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Motivation

e Module in interdisciplinary research project on social cost of carbon
= Probabilistic global growth forecasts over next 200 years

= Informs baseline CO5 emission paths and local damage function for
climate change model

e Data: World Penn tables merged with Maddison data set 1915-2014

e Focus on forecasts of GDP /capita in 71 countries




Low-Frequency Approach
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= Miiller and Watson (2016): For long-horizon forecasts, focus on low-
frequency variation
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LF Transformation: Dimension Reduction
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Long-Horizon Forecasts
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Approximate Gaussianity from CLT for weighted averages

=> forecast distribution from conditional multivariate normal
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Forecasting of Scalar Series

e Miiller and Watson (2016) consider long-horizon forecasts of average
growth of scalar series

= Robustified Bayesian approach to account for parameter uncertainty of
low-frequency dynamics
e Application to panel faces three problems

— extrapolation of sample growth differences yields unrealistic divergence
over long horizons

— ignores cross sectional dependence

— Unbalanced panel




Related Literature

GDP /capita: Christensen, Gilingham and Nordhaus (2017), Startz (2017)

Long-Run Risk: Pastor and Stambaugh (2012)

Population: Lee (2011), Raftery, Li and Sevcikova (2012), Raftery, Alkema
and Gerland (2014)

Structural model: Desmet, Nagy and Rossi-Hansberg (2017)




This Paper

e Low-frequency linear panel model with
— potentially unbalanced sample information
— single nonstationary factor

— slowly mean reverting idiosyncratic deviations with common uncondi-
tional distribution

— cross-sectional dependence in idiosyncratic deviations

e Bayesian estimation




Data Coverage




USA, World Average, OECD Average
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OECD Countries
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Latin America
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China and India
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South Korea, Taiwan, Malaysia, Thailand
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USA, Canada, GBR, New Zealand, Australia
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Sub-Saharan Africa
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Iran, Nicaragua, Congo
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Future log(GDP /capita)?
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Univariate Model Blocks

e cd-model: stationary with

(1-— pL)dyt = e, e~ 11dN(O0, 02)
with p=pp =1—1¢/T and ¢ > 0.
— Innovation variance o2
is equal to unity

normalized so that unconditional variance of y;
= flexible way of modelling low-frequency dynamics

e Local-level model for A fi: nonstationary with

t
g
Afy = my + ey, mt—mozfg €2
s=1

with (e1, eas) ~ 3idN(0, 0215)

= captures slow time variation in mean growth rate
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Panel Model |

e Basic model: common nonstationary factor plus stationary idiosyncratic
shocks

Vit = Jttupyg
Uit = BT W-Ejy

with A f; local-level model and ¢; ; independent cd-models with heteroge-
neous parameters

e Implies common unconditional distribution N (1, wz) for u; ¢

e Priors:
— Uninformative priors on (w, i, fo, mg)

— Uniform prior on LLM parameter g € [0, 5]
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Prior on ¢d Parameters

e Discretize cd parameters on grid with d € [0.6,2.0], and ¢ such that 200
year correlation in [0.1,0.8]

e Makes sense to have prior exchangeable for 71 countries, but not i.i.d.

e Dirichlet prior over distribution on grid
= allows data to inform distribution of cd parameters across countries

=> Dirichlet prior shrinks towards uniform distribution on grid, but not very
much (total « =20 vs n = 71)
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Panel Model Il

e Allow some heterogeneity for unconditional variances

Yit = Jttupyg

Uit = P+ K W:Ejy

e Dirichlet prior (¢ = 20) for distribution of discretized k; € [1/3, 3],
shrinking towards uniform on log(x;)
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Panel Model IiI

e Add cross-sectional dependence in wu; + via club membership

Yit = Jtt+uig

uig = p+ i gyt Rl AT we e

gjt = Tj WVt

with €; + and v, ; independent cd models

o \/1— )\% term ensures equal unconditional variance if k; = 7; =1

e Dirichlet prior shrinking towards uniform on [0, 0.95] for A;, i.i.d. uniform
prior on club membership J(i) € {1,...,25}

e Label switching and lack of identification if \; = 0, but that's ok
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Panel Model IV

e Club-of-clubs to increase flexibility of cross sectional dependence

Yit = Jttuyg

wip = HF XN gy RV =AW e
gig = ¥j (et i1 w v

hit = Sk W Nkt
e Flat prior on club-of-club membership K(j) € {1,...,10}

e Additional dummy observation prior: Observe Gy = 0 = €, + > " ; sju; ¢
— s; OECD population shares in 1985, Var[e;] = 0.1 Var[} " ; s;u; 4]

— Ensures factor is informed by large OECD countries
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LF Transformation in Unbalanced Panel

e Seek linear combinations of data that extract (only) low-frequency infor-
mation

e Formalize as signal extraction problem

= For Random walk, low-frequency linear combinations are those with
largest variance

e Compute eigenvectors of covariance matrix of (demeaned) Random Walk,
keep those with eigenvalue larger than cut-off
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LF Transformation in Unbalanced Panel
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Bayesian Estimation

e In principle, straightfroward Gibbs sampler

e Fast due to LF sample information reduction 4 discretized parameters

= 100,000 draws take 2 minutes
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Geweke Test

o Geweke (2004, JASA): If one adds “draw Y |state” in Gibbs iterations, then
should recover prior predictive distribution on state as stationary distribu-
tion

e Implemented as follows: Generate 200,000 i.i.d. from prior predictive dis-
tribution of state

= Compute percentiles of (subset) of state vector and its linear combina-
tions

e Run sampler with augmented Gibbs iterations, and compare resulting state
distribution with prior percentiles via t-statistic

= Compute standard error via batch-means with 200 batches

=> t-statistic tends to diverge whenever mistake/chain not mixing
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Posterior Median
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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A Draw from the Posterior Distribution
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Factor Forecast Bands
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Forecast Bands USA
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Forecast Bands China
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Forecast Bands South Korea
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Forecast Bands Norway
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Forecast Bands Braazil

3.8

108 ¢

100

2200

2100

2000

40



Forecast Bands Zimbabwe
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Forecast of u;;: USA
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Forecast of u; ;: China
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Forecast of u;;: South Korea
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Forecast of u; ;: Norway
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Forecast of u; ;: Brazil
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Forecast of u;;: Zimbabwe
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Cross-Correlations: USA

Correlation of 100 year growth rate forecasts of GDP /capita
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Cross-Correlations: China
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Cross-Correlations: South Korea
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Cross-Correlations: Norway
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Cross-Correlations: Brazil
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Cross-Correlations: Zimbabwe
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Factor Uncertainty: Baseline

A fi is LLM with g € [0, 5], flat prior
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LLM with Larger g

LLM with g € [0, 10], flat prior
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Afyis 1(0) (g = 0 in LLM)

I(1) Factor
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Aft IS

I(d) Factor

I(d) with d € [—0.4,0.4], flat prior
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65 Year Sample: Baseline

is LLM with g € [0, 5], flat prior
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100 Year Sample: Baseline

A fi is LLM with g € [0, 5], flat prior

108
107:
109 |
105:

1000 ==

100 -

59



65 Year Sample: LLM with Larger g

A fi is LLM with g € [0, 10], flat prior
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65 Year Sample: 1(1) Factor

Aftis1(0) (g =0 in LLM)
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Af

S~

is 1(d) with d € [—0.4,0.4], flat prior

65 Year Sample: I(d) Factor
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Conclusion

e Low-frequency limited-information Bayes approach to panel forecasting

e Substantial heterogeneity across countries in
— median growth
— uncertainty of growth

— cross-sectional correlations of growth

e Long-range data important to inform general uncertainty
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