.g., Koijen and Nieuwerburgh 2011 or
Rapach and Zhou 2013 for general discussions.) Here, we follow

the standard approach in the literature and form continuously
compounded, cumulative stock returns as

rxt+h =
h∑

j=1

rxt+j , (3.1)

where rxt is the 1 month compounded excess return formed
as the Center for Research in Security Prices (CRSP) value-
weighted return less the 1 month interest rate (here mea-
sured as the Fama–Bliss risk-free rate). We consider two
regressors: (1) the log dividend yield formed as the nat-
ural logarithm of the sum of monthly dividends over the
last 12 months relative to the current price and (2) the
Fama–Bliss risk-free rate. We include the latter regressor as Ang
and Bekaert (2007) argued that the predictive ability of the div-
idend yield is enhanced by including this variable. We consider
two sample periods: monthly data over the period 1952–2012
and over the period 1952–1990. We include the latter, shorter
sample, as it is perceived that the dividend yield was a more
reliable predictor of stock returns up to 1990. Finally, we report
results for values of h ∈ {6, 12, 24, 36} months. Because the
returns in Equation (3.1) are calculated with overlapping peri-
ods, they have a considerable degree of persistence, comparable
to that of the right-hand side variables. Thus, concerns have
arisen about conducting inference in such a setting.

Confidence intervals formed using Newey–West (NW) stan-
dard errors with lag truncation parameter h and those using
Müller (2014) are reported in Table 5. When the sample is re-
stricted to 1952–1990, the Sq test provides evidence of return
predictability at shorter horizons, although the confidence inter-
vals vary considerably depending on the specification and the
choice of q. However, there is little evidence of predictability
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Table 5. Long-horizon regressions: Equity returns

1952–1990

Dividend yield only
h 6 12 24 36
β̂dy 16.93 33.818 52.339 54.685
NW (7.357, 26.503) (15.823, 51.814) (17.213, 87.464) (14.407, 94.964)
S12 (2.736, 54.803) (3.619, 118.719) (−16.271, 203.980) (−14.234, 221.210)
S24 (3.652, 33.872) (5.33, 71.531) (−5.834, 194.429) (−22.098, 148.099)
S48 (4.663, 32.203) (5.334, 76.591) (−29.8, 125.125) (−29.001, 159.285)

Dividend yield and risk-free rate

h 6 12 24 36
β̂dy 26.435 49.697 69.028 71.753
NW (17.478, 35.392) (34.268, 65.125) (43.526, 94.531) (44.859, 98.648)
S12 (17.908, 429.574) (32.07, 874.616) (−247.772, 155.535) (−∞, ∞)
S24 (15.647, 52.028) (25.505, 77.308) (−115.492, 102.134) (−323.597, 108.84)
S48 (−∞,−548.666) (−∞, −375.173) (−∞, 97.251) (−∞, 118.368)

∪ (14.642, ∞) ∪ (22.021, ∞) ∪ (534.008, ∞) ∪ (213.433, ∞)

1952–2012

Dividend yield only

h 6 12 24 36
β̂dy 5.23 10.564 19.103 23.983
NW (0.791, 9.668) (1.268, 19.859) (1.699, 36.508) (4.152, 43.815)
S12 (−∞,−10.393) (−∞, −19.806) (−∞, −28.866) (−∞, ∞)

∪ (−2.058, ∞) ∪ (−4.435, ∞) ∪ (−10.372, ∞)
S24 (−∞,−22.479) (−∞, −47.079) (−∞, −63.666) (−∞, ∞)

∪ (−3.448, ∞) ∪ (−6.829, ∞) ∪ (−16.849, ∞)
S48 (−∞,−33.192) (−∞, −67.765) (−∞, ∞) (−∞, ∞)

∪ (−3.911, 14.364) ∪ (−10.525, ∞)
∪ (30.886, ∞)

Dividend yield and risk-free rate

h 6 12 24 36
β̂dy 8.397 15.840 25.917 30.976
NW (3.924, 12.871) (6.101, 25.580) (7.795, 44.038) (11.943, 50.010)
S12 (−∞, −9.893) (−∞, −14.318) (−∞, ∞) (−∞, ∞)

∪ (2.884, ∞) ∪ (4.238, ∞)
S24 (−∞,−16.464) (−∞, −31.862) (−∞, ∞) (−∞, ∞)

∪ (−1.34, ∞) ∪ (−5.298, ∞)
S48 (−∞, ∞) (−∞,∞) (−∞, ∞) (−∞, ∞)

NOTE: This table shows the results for long-horizon predictability regressions of equity market returns on the log dividend yield and the risk-free rate. β̂dy is the OLS coefficient
corresponding to the log dividend yield. Newey–West (NW) standard errors are constructed with h lags. All confidence intervals have nominal coverage of 95%.

at shorter horizons for the full sample. At longer horizons there
is no evidence of predictability for either the restricted or full
sample based on the Sq test.

Next, we consider a similar exercise for excess bond returns.
Specifically, we revisit the influential work of Cochrane and
Piazzesi (2005, 2008), where the authors form a bond-return
forecasting factor using linear combinations of forward rates.
To proceed, we first must form this return-forecasting factor
(hereafter, CP factor). We use excess returns and log forward
rates, defined by

rx
(n)
t+1 ≡ p

(n−1)
t+1 − p

(n)
t − y

(1)
t , f

(n)
t ≡ p

(n−1)
t − p

(n)
t ,

where p
(n)
t is the log price of an n year discount bond at time t

and y
(1)
t is the 1-month GSW rate (GSW refers to zero-coupon

bond yields from Gurkaynak, Sack, and Wright (2007), which

are available at a daily frequency on the Board of Governors of
the Federal Reserve’s research data page). We use GSW yields
to construct excess returns and Fama–Bliss forward rates as re-
gressors. We follow Cochrane and Piazzesi (2008) and regress
14 excess returns rxt+1 = [rx(2)

t+1, rx
(3)
t+1, . . . , rx

(15)
t+1 ]′ on a con-

stant zt = 1 and five forward rates wt = [y(1)
t , f

(2)
t , . . . , f

(5)
t ]′.

Cochrane and Piazzesi (2008) formed the CP factor by tak-
ing the first principal component of the fitted values from
this regression. It can be shown that this is equivalent to the
maximum-likelihood estimator (MLE) of a reduced-rank re-
gression (with coefficient matrix of rank one) under the as-
sumption of iid Gaussian errors and a scalar variance ma-
trix. We also consider a weighted version of the CP factor,
formed as the MLE under the assumption of a diagonal vari-
ance matrix (see Adrian, Crump, and Moench 2014 for further
details).
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Table 6. Long-horizon regressions: Bond returns

Identity weight matrix

In-sample Out-of-sample (5 years) Out-of-sample (10 years) Out-of-sample (15 years)
β̂CP 0.220 0.052 0.082 0.063
NW (0.101, 0.339) (−0.001, 0.105) (0.047, 0.117) (−0.009, 0.136)
S12 (−∞, 0.328) ∪ (3.545, ∞) (−∞, ∞) (−∞, ∞) (−∞, ∞)
S24 (−0.102, 0.324) (−0.14, 0.197) (−∞, 0.125) ∪ (0.225, ∞) (−∞, −8.129) ∪ (−0.031, ∞)
S48 (−0.106, 0.356) (−0.165, 0.13) (−∞, −0.277) ∪ (−0.036, 0.125) ∪ (0.456, ∞) (−0.07, 0.741)

Diagonal weight matrix

β̂CP 0.231 0.053 0.086 0.066
NW (0.105, 0.356) (−0.003, 0.108) (0.049, 0.122) (−0.012, 0.144)
S12 (−∞, 0.355) ∪ (2.257, ∞) (−∞, ∞) (−∞, ∞) (−∞, ∞)
S24 (−0.116, 0.342) (−0.155, 0.209) (−∞, 0.132) ∪ (0.226, ∞) (−∞, −13.464) ∪ (−0.035, ∞)
S48 (−0.107, 0.376) (−0.178, 0.134) (−∞, −0.205) ∪ (−0.045, 0.13) ∪ (0.419, ∞) (−0.078, 0.843)

NOTE: This table shows the results for long-horizon predictability regressions of 1 year excess holding period returns on the CP factor. β̂CP is the OLS coefficient corresponding to the
CP factor. The first column report results for the CP factor constructed on data for 1971–2012. The next three columns report results for the CP factor constructed in real time with a 5,
10, and 15 year burn-in period, respectively. Newey–West (NW) standard errors are constructed with 12 lags. All confidence intervals have nominal coverage of 95%.

We then regress average excess returns on the CP factor,

rxt+1 = α + βxt + εt ,

where rxt+1 is the average return, across maturities, rxt+1 =
1
14

∑15
n=2 rx

(n)
t+1.

We use the Sq test statistic to construct confidence intervals
(results reported in Table 6). We then repeat the exercise
but now we construct the CP factor without using future
information after a certain burn-in period. (We also considered
specifications that added the term spread as an additional
predictor. The results in this case were qualitatively similar to
those presented here.) We find that the conclusions drawn from
the confidence intervals formed from the Sq test are sensitive
to different values of q and different burn-in periods. As in
the equity application, we find that confidence intervals can be
asymmetric, sometimes disjoint but nonempty (as discussed in
Müller 2014). Despite this, we find no evidence that a predictive
relationship can be uncovered with these data.
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Comment

Yixiao SUN
Department of Economics, University of California, San Diego, La Jolla, CA 92093 (yisun@ucsd.edu)

1. ON THE NEARLY OPTIMAL TEST

Müller applies the theory of optimal statistical testing to
heteroscedasticity and autocorrelation robust (HAR) inference
in the presence of strong autocorrelation. As a starting point,
Müller uses Le Cam’s idea on the limits of experiments inge-
niously and converts a more complicated finite sample testing
problem into an asymptotically equivalent and simpler testing
problem. The main barrier to optimal testing is that both the
null hypothesis and alternative hypothesis are composite, even
after the asymptotic reduction based on Le Cam’s idea. So the
Neyman–Pearson lemma does not directly apply.

To reduce the dimension of the alternative hypothesis space,
it is standard practice to employ a weighting function and take
a weighted average of the probability distributions under the al-
ternative hypothesis. See, for example, Cox and Hinkley (1974,
p. 102). The weighting function should reflect a user’s belief
about the likelihood of different parameter values and the asso-
ciated cost of false acceptance under the alternative. Selecting
the weighting function is as difficult as selecting one point out
of many possible parameter values. A test that is designed to
be optimal against a point alternative may not be optimal for
other alternatives. The near-optimality of Müller’s test should
be interpreted with this point in mind.

There are a number of ways to reduce the dimension of the
null hypothesis space, including the invariance arguments and
the conditioning argument on sufficient statistics. See, for ex-
ample, Cox and Hinkley (1974, Ch. 5). In fact, Müller uses
scale invariance to remove one nuisance parameter. However,
as in many other contexts, here the null cannot be reduced to
a point by using the standard arguments. Müller follows Wald,
Lehmann, Stein, and other pioneers in statistical testing and
constructs the so-called least favorable distribution over the null
parameter space and uses it to average the probability distribu-
tions. This effectively reduces the composite null into a simple
one. However, the least favorable distribution has to be found
numerically, which can be a formidable task. This is perhaps
one of the reasons that the theory of optimal testing has not
been widely used in statistics and econometrics. A contribu-
tion of Müller’s article is to find an approximate least favorable
distribution and construct a test that is nearly optimal.

The reason to employ the least favorable distribution is that we
want to control the level of the test for each point in the param-
eter space under the null. While we are content with the average
power under the alternative, we are not satisfied with the con-
trol of the average level under the null. In fact, the requirement
on size control is even stronger: the null rejection probability
has to be controlled uniformly over the parameter space under
the null. There is some contradiction here, which arises from
the classical dogma that puts size control before power max-
imization. The requirement that the null rejection probability
has to be controlled for each possible parameter value under

the null, no matter how unlikely a priori a given value is, is
overly conservative. The test designed under this principle can
suffer from a severe power loss. In fact, in the simulation study,
Müller’s test often has a lower (size-adjusted) power than some
commonly used tests. I am sympathetic with the argument that
the power loss is the cost one has to pay to achieve the size ac-
curacy as size-adjustment is not empirically feasible. However,
one can always design a test with accurate size but no power.
Ultimately, there is a trade-off between size control and power
improvement. Using the least favorable distribution does not
necessarily strike the optimal trade-off. As a compromise, one
may want to control the average level/size of the test over a few
empirically relevant regions in the parameter space.

There is some convincing simulation evidence that Müller’s
test is much more accurate than existing tests for some data-
generating processes (DGP). These are the DGP’s where the
finite sample testing problem can be approximated very well by
the asymptotically equivalent testing problem. However, there
is not much research on the quality of the approximation. If
the approximation error is large, Müller’s test, which is nearly
optimal for the asymptotically equivalent problem, may not be
optimal for the original problem. For example, when the error
process in the location model is an AR(1) plus noise, Müller’s
simulation results show that his test can still over-reject consider-
ably. As another example, if the error process follows the AR(2)
model ut = 1.90ut−1 − 0.95ut−2 + et where et ∼ iid N(0,1),
then Müller’s test (and many other tests) suffers from under-
rejection. In this example, the modulus of the larger root is
about 0.97, which is close to 1. However, the spectral density
does not resemble that of an AR(1) process. It does not have a
peak at the origin. Instead, there is a peak near the origin. As
a result, the quality of the AR(1) approximation is low. If the
periodograms used in the variance estimator include the peak,
then the variance estimator will be biased upward, leading to a
smaller test statistic and under-rejection.

2. NEAR-UNITY FIXED-SMOOTHING ASYMPTOTIC
APPROXIMATION

An attractive feature of Müller’s test is that the scenarios
under which it is optimal or nearly optimal are given explic-
itly. However, practitioners may find it unattractive because of
the computation cost, the unfamiliar form of the test statis-
tic, and its applicability to models beyond the simple Gaussian
location model. An alternative approach to deal with strong

© 2014 American Statistical Association
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Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/r/jbes.
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autocorrelation is to derive a new approximation for the con-
ventional test statistic that captures the strong autocorrelation.
This was recently developed by Sun (2014b).

To provide the context for further discussion, I give a brief
summary of Sun (2014b) here. Consider a p-dimensional time
series yt of the form

yt = θ + et , t = 1, 2, . . ., T , (1)

where yt = (y1t , . . . , ypt )′, θ = (θ1, . . . , θp)′, and et =
(e1t , . . . , ept )′ is a zero mean process. We are interested in test-
ing the null H0 : θ = θ0 against the alternative H1 : θ = θ0. The
OLS estimator of θ is the average of {yt }, that is, θ̂ = ȳ :=
T −1 ∑T

t=1 yt . The F-test version of the Wald statistic based on
the OLS estimator is given by

FT = (θ̂ − θ0)′̂−1(θ̂ − θ0)/p,

where ̂ is an estimator of the approximate variance of (θ̂ −
θ0). When p = 1, we can construct the t-statistic tT = (θ̂ −
θ0)/̂1/2.

A very general class of variance estimators is the class of
quadratic variance estimators, which takes the form

̂ = 1

T 2

T∑
t=1

T∑
s=1

Qh

(
t

T
,

s

T

)
êt ê

′
s , (2)

where êt = et − ē for ē = T −1 ∑T
t=1 et and Qh(r, s) is a weight-

ing function that depends on the smoothing parameter h.

When Qh(r, s) = k((r − s)b) for some kernel function k(·) and
smoothing parameter b, ̂ is the commonly used kernel variance
estimator. When Qh(r, s) = K−1 ∑K

j=1 φj (r)φj (s) for some ba-

sis functions {φj (r)} on L
2[0, 1] satisfying

∫ 1
0 φj (r)dr = 0 and

smoothing parameter K, we obtain the so-called series variance
estimator. This estimator has a long history. It can be regarded
as a multiple-window estimator with window function φk(t/T )
(see Thompson 1982). It also belongs to the class of filter-bank
estimators and ̂ is a simple average of the individual filter-bank
estimators. For more discussions along this line see Thompson
(1982) and Stoica and Moses (2005, Ch. 5). Recently, there has
been some renewed interest in this type of variance estimators,
see Phillips (2005), Sun (2006, 2011, 2013), and Müller (2007).

Define

Q∗
T ,h (r, s) = Qh (r, s) − 1

T

T∑
τ1=1

Qh

(τ1

T
, s

)

− 1

T

T∑
τ2=1

Qh

(
r,

τ2

T

)
+ 1

T

T∑
τ1=1

T∑
τ2=1

Qh

(τ1

T
,
τ2

T

)
,

then

̂ = 1

T 2

T∑
t=1

T∑
s=1

Q∗
T ,h

(
t

T
,

s

T

)
ete

′
s . (3)

The Wald statistic is then equal to

FT =
(

T∑
t=1

et

)′ [ T∑
t=1

T∑
s=1

Q∗
T h

(
t

T
,

s

T

)
ete

′
s

]−1 (
T∑

t=1

et

)/
p.

Similarly, the t-statistic becomes

tT =
∑T

t=1 et[∑T
t=1

∑T
s=1 Q∗

T h

(
t
T
, s

T

)
etes

]1/2 .

The question is how to approximate the sampling distribu-
tions of FT and tT . If {et } is stationary and T −1/2 ∑[T r]

t=1 et con-
verges weakly to a Brownian motion process, then under some
conditions on Qh, it can be shown that, for a fixed h:

FT →d F∞ (h) := Wp(1)′
[ ∫ 1

0

∫ 1

0
Q∗

h (r, s) dWp (r)

× dW ′
p (s)

]−1

Wp (1) /p, (4)

tT →d t∞ (h) := Wp (1)√∫ 1
0

∫ 1
0 Q∗

h (r, s) dWp (r) dW ′
p (s)

, (5)

where Wp(r) is a p × 1 vector of standard Wiener processes and

Q∗
h (r, s) = Qh (r, s) −

∫ 1

0
Qh (τ1, s) dτ1 −

∫ 1

0
Qh (r, τ2) dτ2

+
∫ 1

0

∫ 1

0
Qh (τ1, τ2) dτ1dτ2.

For easy reference, I refer to the previous approximations as the
stationary fixed-smoothing asymptotic approximations. They
are more accurate than the chi-square approximation or the
normal approximation. As pointed out by Müller’s article, these
approximations are still not good enough when et is highly
autocorrelated.

To model the high autocorrelation, we assume that et follows
an AR(1) process of the form

et = ρT et−1 + ut where e0 = Op(1) and ρT = 1 − cm

T

for some sequence {cm}. In spirit, this is similar to Müller’s ar-
ticle and many other papers in the literature. See, for example,
Phillips, Magdalinous, and Giraitis (2010). Under the assump-
tion that

1√
T

e[T r] → �Jcm
(r)

for some matrix �, where Jcm
(r) is the Ornstein–Uhlenbeck

process defined by

dJcm
(r) = −cmJcm

(r) dr + dWp(r)

with Jcm
(0) = 0, we can obtain the following near-unity fixed-

smoothing asymptotics when cm and h are fixed:

FT →d F∞ (cm, h) :=
[∫ 1

0
Jcm

(r)dr

]′ [ ∫ 1

0

∫ 1

0
Q∗

h(r, s) Jcm
(r)

× J ′
cm

(s) drds

]−1 [∫ 1

0
Jcm

(r) dr

] /
p.

If we further assume that Qh(r, s) is positive definite, then for
fixed cm and h:

tT →d t∞ (cm, h) :=
∫ 1

0 Jcm
(r) dr[∫ 1

0

∫ 1
0 Q∗

h (r, s) Jcm
(r) J ′

cm
(s) drds

]1/2 .
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If we let cm → ∞, then the near-unity fixed-smoothing
asymptotic distributions F∞(cm, h) and t∞(cm, h) approach the
stationary fixed-smoothing asymptotic distributions given in (4)
and (5). On the other hand, if we let cm → 0, then F∞(cm, h)
and t∞(cm, h) approach the unit-root fixed-smoothing asymp-
totic distributions, which are defined as F∞ (cm, h) and
t∞ (cm, h) but with Jcm

(r) replaced by Wp (r) . Depending
on the value of cm, the limiting distributions F∞ (cm, h) and
t∞ (cm, h) provide a smooth transition from the usual stationary
fixed-smoothing asymptotics to the unit-root fixed-smoothing
asymptotics.

In my view, the chi-square/normal approximation, the station-
ary fixed-smoothing approximation, and the near-unity fixed-
smoothing approximation are just different approximations to
the same test statistic constructed using the same variance es-
timator. It is a little misleading to talk about consistent and
inconsistent variance estimators. The variance estimator is ac-
tually the same but we embed it on different asymptotic paths.
When the fixed-smoothing asymptotics are used, we do not
necessarily require that we fix the smoothing parameter h in
finite samples. In fact, in empirical applications, the sample
size T is usually given beforehand and the smoothing parame-
ter h needs to be determined using a priori information and/or
information obtained from the data. Very often, the selected
smoothing parameter h is larger for a larger sample size but
is still small relative to the sample size. So, the empirical sit-
uations appear to be more compatible with the conventional
increasing-smoothing asymptotics. The beauty of the fixed-
smoothing asymptotics is that fixed-smoothing critical values
are still correct under the increasing-smoothing asymptotics. In
fact, in a sequence of papers (e.g., Sun 2014a), I have shown
that the fixed-smoothing critical values are second-order cor-
rect under the increasing-smoothing asymptotics. In contrast,
increasing-smoothing critical values are not even first-order
correct under the fixed-smoothing asymptotics. Given this, the
fixed-smoothing approximation can be regarded as more robust
than the increasing-smoothing approximation.

The same comment applies to the local-to-unity parameter
cm. When we use the near-unity fixed-smoothing approxima-
tion, we do not have to literally fix cm at a given value in
finite samples. Whether we hold cm fixed or let it increase with
the sample size can be viewed as different asymptotic spec-
ifications to obtain approximations to the same finite sample
distribution. In practice, we can estimate cm even though a con-
sistent estimator is not available. For a stationary AR(1) pro-
cess with a fixed autoregressive coefficient, the estimator ĉm

derived from the OLS estimator of ρ̂T ,m necessarily converges
to infinity in probability. The critical values from the near-unity
fixed-smoothing asymptotic distribution are thus close to those
from the stationary fixed-smoothing asymptotic distribution. So,
the near-unity fixed-smoothing approximation is still asymptot-
ically valid. For this reason, we can say that the near-unity fixed-
smoothing approximation is a more robust approximation. Com-
pared to the chi-square or normal approximation, the near-unity
fixed-smoothing approximation achieves double robustness—it
is asymptotically valid regardless of the limiting behaviors of
cm and h.

3. SOME SIMULATION EVIDENCE

To implement the near-unity fixed-smoothing approximation,
we need to pin down the value of cm, which cannot be consis-
tently estimated. However, a nontrivial and informative confi-
dence interval (CI) can still be constructed. I propose to construct
a CI for cm and use the maximum of the critical values, each of
which corresponds to one value of cm in the CI. An argument
based on the Bonferroni bound can be used to determine the
confidence level of the CI and the significance level of the criti-
cal values. More specifically, for tests with nominal level α, we
could employ the critical value defined by

CV = sup
cm∈CI1−α+δ

CV(cm, 1 − δ),

where δ ≤ α, CI1−α+δ is a lower confidence interval for cm with
nominal coverage probability 1 − α + δ, and CV(cm, 1 − δ) is
the 100 (1 − δ) % quantile from the distribution F∞ (cm, h) or
t∞ (cm, h) . This idea of choosing critical values in the presence
of unidentified nuisance parameters has been used in various
settings in statistics and econometrics. See, for example, Mc-
Closkey (2012) and references therein.

One drawback of the approach based on the Bonferroni cor-
rection is that the critical value is often too large and the resulting
test often under-rejects. There are sophisticated ways to improve
on the Bonferroni method. As a convenient empirical strategy,
here I employ CV = supcm∈CI90%

CV(cm, 95%) for nominal 5%
tests. I construct the CI for cm using the method of Andrews
(1993). Other methods such as Stock (1991) and Hansen (1999)
can also be used. See Mikusheva (2014) and Phillips (2014)
for recent contributions on this matter. Since CV(cm, 95%) is
decreasing in cm, we only need to find the lower limit of CI90%

to compute CV. The computational cost is very low.

Table 1. Empirical null rejection probability of nominal 5% tests with T = 200 under AR(2) errors

Stationary fixed-smoothing Near-unity fixed-smoothing Nearly optimal tests

(ρ1, ρ2) K12 K24 K48 KVB K12 K24 K48 KVB S12 S24 S48

(0, 0) 0.048 0.047 0.048 0.047 0.045 0.042 0.041 0.042 0.045 0.047 0.047
(0.7,0) 0.058 0.083 0.148 0.058 0.040 0.035 0.032 0.040 0.046 0.047 0.047
(0.9,0) 0.133 0.248 0.393 0.084 0.036 0.033 0.033 0.038 0.048 0.047 0.050
(0.95,0) 0.258 0.412 0.553 0.125 0.039 0.037 0.036 0.039 0.048 0.049 0.050
(0.99,0) 0.630 0.738 0.816 0.333 0.079 0.079 0.079 0.071 0.045 0.044 0.045
(1.9,−0.95) 0.005 0.002 0.015 0.015 0.000 0.000 0.000 0.000 0.025 0.001 0.000
(0.8,.1) 0.146 0.272 0.417 0.089 0.050 0.051 0.052 0.045 0.049 0.048 0.052
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Figure 1. Size-adjusted power of different 5% tests with sample size T = 200 (“K6”, “K12”, “K24”, “K48”, and “KVB” are the near-unity
fixed-smoothing tests while S12, S24, and S48 are Müller’s tests).

I consider a univariate Gaussian location model with AR(2)
error et = ρ1et−1 + ρ2et−2 + ut , where ut ∼ iidN (0, 1). The
sample size is 200. The initial value of the error process is
set to be standard normal. I generate a time series of length 400
and drop the first 200 observations to minimize the initializa-
tion effect. This is similar to generating a time series with 200
observations but with the initial value drawn from its station-
ary distribution. I consider Müller’s test, the KVB test, and the
test based on the series variance estimator with the basis func-
tions: φ2j−1(x) = √

2 cos(2jπx), φ2j (x) = √
2 sin(2jπx), j =

1, . . . , K/2. The values of K = 12, 24, 48 correspond to the
values of q = 12, 24, 48 in Müller’s article. The number of sim-
ulation replications is 20,000.

Table 1 reports the null rejection probabilities for various two-
sided 5% tests. It is clear that the tests based on the near-unity
fixed-smoothing approximation are in general more accurate
than those based on the usual stationary fixed-smoothing ap-
proximation. This is especially true when the process is highly
autocorrelated. In term of size accuracy, Müller’s test is slightly
better than the near-unity fixed-smoothing test. The size accu-
racy of the latter test is actually quite satisfactory. As I mentioned
before, the AR(2) process with (ρ1, ρ2) = (1.9,−0.95) posts a
challenge to all tests considered.

Figure 1 plots the size-adjusted power against the noncen-
trality parameter δ2 in the presence AR(1) errors. The figure is
representative of other configurations. It is clear from the figure
that the slightly better size control of Müller’s tests is achieved
at the cost of some power loss.

4 CONCLUSION

Müller’s article makes an important contribution to the litera-
ture on HAR inference. It has the potential for developing a stan-
dard of practice for HAR inference when the process is strongly
autocorrelated. The article inspires us to think more about op-
timality issues in hypothesis testing. Unfortunately, uniformly
optimal tests do not exist except in some special cases. This
opens the door to a wide range of competing test procedures.
In this discussion, I have outlined an alternative test, which is
based on the standard test statistic but employs a new asymptotic
approximation. The alternative test has satisfactory size but is
not as accurate as Müller’s test. However, Müller’s test is often
less powerful. The trade-off between size accuracy and power
improvement is unavoidable. A prewhitening testing procedure
with good size property may also be crafted. HAR testing is
fundamentally a nonparametric problem. A good test requires
some prior knowledge about the data generating process. In the
present setting, the prior knowledge should include the range
of the largest AR root and the neighborhood around origin in
which the spectral density remains more or less flat. Equipped
with this knowledge, a practitioner can select a testing procedure
to minimize their loss function.
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Comment

Timothy J. VOGELSANG
Department of Economics, Michigan State University,110 Marshall-Adams Hall, East Lansing, MI 48824
(tjv@msu.edu)

1. INTRODUCTION

Inference in time series settings is complicated by the pos-
sibility of strong autocorrelation in the data. In general, some
aspect of a time series model is assumed to satisfy stationar-
ity and weak dependence assumptions sufficient for laws of
large numbers and (functional) central limit theorems to hold.
Otherwise, inference is difficult, if not impossible, because in-
formation aggregated over time will not be informative. Even
if one is willing to allow nonstationarities such as unit root be-
havior in the data, various transformations of the data (e.g., first
differences) are assumed to satisfy stationarity and weak depen-
dence conditions. Time series inference typically performs well
when the part of the model that is assumed to satisfy stationar-
ity and weak dependence is far from nonstationary boundaries.
However, for a given sample size, when the stationary/weak de-
pendent part of the model approaches a nonstationary boundary,
inference is usually distorted in small samples. The distortions
can be quite large. Alternatively, if certain parameter values are
close to nonstationary boundaries, then very large sample sizes
are needed for accurate inference. Strong autocorrelation is the
prototypical case where a model becomes close to a nonstation-
ary boundary and accurate inference can be challenging in this
case.

For a simple location model and obvious extensions to regres-
sions and models estimated by generalized method of moments,
Müller (2014) proposes a class of tests for single parameters that
are robust to strong autocorrelation and maximize a weighted
power criterion. As is typical in articles by Müller, he takes a
systematic and elegant theoretical approach to tackle a difficult
econometrics problem. While the test statistic that emerges from

his analysis, Sq , has a complicated form and is far from a priori
obvious, finite sample simulations reported by Müller indicate
that Sq is very robust to strong autocorrelation and retains re-
spectable power. Comparisons to existing autocorrelation robust
tests suggest that the Sq test is a useful addition to the time series
econometrics toolkit.

In this note I make some additional finite sample compar-
isons between Sq and widely used t-tests based on nonparamet-
ric kernel long run variance estimators. While Müller includes
some nonparametric kernel-based tests in his comparison group,
bandwidth rules are used that tend to pick bandwidths that are
too small to effectively control over-rejection problems caused
by strong autocorrelation. When autocorrelation is strong, the
use of very large bandwidths in conjunction with the fixed-b
critical values of Kiefer and Vogelsang (2005) can lead to t-tests
that have similar robustness properties to Sq while retaining
substantial power advantages in some cases. Not surprisingly,
the relative performance across tests is sensitive to assump-
tions about initial values further illustrating the inherent diffi-
culty of carrying out robust inference when autocorrelation is
strong.

© 2014 American Statistical Association
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Color versions of one or more of the figures in the article can be
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(a) (b)

(d)(c)

Figure 1. Power of Sq and QS tests. Stationary (I(0)) fixed-b critical values used for QS tests with no prewhitening.

2. FINITE SAMPLE PROPERTIES

To conserve space, the same notation used by Müller is
adopted here and definitions of the various test statistics can
be found there. The data-generating process is given by

yt = β + ut , t = 1, 2, . . . , T ,

ut = ρut−1 + εt , u0 = 0, ε0 = 0,

εt ∼ iidN (0, 1).

Following Müller, consider the following two-sided hypothesis

H0 : β = 0, H1 : β = 0.

Results are reported for ρ = 0.0, 0.9, 0.98, 0.999 using 10,000
replications, and T = 200 is used in all cases. The nominal level
is 5%. Comparisons are made between (i) three configurations of
the new tests: S12, S24, and S48 and (ii) the ordinary least squares
(OLS) t-statistic for β based on the quadratic spectral (QS)
nonparametric kernel long run variance estimator (Andrews
1991).

The QS t-statistic was considered by Müller in his simulation
study where it was found that the QS test quickly exhibits large
over-rejection problems as ρ moves away from 0 and toward 1.
Two features of Müller’s implementation of the QS statistic pre-
clude the possibility of more robust inference as ρ approaches 1.
First, the bandwidth was chosen using the data-dependent rule
proposed by Andrews (1991). The Andrew’s formula tends to
pick relatively small bandwidths for the QS kernel even when
autocorrelation is strong. Second, standard normal critical val-
ues were used to carry out rejections.

Here, I implement the QS test using two bandwidth choices,
one small and one very large. Rejections are calculated using
the fixed-b critical values proposed by Kiefer and Vogelsang
(2005). Referring to formula (4) of Müller, ST denotes the
bandwidth of the long run variance estimator. Results are re-
ported here for the QS test using ST = 8 (small) and ST = 200
(very large). In the fixed-b framework, these bandwidths map to
bandwidth-sample-size ratios, b = ST /T , of b = 8/200 = 0.04
and b = 200/200 = 1, respectively. The corresponding fixed-b
critical values are 2.115 (b = 0.04) and 12.241 (b = 1). The
use of a very large bandwidth with the fixed-b critical value
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(a) (b)

(d)(c)

Figure 2. Power of Sq and QS tests. Stationary (I(0)) fixed-b critical values used for QS tests with AR(1) prewhitening.

can greatly improve the robustness properties of the QS test
when autocorrelation is strong relative to the use of a small
bandwidth.

Figure 1(a)–1(d) reports power plots of the Sq and QS statis-
tics. Power is not size-adjusted and therefore rejections for the
case of β = 0 represent null rejection probabilities. Because
power is not size-adjusted, we can explicitly see the practical
trade-off between robustness to over-rejections under the null
and power under the alternative.

When ρ = 0 (Figure 1(a)), all tests have empirical null rejec-
tions close to 0.05. Power of the Sq tests is increasing in q. Power
of the QS tests is high with the small bandwidth (b = 0.04) but is
substantially lower with the large bandwidth (b = 1.0). When ρ

is close to 1, we see in Figure 1(b)–1(d) that empirical null rejec-
tions of the small bandwidth QS test are above 0.05 and substan-
tially so when ρ is very close to 1. These large over-rejections
were also reported by Müller for case where the data-dependent
bandwidth was used for QS. In contrast, null rejections for the
large bandwidth QS test are much closer to 0.05, and only for
ρ = 0.98, 0.999 do we begin to see some mild over-rejections.
It is important to keep in mind that if the standard normal crit-

ical value had been used instead of the fixed-b critical value,
rejections would be substantially above 0.05. While the large
bandwidth QS test is relatively robust when autocorrelation is
strong, the Sq tests are more robust with null rejections very
close to 0.05.

Now consider power. When ρ = 0.9, power of the Sq tests
is higher than the large bandwidth QS test for alternatives
close to the null but is lower for alternatives far from the
null. For the cases with ρ very close to 1, the large band-
width QS test has substantially higher power than the Sq tests.
This shows that in some cases the remarkable robustness of
the Sq statistics to strong autocorrelation comes at a high price
with respect to power. If an empirical practitioner is willing
to accept a small amount of over-rejection under the null,
large gains in power are possible with the large bandwidth
QS test.

Suppose one implements the QS tests using a prewhitened
version of the nonparametric kernel long run variance esti-
mator following Andrews and Monahan (1992). Figure 2(a)–
2(d) reports power plots where QS is implemented with AR(1)
prewhitening. As before, results are reported for the small and

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
8:

12
 0

5 
A

ug
us

t 2
01

4 



Vogelsang: Comment 337

(a) (b)

(d)(c)

Figure 3. Power of same tests as in Figure 2 but with initial value u1 ∼ N (0; (1 − ρ2)−1) in place of u1 = 0.

very large bandwidth QS test with fixed-b critical values used
to compute rejections. Prewhitening only partially reduces the
over-rejection problems of the small bandwidth QS test. For the
large bandwidth QS test, over-rejections are gone even when
ρ = 0.999 and power is not adversely affected.

These simulation results suggest that judicious choice of
bandwidth (including potentially very large ones) for the QS
statistic and use of fixed-b critical values can deliver tests that
are similarly robust to strong autocorrelation as the Sq statistics
while delivering substantially more power when autocorrela-
tion is strong. The challenge is to develop a bandwidth rule that
tends to pick small bandwidths when autocorrelation is weak
but very large bandwidths when autocorrelation is strong. The
data-dependent bandwidth developed by Sun, Phillips, and Jin
(2008), which seeks to balance the over-rejection problem with
power, does tend to choose larger bandwidths than the Andrews
(1991) approach, but the Sun, Phillips, and Jin (2008) band-
width rule does not tend to pick bandwidths large enough to
give robustness when autocorrelation is very strong. It would be
interesting to see if the Sun, Phillips, and Jin (2008) bandwidth
rule could be modified to choose very large bandwidths when

autocorrelation is strong while still choosing small bandwidths
when autocorrelation is weak.

Some readers might be wondering why a very large bandwidth
is the key to achieving robustness for the QS test when autocor-
relation is strong. One way to see this intuitively is to examine
the approximate bias of the long run variance estimator given by
Equation (4) of Müller. Combining results from the traditional
spectral analysis literature and the recent fixed-b literature, one
can approximate the bias in ω̂2

k,ST
for the QS kernel as

bias
(
ω̂2

k,ST

) ≈ A(b) + B(b), b = ST /T ,

where

A(b) = − 18

125
π2

(
1

bT

)2 ∞∑
j=−∞

j 2γ (j ),

B(b) = −ω2

[ (
5

2π

∫ 6π
5b

0

sin(x)

x
dx

)
b − 25

6π2

×
(

1 − 2 cos

(
6π

5b

))
b2 +

(
125

72π3
sin

(
6π

5b

))
b3

]
.
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The first term in the bias, A(b), can be found in Andrews (1991)
whereas the second term, B(b), arises because residuals are
being used to compute ω̂2

k,ST
and was calculated by Hashimzade

et al. (2005) using fixed-b theory.
When a small bandwidth is used, A(b) dominates and the

bias is negative (downward) for positively autocorrelated data.
As the autocorrelation becomes stronger, A(b) becomes larger in
magnitude and the downward bias becomes more pronounced
leading to the over-rejections seen in the figures. In contrast,
when a large bandwidth is used, A(b) becomes small or even
negligible and B(b) dominates the bias. The sign of B(b) is
always negative and its magnitude is increasing in the bandwidth
(increasing in b). Whereas A(b) is not captured by traditional
or fixed-b asymptotic theory, B(b) is implicitly captured by the
fixed-b limit. Using a large bandwidth minimizes A(b) while
maximizing B(b) but fixed-b critical values correct the impact
of B(b) on the t-test, and robustness is achieved. If fixed-b
critical values are not used to correct the large downward bias
induced by B(b), substantial over-rejections would be obtained
with large bandwidths.

While the QS approach is promising relative to the Sq in
the simple location model, the QS approach does have some
drawbacks. Suppose we change the initial condition of {ut } in
the data-generating process to

u1 ∼ N (0, (1 − ρ2)−1).

Figure 3(a)–3(d) shows power plots for this case. For the cases
of ρ = 0.0, 0.9, 0.98 the change in the initial value has little

or no effect on the null rejection probabilities or power of the
prewhitened QS statistics or the Sq statistics. However, for ρ =
0.999 the large bandwidth QS test now shows nontrivial over-
rejections under the null hypothesis. In contrast, the Sq statistics
are unaffected by the change in initial condition. This sensitivity
of one class of statistics and the relative insensitivity of another
class of statistics to the initial value underscores the conclusion
in Müller where it is stated that “researchers in the field have to
judge which set of regularity conditions makes the most sense
for a specific problem.” Robust inference when autocorrelation
is strong is not easy.
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Rejoinder

Ulrich K. MÜLLER
Department of Economics, Princeton University, Princeton, NJ, 08544 (umueller@princeton.edu)

I would like to start by expressing my sincere gratitude for
the time and effort the reviewers spent on their thoughtful and
constructive comments. It is a rare opportunity to have one’s
work publicly examined by leading scholars in the field. I will
focus on three issues raised by the reviews: the role of the
initial condition, applications to predictive regressions, and the
relationship to Bayesian inference.

The role of the initial condition under little mean reversion:
Vogelsang, Sun, and Cattaneo and Crump all suggest alternative
inference procedures for strongly autocorrelated series. Their
simulations show that these procedures are substantially more
powerful than the Sq tests, especially for distant alternatives
under strong autocorrelation, while coming quite close to con-
trolling size. This is surprising, given that the Sq tests are de-
signed to maximize a weighted average power criterion that puts
nonnegligible weight on such alternatives.

Recall that the Sq tests are constructed to control size under
any stationary AR(1), including values of ρ arbitrarily close to
one. Importantly, the initial condition is drawn from the un-
conditional distribution. Figure 1 plots four realizations of a
mean-zero Gaussian AR(1). For all values of ρ close to one, the

series are almost indistinguishable from a random walk, with
the initial condition diverging as ρ → 1. Yet all of these series
are perfectly plausible realizations for a stationary mean-zero
AR(1). As ρ → 1, the sample mean is very far from the popula-
tion mean relative to the in-sample variation. A test that controls
size for all values of ρ < 1 must not systematically reject the
null hypothesis of a zero mean for such series. But the new tests
of Sun and Vogelsang, and the τ and τ 1/2 tests of Cattaneo and
Crump all do so for sufficiently large ρ < 1, leading to arbi-
trarily large size distortions in this model (see the discussion in
Section 6 of the article).

In contrast, the Sq tests do not overreject even as ρ → 1 . The
Sq tests are usefully thought of as joint tests of whether a series
is mean reverting, and whether the long-run mean equals the
hypothesized value. The power of any test of this joint problem
is clearly bounded above by the power of a test that solely
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Journal of Business & Economic Statistics

July 2014, Vol. 32, No. 3
DOI: 10.1080/07350015.2014.931769

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
8:

12
 0

5 
A

ug
us

t 2
01

4 

mailto:umueller@princeton.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jbes
http://dx.doi.org/10.1080/07350015.2014.931769


Müller: Rejoinder 339

Figure 1. Realizations of a stationary AR(1). Notes: Realizations
of a mean-zero stationary AR(1) yt = ρyt−1 + εt , t = 1, . . . , 200 for
various ρ and identical draws of εt ∼ iidN (0, 1), and initial condition
fixed at 1.0 unconditional standard deviations, y1 = 1/

√
1 − ρ2.

focuses on testing the null hypothesis of a unit root. Figure 2
shows that the power of the Sq tests against distant alternatives
is not very far from the power envelope of a translation invariant
unit root test (see Elliott 1999).1 The Sq tests thus come close
to performing as well as possible in the stationary AR(1) model
that allows for values of ρ arbitrarily close to one.

To insist on size control in this comprehensive fashion may
be viewed as too restrictive. In their simulations or derivations,
Cattaneo and Crump, Sun and Vogelsang all consider a model
where the initial condition is not drawn from the unconditional
distribution, but rather y0 = μ + ε0. Under this assumption, the
realizations in Figure 1 with ρ > 0.99 are entirely implausible
under μ = 0, and good tests should reject the corresponding
hypothesis. Substantively, though, I find it difficult to think of
times series that are much closer to the population mean at the
beginning of the sample compared to, say, the middle of the
sample. If anything, the start of the sampling period is often
chosen just after some incisive event, such as a war, which
rather suggests a model where the initial condition is even more
disperse than the unconditional distribution.

Alternatively, one might assume some lower bound on the
amount of mean reversion. With some nonnegligible mean re-
version, the realizations in Figure 1 with ρ > 0.99 are again
safely ruled out as stemming from a mean-zero process. In the
local-to-unity parameterization ρ = ρT = 1 − c/T , a certain
degree of mean reversion is imposed by a lower bound on c.
Cattaneo and Crump, for instance, set c ≥ 0.1 in their deriva-
tion of the tests τ ∗

1/2 and τ ∗
1 . For a given value of the lower bound

c, it is fairly straightforward to adjust the numerical derivation
of the tests in Section 4.2 to obtain nearly weighted average
power maximizing tests that controls size only under c ≥ c.
Using the same weighting function that underlies the deriva-
tion of the Sq tests and setting c = 1, for instance, yields tests
with much larger power for moderate and small values of c.
Figure 3 depicts these gains. The left panel shows weighted av-

1Unreported results show these differences to become even smaller relative to
the low-frequency unit root tests derived in Müller and Watson (2008), which
are based on the same cosine transforms as Sq .

Figure 2. Comparison of power of unit root tests with power of
Sq -tests against distant alternatives. Notes: Local asymptotic power in
the AR(1) model with ρ = ρT = 1 − c/T of 5% level Sq tests against

distant alternatives (where Y0 = B

√
q−1

∑q
l=1 Y 2

l from Step 2), and

asymptotic power envelope of 5% level translation invariant unit root
tests.

erage power of tests that only impose size control for c ≥ 1.2 The
right panel replicates Figure 3 of the article for comparison and
shows weighted average power of tests that remain valid for any
c > 0. Unreported results show that these gains translate into
substantially improved small sample performance in the sta-
tionary AR(1) model with T = 200 as long as ρ ≤ 0.995, while
inducing size distortions of roughly 23% under ρ = 0.999.

Does it make sense to impose a lower bound on the degree
of mean reversion, and if so, how should this bound be chosen?
The answer surely depends on the specifics of the application.
It is an appealing quality of the Sq tests that their validity does
not require such a judgment. At the same time, as underlined by
the comments and the above calculations, this robustness comes
at a substantial cost in terms of power. It is useful to provide
practitioners with a menu of tests, with a range of robustness and
efficiency properties, as also suggested by Sun and Vogelsang.
In the derivation of this menu, however, I think it is important
to be as explicit as possible about the imposed conditions.

Predictive regressions: Cattaneo and Crump apply the Sq tests
to some standard long-horizon predictive regressions and find
very little evidence of significant predictive relationships. In
contrast, inference based on a standard Newey-West estimator
with lag length equal to the horizon h often indicates significant
predictive power.

While entirely standard, this Newey-West correction lacks
sound theoretical foundation. Suppose the only source of auto-
correlation is the partial overlap of the long-horizon returns, so
that the errors follow an MA(h − 1). The long-run variance ω2 is
then given by ω2 = ∑h−1

j=−(h−1) γ (j ). The Newey-West estimator

with bandwidth equal to h equals ω̂2
NW = ∑h−1

j=−(h−1)
|h−j |

h
γ̂ (j ).

By standard arguments, for any fixed j, the sample autoco-
variances γ̂ (j ) are consistent for the population autocovari-

ances, γ̂ (j )
p→ γ (j ), so that ω̂2

NW
p→ ∑h−1

j=−(h−1)
|h−j |

h
γ (j ). This

2The approximate least favorable distribution under c ≥ 1 puts a lot of weight
on c = 1. Under the null hypothesis and c = 1, the unconditional variance
of y1 is approximately σ 2T/(1 − ρ2

T ) ≈ σ 2T/(2c) = σ 2T/2. This value cor-
responds more or less to the variance of y1 + μ under the alternative μ ∼
N (0, 10T σ 2/c2) under c ≈ 5, explaining the dip in weighted average power.
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Figure 3. Gains in power from restricting c ≥ 1. Notes: Asymptotic weighted average power under a N (0, 10T/c2) weighting on the
difference between population and hypothesized mean in an AR(1) model with unit innovation variance and coefficient ρ = ρT = 1 − c/T of
weighted average power maximizing 5% level hypothesis tests, based on q low-frequency cosine averages. Tests on left panel control size for
c ≥ 1, and tests on right panel control size for c > 0.

probability limit is not generically equal to ω2. In fact, if
γ (j ) > 0 for |j | < h, as one would expect for an MA(h − 1)
induced by partial overlaps, ω̂2

NW is consistent for a value that is
strictly smaller than ω2. Inference based on ω̂2

NW thus overstates
significance, even in large samples. The asymptotic validity of
inference based on the Newey-West estimator rather stems from
a promise to increase the bandwidth without bound, so that all
sample autocovariances γ̂ (j ) for fixed j eventually receive a
weight arbitrarily close to one.

It is hence interesting to consider alternative HAC corrections
for such regressions, including those based on inconsistent LRV
estimators reviewed in Section 3 of the article, or the Sq tests.
One serious issue, however, is that the regressor of interest, such
as the dividend yield, is very persistent. Recall from Section 5
that the alternative approximations to test statistics generated by
inconsistent long-run variance estimators, and also the Sq tests,
require the partial sum of the regressors to be roughly linear
(T −1 ∑rT

t=1 XtX
′
t ≈ r�X for 0 ≤ r ≤ 1 and some �X). Strong

persistence of the regressor renders this a poor approximation.3

In contrast, the Ibragimov-Müller approach does not depend on
this time homogeneity of the design matrix, making it perhaps
a more attractive choice for this type of regression problem.

Bayesian inference: Kiefer raises interesting points about ap-
propriate conditioning and a Bayesian perspective. My 2012
paper with Andriy Norets explores similar questions in other
nonstandard problems. As others before, we conclude that a
description of parameter uncertainty with confidence intervals
is generically “unreasonable” conditional on some data draws
unless it can be rationalized as a Bayesian posterior set of at
least the same level relative to some prior.

In the context of HAC estimation, consider first the Student-
t intervals computed from (7). These are rationalizable by a
Bayesian, at least approximately: Consider a Gaussian model
for yt with population mean E[yt ] = μ and spectral density that
is flat and equal to ω2/2π on the interval [0, πq/T ]. Under the

3Once this approximate linearity fails the implementation details of the Sq tests
in a regression context become potentially important; for instance, a variant of
(15) such as yt = ŷt + β̂1 − β1,0 may lead to substantially different empirical
results.

(analogue of) the DFT approximation (3), μ̂ ∼ N (μ,ω2/T ) and
Yl ∼ N (0, ω2), l = 1, . . . , q are independent and independent
of {Yl}Tl=q+1. Thus, with a prior on the remaining part of the
spectral density on the interval [πq/T , π ] that is independent
of (ω,μ), the low-frequency information factorizes in both the
prior and the likelihood, and the problem reduces to Bayesian
inference about μ based on q + 1 Gaussian observations. With
the usual uninformative prior on (μ,ω2) proportional to 1/ω2,
one therefore recovers a Student-t posterior of

√
T (μ̂ − μ)/ω̂Y,q

with q degrees of freedom (see, e.g., chap. 3.2 in Gelman et al.
2004), leading to the same description of uncertainty as those
derived from frequentist arguments explored in Section 3.

Similar arguments also rationalize the confidence intervals
generated by the Ibragimov-Müller approach, at least in a limited
information sense with μ̂j ∼ N (μ, qω2/T ) the only available
sample information.

For Sq , however, the possibility of a Bayesian rationaliza-
tion is much less clear. The roughly uniform prior on log c in
the weighting function approximates the usual uninformative
prior a scale for parameter. This makes sense, since c plays
a role akin to a scale parameter, at least for c large. But the
denominator of the LR statistic derived in Section 4.2 entails an
entirely different, numerically determined approximate least fa-
vorable distribution for c. The LR statistic, viewed as a function
of μ0, hence does not map out some posterior density. Müller
and Norets (2012) make some concrete suggestions how to en-
sure that confidence intervals remain reasonable descriptions of
uncertainty also conditional on the data, and it would be inter-
esting to incorporate those into the derivations of the Sq tests. I
leave this to future research.
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