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Motivation

• More and more empirical work using spatial data in development, trade, macro, etc.

• How to appropriately correct standard errors?

— Conley (1999): Spatial analog of HAC standard errors.

— Don’t work well under moderate or high spatial dependence.

— Many applications characterized by strong spatial correlations (Kelly (2019, 2020)).
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Canonical Problem

Observe

 = + ,  = 1     

•  (and ) associated with observed location  ∈ S ⊂ R

•  with density 

• With s = (1     ): E[|s] = 0, E[|s] = ( − ), so  covariance stationary.

• How to test 0 :  = 0 and construct confidence interval for , conditional on s?

• Extensions to regression, GMM etc. follow from standard linearization arguments (see paper).
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Three One-Dimensional Designs
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Two Geographic Designs

Light data from Henderson, Squires, Storeygard and Weil (2018)
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Spatial Inference

• Usual t-statistic

 =

√
( − 0)

̂

with associated critical value cv, and confidence interval with endpoints ̄ ± cv ̂√

• Conley (1999): kernel-type “consistent” estimator ̂2 = −1
X




µ
||−||



¶
̂̂ with →∞

and standard normal cv 

• Bester, Conley, Hansen, and Vogelsang (2016): fixed-b version ̂2 = −1
X




µ
||−||



¶
̂̂

and nonstandard cv obtained by simulating from  ∼ N (0 1)

• Sun and Kim (2012): ̂2 = −1
X

=1

³X

−12̂

´2
with Fourier weights  and student-t

cv (analogous to Müller (2004, 2007), Phillips (2005), etc.)
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This Paper

• Measure of strength of spatial dependence: average pairwise correlation

̄ =
1

(− 1)
X
=1

X
6=
Cor (  |s) 

• Objective: construction of ̂ and cv that yield valid inference under

— generic weak correlation ̄→ 0, whether or not location distribution is uniform;

— some strong correlation cases with ̄ = (1).
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Outline of Talk

1. Definition of new “SCPC” method

2. Small sample size control under some forms of strong correlation

3. Large sample size control under generic weak correlation

4. Small sample efficiency of SCPC
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Motivation for SCPC Method

• Model in vector notation: y = l+ u = ̄l+ û

• Numerator of t-statistic has variance 2 = Var[√̄] = −1 Var[l0u]

• Quadratic form estimators: ̂2 = û0Qû = (− 1)−1P−1
=1 (w

0
u)

2

• Challenge with (positive) spatial correlation: Most weighted averages w0u are less variable than l0u,
leading to downward bias of ̂2

• Solution: Select (few) weighted averages w0u that are as variable as possible under plausible spatial
covariance matrix, and use ̂2 = −1P

=1(w
0
u)

2
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SCPC Method

• Benchmark model ( − ) = exp(−|| − ||) with associated covariance matrix Σ() of u

— Worst-case correlation has  = 0, weaker correlation for   0

• Use  eigenvectors r1     r ofMΣ(0)M corresponding to largest eigenvalues as weights and

̂2SCPC() = −1
X

=1

(r0u)2

“Spatial Correlation Principle Components” (SCPC) of û ∼ N (0MΣ(0)M)

• Let cvSCPC() solve sup≥0 P0Σ()(|SCPC()|  cvSCPC()|s) = 

• SCPC minimizes CI length E[2̂SCPC() cvSCPC()|s] in i.i.d. model u|s ∼ N (0 2I)
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Eigenvectors in One-Dimensional Designs
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Eigenvectors in Geographic Designs
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Properties of SCPC Inference

• Select 0 as function of implied average correlation ̄ = ̄0

⇒ SCPC inference invariant under any linear transformation of the locations {}=1→ {}=1,
such as rotations.

• For ̄0 = 003, SCPC ≈ 8 (depending on s).

— cvSCPC not equal to corresponding student-t critical value: “bias aware inference”.

— Approximately 15%-30% longer confidence interval compared to oracle interval ̄ ± 196√

• SCPC easy to apply, even for (very) large , using computational short-cuts for determination of
eigenvectors if  is large (STATA and matlab code available).

• By construction, SCPC controls size in benchmark model u|s ∼ N (0Σ()),  ≥ 0

12



Properties of SCPC: Roadmap

• Small sample size control in Gaussian model with “strong” correlations u|s ∼ N (0Σ)

— New inequality about null rejection probability of t-statistic with ̂2 = û0Qû under arbitrary
mixtures of covariance matrices Σ

— Application to SCPC size control under mixtures of spectral densities that correspond to large

class of processes that are less persistent than worst-case benchmark.

• Large sample size control under generic weak correlation.

— Remarkably, alternative approaches to “inconsistent” spatial HAR inference do not control size

when density of locations is not uniform.

• Efficiency of SCPC.
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Size Control of T-statistics Under Mixtures I

• Consider Gaussian model and parametric covariance matrices u|s ∼ N (0Σ()),  ∈ Θ.

Seek conditions such that t-statistic is valid in nonparametric class of models

u|s ∼ N (0
Z
Σ()Π()) for all cdfs Π

• Suppose ̂2 = û0WW0û, cv and Σ0 are such that

P(| |  cv) ≤  under y ∼ N (0Σ0)
Seek inequalities relating Σ(),  ∈ Θ to Σ0 such that also

P(| |  cv) ≤  under y ∼ N
µ
0

Z
Σ()Π()

¶
for any cdf Π on Θ.
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Size Control Under Mixtures II

Theorem 1: With W0 = (lW), let Ω0 = W00Σ0W0 and Ω() = W00Σ()W0. Suppose

A0 = D(cv)Ω0 with D(cv) = diag(1− cv2 I) is diagonalizable, and let P be its eigenvectors. Define
A() = P−1D(cv)Ω()P and Ā() = 1

2
(A() +A()0), and suppose A0 and A()  ∈ Θ are scale

normalized such that 1(A0) = 1(A()) = 1, where (·) is the th largest eigenvalue. Let

1() = (−Ā())− 1(Ā())(−A0)− (1(Ā())− 1)
() = +1−(−Ā())− 1(Ā())+1−(−A0) for  = 2     

If inf∈Θ
P
=1 () ≥ 0 for all 1 ≤  ≤ , then for any cdf Π on Θ, P(| |  cv) ≤  under

y ∼ N (0Σ0) implies

P(| |  cv) ≤  under y ∼ N
µ
0

Z
Σ()Π()

¶
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Intuition

• With Ω() =W00Σ()W0 and X = (0X
0
1:)

0 ∼ Ω()12Z ∼ N (0Ω())

P
³
2  cv2

´
= P

⎛⎝ 2
0

X01:X1:
 cv2

⎞⎠ = P ³2
0 − cv2X01:X1:  0

´
= P

³
X0D(cv)X  0

´
= P(Z0Ω()12D(cv)Ω()12Z  0)

= P

⎛⎝ X
=0

()
2
  0

⎞⎠ = P
⎛⎝20  − X

=1

()

0()
2

⎞⎠
where D(cv) = diag(1− cv2 I) and () are the eigenvalues of Ω()

12D(cv)Ω()12, or,

equivalently, of D(cv)Ω()

• Can show: P
³
20 

P
=1 

2


´
is Schur convex in {}=1

• Use majorization results on eigenvalues of linear combinations of matrices, and additional calculations,
to obtain result.
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Robustness of SCPC Under Alternative Forms of Persistence

• If  is isotropic (( − ) = ̃(|| − ||) for some ̃ : R 7→ R), then spectrum f : R 7→ R
satisfies f(ω) = () for  = ||ω|| and some  : R 7→ [0∞).

• Normalize (0) = 1. SCPC controls size under 0 = bnch0
= 30(

2 + 20)
32.

• One definition of less persistence:  is such that () = ()0() (weakly) increasing in ||.

• If lim→∞ () =  ≥ 1, any such  has representation () = 1 + ( − 1)Π(||) for some
CDF Π on [0∞)
⇒ Any less persistent  with lim→∞ ()0() ≤ has representation () =

R

step
 ()Π(),

where 
step
0 = 0 and for   0


step
 () = 1[|| ≤ ]0() + 1[||  ] · 0()
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Robustness of SCPC Under Alternative Forms of Persistence II
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Robustness of SCPC Under Alternative Forms of Persistence III

• U.S. states spatial designs:

— Draw  = 500 locations from density  within each contiguous U.S. state, with  ∈ {uniform light}

— Repeat 5 times, so obtain 240 s for each  ∈ {uniform light}

• Parametric covariance matrices Σ() implied by 
step
 ,  ≥ 0.

• Compute inf∈Θ
P
=1 () for SCPC with ̄0 = 003 in U.S. states spatial designs for  = 10

⇒ Find that SCPC inference is valid in large class of stationary Gaussian isotropic processes that are

less persistent than worst-case benchmark model.

• Similar results also in classic time series case.
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Weak Correlation: Set-up of Lahiri (2003)

• Location  are sampled i.i.d. with density  on S ⊂ R

• Conditional on locations s = (1     ), for some sequence   0,

 = ()

with  a mean-zero stationary random field on R independent of s with E[()()] = (−)

• Calculation: ̄ = (1

), so weak dependence when →∞

⇒ Turns out: nature of weak dependence characterized by  = →  ∈ [0∞)

⇒ →∞ corresponds to asymptotically negligible spatial correlation.
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Weak Correlation: Weighted Averages

• Lemma (Lahiri 2003): Let w0() = (1w()0) w() = (1()     ())
0 where  : S 7→ R

are continuous weight functions. Under appropriate mixing and moment assumptions on 

−1212

X
=1

w0()|s⇒ N (0Ω) with Ω = (0)V1 +

µZ
R

()

¶
V2

where

V1 =

Z
S
w0()w0()0() and V2 =

Z
S
w0()w0()0()2

⇒ V1 is what we would expect from i.i.d. data, large  corresponds to very weak correlation.

⇒ V2 proportional to V1 only under constant 

• Convergence holds conditional on s: Randomness in locations doesn’t drive variability of weighted
averages.
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Weak Correlation: Projection T-statistics

• Recall: −1212
P
=1w

0()|s⇒ N (0Ω) with Ω = (0)V1 + (
R
())V2

• Theorem 2: With X = (0X
0
1:)

0 ∼ N (0Ω), under assumptions of Lemma,

P

⎛⎜⎜⎜⎝
¯̄̄̄
¯̄̄̄
¯

P
=1 r

−1P
=1

³P
=1()

´2
¯̄̄̄
¯̄̄̄
¯  cv

¯̄̄̄
¯̄̄̄
¯ s

⎞⎟⎟⎟⎠ → P

⎛⎜⎝ |0|q
−1X01:X1:

 cv

⎞⎟⎠

• If Ω ∝ V1 =
R
w0()w0()0() = I+1, then critical value from student-t

⇒ But Ω ∝ V1 only if  uniform, so projection t-statistic with student-t critical value not generically
valid.

⇒ In light design, 5% level Sun and Kim (2012) test with 10 Fourier weights has asymptotic null

rejection probability of 6.2%-30.0% under Ω ∝ V2
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Weak Correlation: Size Control

• Since t-statistic is scale invariant, no loss of generality to normalize

Ω = V1 + (1− )V2  ∈ [0 1)
where

V1 =

Z
S
w0()w0()0() and V2 =

Z
S
w0()w0()0()2

⇒ Scalar parameter  ∈ [0 1) fully characterizes all possible limits under weak correlation.

• SCPC benchmark model (−) = exp(−||−||) traces out all such limits with appropriate
choices of  = →∞

Theorem 3: SCPC critical value construction sup≥0 P
0
Σ()

(|SCPC()|  cvSCPC()|s) = 

implies size control under arbitrary sequences  ≥ 0, and, therefore, under generic weak correlation.
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Weak Correlation: Additional Results

• Convergence of first  eigenvectors ofMΣ0M to limiting eigenfunctions  : S 7→ R in appropriate
sense.

• Analogous results to those above for t-statistics with fixed-b kernel variance estimators

̂2 = −1
X




µ
||−||



¶
̂̂

with cv obtained from distribution in i.i.d. model, as in Bester, Conley, Hansen, and Vogelsang

(2016).

⇒ Generic size control under weak correlation again only with  uniform.
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Efficiency of SCPC Confidence Intervals

• Back to small sample with  = 500, y ∼ N (lΣ)
For given 1  0, compare

EΣ(1)

∙Z
1[ ∈ CI(y)]

¸
under y ∼ N (lΣ(1)), 1 ∈ {20 50∞} (1→∞ is i.i.d. model).

• Two comparisons: (i) with intervals from other spatial t-statistics and cv computed under Σ(0);
(ii) with lower-bound on length of best confidence interval of the form

CI(y) = [̄ − (û)̄ + (û)]

where  : R 7→ [0∞) is scale invariant, (û) = (û), but otherwise unrestricted.

• Impose that CI(y) has no worse size control than SCPC under

kink () = 1[|| ≤ ]0() + 1[||  ]
0()

1()
1(),  ∞

for 0 = bnch0
and 1 = bnch1

(“approximately least favorable”, as in Dou (2020)).
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Efficiency of SCPC Confidence Intervals II
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Efficiency of SCPC Confidence Intervals III

5th, 50th and 95th percentiles of CI length relative to oracle interval 95% confidence interval ̄ ± 196√
Lower bound computed using techniques in Müller, Elliott and Watson (2015) and Müller and Wang (2019).
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Efficiency of SCPC Confidence Intervals IV

• Results imply limit on possibility of using data-dependent methods to learn about 0:

— Consider pre-test whether there is any spatial correlation (that is, whether one may pick 0→∞).
If spatial correlation is detected, use very wide interval.

— If it was possible to do this reliably, then can construct  that (i) controls size under kink ; and

(ii) is nearly as efficient as oracle interval in the i.i.d. case.

⇒ Lower bound results imply this is impossible.

— Same argument also for other values of 0.

• Justifies treating 0 (or, equivalently, ̄0) as given and construction of corresponding bias aware

SCPC inference (cf. Armstrong and Kolesár (2018, 2020, 2021), etc.)
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Conclusions

• New method to conduct spatial correlation robust inference that remains valid under

— some interesting forms of strong spatial correlations

— all forms of weak correleation

— even when the locations are not uniformly distributed.

• Approach and results also potentially applicable in network econometrics or more generally under a
given form of plausible correlation structures.
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