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Motivation

• Module in interdisciplinary research project on social cost of carbon

⇒ Probabilistic global growth forecasts over next 200 years

⇒ Informs baseline CO2 emission paths and local damage function for
climate change model

• Data: World Penn tables merged with Maddison data set 1915-2014

• Focus on forecasts of GDP/capita in 71 countries
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Low-Frequency Approach

⇒ Müller and Watson (2016): For long-horizon forecasts, focus on low-
frequency variation
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LF Transformation: Dimension Reduction
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Long-Horizon Forecasts

Approximate Gaussianity from CLT for weighted averages

⇒ forecast distribution from conditional multivariate normal
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Forecasting of Scalar Series

• Müller and Watson (2016) consider long-horizon forecasts of average
growth of scalar series

⇒ Robustified Bayesian approach to account for parameter uncertainty of
low-frequency dynamics

• Application to panel faces three problems

— extrapolation of sample growth differences yields unrealistic divergence
over long horizons

— ignores cross sectional dependence

— Unbalanced panel
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Related Literature

• GDP/capita: Christensen, Gilingham and Nordhaus (2017), Startz (2017)

• Long-Run Risk: Pastor and Stambaugh (2012)

• Population: Lee (2011), Raftery, Li and Sevcikova (2012), Raftery, Alkema
and Gerland (2014)

• Structural model: Desmet, Nagy and Rossi-Hansberg (2017)
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This Paper

• Low-frequency linear panel model with

— potentially unbalanced sample information

— single nonstationary factor

— slowly mean reverting idiosyncratic deviations with common uncondi-
tional distribution

— cross-sectional dependence in idiosyncratic deviations

• Bayesian estimation
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Data Coverage
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USA, World Average, OECD Average

9



OECD Countries
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Latin America
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China and India
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South Korea, Taiwan, Malaysia, Thailand
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USA, Canada, GBR, New Zealand, Australia
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Sub-Saharan Africa
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Iran, Nicaragua, Congo
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Relative to OECD
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Future log(GDP/capita)?

Focus on LF variability with 14 year period and longer
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Univariate Model Blocks

• -model: stationary with

(1− ) =   ∼ N (0 2)
with  =  = 1−  and   0.

⇒ Innovation variance 2 normalized so that unconditional variance of 
is equal to unity

⇒ flexible way of modelling low-frequency dynamics

• Local-level model for ∆: nonstationary with

∆ =  + 1,  −0 =




X
=1

2

with (1 2) ∼ N (0 22)

⇒ captures slow time variation in mean growth rate
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Panel Model I

• Basic model: common nonstationary factor plus stationary idiosyncratic
shocks

 =  + 

 = +  · 
with ∆ local-level model and  independent -models with heteroge-
neous parameters

• Implies common unconditional distribution N ( 2) for 

• Priors:

— Uninformative priors on (  00)

— Uniform prior on LLM parameter  ∈ [0 5]
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Prior on  Parameters

• Discretize  parameters on grid with  ∈ [06 20], and  such that 200
year correlation in [01 08]

• Makes sense to have prior exchangeable for 71 countries, but not i.i.d.

• Dirichlet prior over distribution on grid

⇒ allows data to inform distribution of  parameters across countries

⇒ Dirichlet prior shrinks towards uniform distribution on grid, but not very
much (total  = 20 vs  = 71)
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Panel Model II

• Allow some heterogeneity for unconditional variances

 =  + 

 = +  ·  · 

• Dirichlet prior ( = 20) for distribution of discretized  ∈ [13 3],
shrinking towards uniform on log()
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Panel Model III

• Add cross-sectional dependence in  via club membership

 =  + 

 = +  · () + 

q
1− 2 ·  · 

 =  ·  · 
with  and  independent  models

•
q
1− 2 term ensures equal unconditional variance if  =  = 1

• Dirichlet prior shrinking towards uniform on [0 095] for , i.i.d. uniform
prior on club membership () ∈ {1     25}

• Label switching and lack of identification if  = 0, but that’s ok
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Panel Model IV

• Club-of-clubs to increase flexibility of cross sectional dependence

 =  + 

 = +  · () + 

q
1− 2 ·  · 

 =  · () + 

r
1− 2 ·  · 

 =  ·  · 

• Flat prior on club-of-club membership () ∈ {1     10}

• Additional dummy observation prior: Observe ̃ = 0 =  +
P
=1 

—  OECD population shares in 1985, Var[] = 01Var[
P
=1 ]

— Ensures factor is informed by large OECD countries
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LF Transformation in Unbalanced Panel

• Seek linear combinations of data that extract (only) low-frequency infor-
mation

• Formalize as signal extraction problem

⇒ For Random walk, low-frequency linear combinations are those with
largest variance

• Compute eigenvectors of covariance matrix of (demeaned) Random Walk,
keep those with eigenvalue larger than cut-off
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LF Transformation in Unbalanced Panel

full sample observe second half missing observations
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Bayesian Estimation

• In principle, straightfroward Gibbs sampler

• Fast due to LF sample information reduction + discretized parameters

⇒ 100,000 draws take 2 minutes
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Geweke Test

• Geweke (2004, JASA): If one adds “draw  |state” in Gibbs iterations, then
should recover prior predictive distribution on state as stationary distribu-
tion

• Implemented as follows: Generate 200,000 i.i.d. from prior predictive dis-
tribution of state

⇒ Compute percentiles of (subset) of state vector and its linear combina-
tions

• Run sampler with augmented Gibbs iterations, and compare resulting state
distribution with prior percentiles via -statistic

⇒ Compute standard error via batch-means with 200 batches

⇒ t-statistic tends to diverge whenever mistake/chain not mixing
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Posterior Median
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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Factor Forecast Bands
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Forecast Bands USA
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Forecast Bands China

37



Forecast Bands South Korea
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Forecast Bands Norway
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Forecast Bands Brazil
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Forecast Bands Zimbabwe
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Forecast of : USA
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Forecast of : China
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Forecast of : South Korea
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Forecast of : Norway
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Forecast of : Brazil
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Forecast of : Zimbabwe
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Cross-Correlations: USA

Correlation of 100 year growth rate forecasts of GDP/capita
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Cross-Correlations: China
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Cross-Correlations: South Korea
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Cross-Correlations: Norway
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Cross-Correlations: Brazil
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Cross-Correlations: Zimbabwe
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Factor Uncertainty: Baseline

∆ is LLM with  ∈ [0 5], flat prior

54



LLM with Larger 

∆ is LLM with  ∈ [0 10], flat prior
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I(1) Factor

∆ is I(0) ( = 0 in LLM)
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I(d) Factor

∆ is I(d) with  ∈ [−04 04], flat prior
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65 Year Sample: Baseline

∆ is LLM with  ∈ [0 5], flat prior
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100 Year Sample: Baseline

∆ is LLM with  ∈ [0 5], flat prior

59



65 Year Sample: LLM with Larger 

∆ is LLM with  ∈ [0 10], flat prior
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65 Year Sample: I(1) Factor

∆ is I(0) ( = 0 in LLM)
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65 Year Sample: I(d) Factor

∆ is I(d) with  ∈ [−04 04], flat prior
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Conclusion

• Low-frequency limited-information Bayes approach to panel forecasting

• Substantial heterogeneity across countries in

— median growth

— uncertainty of growth

— cross-sectional correlations of growth

• Long-range data important to inform general uncertainty
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