Spatial Correlation Robust Inference

Ulrich K. Müller and Mark W. Watson Princeton University

> Presentation at Yale April 2022

Motivation

- More and more empirical work using spatial data in development, trade, macro, etc.
- How to appropriately correct standard errors?
 - Conley (1999): Spatial analog of HAC standard errors.
 - Don't work well under moderate or high spatial dependence.
 - Many applications characterized by strong spatial correlations (Kelly (2019, 2020)).

Canonical Problem

Observe

$$y_l = \mu + u_l$$
, $l = 1, \dots, n$

- y_l (and u_l) associated with observed location $s_l \in S \subset \mathbb{R}^d$.
- s_l with density g.
- With $\mathbf{s} = (s_1, \ldots, s_n)$: $\mathbb{E}[u_l | \mathbf{s}] = 0$, $\mathbb{E}[u_l u_l | \mathbf{s}] = \sigma_u(s_l s_l)$, so u_l covariance stationary.
- How to test $H_0: \mu = \mu_0$ and construct confidence interval for μ , conditional on s?
- Extensions to regression, GMM etc. follow from standard linearization arguments (see paper).

Three One-Dimensional Designs

(a) Regularly spaced

(b) Uniform spatial density (c) Triangular spatial density

Two Geographic Designs

(a) Uniform Spatial Density

(b) Light Spatial Density

Light data from Henderson, Squires, Storeygard and Weil (2018)

Spatial Inference

• Usual t-statistic

$$\tau = \frac{\sqrt{n}(\overline{y} - \mu_0)}{\hat{\sigma}}$$

with associated critical value cv, and confidence interval with endpoints $\bar{y} \pm cv \hat{\sigma}/\sqrt{n}$.

- Conley (1999): kernel-type "consistent" estimator $\hat{\sigma}^2 = n^{-1} \sum_{l,\ell} k\left(\frac{||s_l-s_\ell||}{b_n}\right) \hat{u}_l \hat{u}_\ell$ with $b_n \to \infty$ and standard normal cv.
- Bester, Conley, Hansen, and Vogelsang (2016): fixed-b version $\hat{\sigma}^2 = n^{-1} \sum_{l,\ell} k\left(\frac{||s_l s_\ell||}{b}\right) \hat{u}_l \hat{u}_\ell$ and nonstandard cv obtained by simulating from $u_l \sim iid\mathcal{N}(0, 1)$.
- Sun and Kim (2012): $\hat{\sigma}^2 = q^{-1} \sum_{i=1}^q \left(\sum_l n^{-1/2} w_{i,l} \hat{u}_l \right)^2$ with Fourier weights $w_{i,l}$ and student-t_q cv (analogous to Müller (2004, 2007), Phillips (2005), etc.)

This Paper

• Measure of strength of spatial dependence: average pairwise correlation

$$ar{
ho} = rac{1}{n(n-1)} \sum_{l=1}^n \sum_{\ell
eq l} \operatorname{Cor}\left(y_l, y_\ell \,| \mathbf{s}
ight).$$

- Objective: construction of $\hat{\sigma}$ and \mathbf{cv} that yield valid inference under
 - generic weak correlation $\overline{\rho} \rightarrow 0$, whether or not location distribution is uniform;
 - some strong correlation cases with $\bar{\rho} = O(1)$.

Outline of Talk

- 1. Definition of new "SCPC" method
- 2. Small sample size control under some forms of strong correlation
- 3. Large sample size control under generic weak correlation
- 4. Small sample efficiency of SCPC

Motivation for SCPC Method

- Model in vector notation: $\mathbf{y} = \mu \mathbf{l} + \mathbf{u} = \bar{y}\mathbf{l} + \hat{\mathbf{u}}$
- Numerator of t-statistic has variance $\sigma^2 = Var[\sqrt{n}\bar{y}] = n^{-1}Var[l'u]$
- Quadratic form estimators: $\hat{\sigma}^2 = \hat{\mathbf{u}}' \mathbf{Q} \hat{\mathbf{u}} = (n-1)^{-1} \sum_{i=1}^{n-1} \lambda_i (\mathbf{w}'_i \mathbf{u})^2$
- Challenge with (positive) spatial correlation: Most weighted averages $\mathbf{w}'_i \mathbf{u}$ are less variable than $\mathbf{l'u}$, leading to downward bias of $\hat{\sigma}^2$.
- Solution: Select (few) weighted averages $\mathbf{w}'_i \mathbf{u}$ that are as variable as possible under plausible spatial covariance matrix, and use $\hat{\sigma}^2 = q^{-1} \sum_{i=1}^{q} (\mathbf{w}'_i \mathbf{u})^2$.

SCPC Method

- Benchmark model $\sigma_u(s_l s_\ell) = \exp(-c||s_l s_\ell||)$ with associated covariance matrix $\Sigma(c)$ of **u**.
 - Worst-case correlation has $c = c_0$, weaker correlation for $c > c_0$.
- Use q eigenvectors $\mathbf{r}_1, \ldots, \mathbf{r}_q$ of $\mathbf{M} \Sigma(c_0) \mathbf{M}$ corresponding to largest eigenvalues as weights and

$$n\hat{\sigma}_{\mathsf{SCPC}}^2(q) = q^{-1}\sum_{i=1}^q (\mathbf{r}'_i \mathbf{u})^2$$

"Spatial Correlation Principle Components" (SCPC) of $\hat{\mathbf{u}} \sim \mathcal{N}(\mathbf{0}, \mathbf{M}\boldsymbol{\Sigma}(c_0)\mathbf{M})$.

- Let $\operatorname{cv}_{\operatorname{SCPC}}(q)$ solve $\sup_{c \ge c_0} \mathbb{P}^0_{\Sigma(c)}(|\tau_{\operatorname{SCPC}}(q)| > \operatorname{cv}_{\operatorname{SCPC}}(q)|\mathbf{s}) = \alpha$.
- q_{SCPC} minimizes CI length $\mathbb{E}[2\hat{\sigma}_{\text{SCPC}}(q) \operatorname{cv}_{\text{SCPC}}(q)|\mathbf{s}]$ in i.i.d. model $\mathbf{u}|\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$.

Eigenvectors in One-Dimensional Designs

Eigenvectors in Geographic Designs

Properties of SCPC Inference

• Select c_0 as function of implied average correlation $\bar{\rho} = \bar{\rho}_0$.

 \Rightarrow SCPC inference invariant under any linear transformation of the locations $\{s_l\}_{l=1}^n \rightarrow \{As_l\}_{l=1}^n$, such as rotations.

- For $\bar{\rho}_0 = 0.03$, $q_{\text{SCPC}} \approx 8$ (depending on s).
 - cv_{SCPC} not equal to corresponding student-t critical value: "bias aware inference".
 - Approximately 15%-30% longer confidence interval compared to oracle interval $\bar{y} \pm 1.96\sigma/\sqrt{n}$.
- SCPC easy to apply, even for (very) large n, using computational short-cuts for determination of eigenvectors if n is large (STATA and matlab code available).
- By construction, SCPC controls size in benchmark model $\mathbf{u}|\mathbf{s} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}(c))$, $c \geq c_0$.

Properties of SCPC: Roadmap

- Small sample size control in Gaussian model with "strong" correlations $\mathbf{u}|\mathbf{s}\sim\mathcal{N}(\mathbf{0},\mathbf{\Sigma}).$
 - New inequality about null rejection probability of t-statistic with $\hat{\sigma}^2 = \hat{\mathbf{u}}' \mathbf{Q} \hat{\mathbf{u}}$ under arbitrary mixtures of covariance matrices Σ .
 - Application to SCPC size control under mixtures of spectral densities that correspond to large class of processes that are less persistent than worst-case benchmark.
- Large sample size control under generic weak correlation.
 - Remarkably, alternative approaches to "inconsistent" spatial HAR inference do not control size when density of locations is not uniform.
- Efficiency of SCPC.

Size Control of T-statistics Under Mixtures I

• Consider Gaussian model and parametric covariance matrices $\mathbf{u}|\mathbf{s}\sim\mathcal{N}(\mathbf{0},\mathbf{\Sigma}^p(heta))$, $heta\in\Theta$.

Seek conditions such that t-statistic is valid in *nonparametric* class of models

$$\mathbf{u}|\mathbf{s}\sim\mathcal{N}(\mathbf{0},\int\mathbf{\Sigma}^p(heta)d\mathsf{\Pi}(heta))$$
 for all cdfs $\mathsf{\Pi}.$

• Suppose $\hat{\sigma}^2 = \hat{\mathbf{u}}' \mathbf{W} \mathbf{W}' \hat{\mathbf{u}}$, cv and $\boldsymbol{\Sigma}_0$ are such that

 $\mathbb{P}(| au| > \mathsf{cv}) \leq lpha \quad \mathsf{under} \quad \mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{0}}).$

Seek inequalities relating $\Sigma^p(heta)$, $heta\in\Theta$ to Σ_0 such that also

$$\mathbb{P}(| au| > \mathsf{cv}) \leq lpha \quad \mathsf{under} \quad \mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, \int \mathbf{\Sigma}^p(heta) d \mathsf{\Pi}(heta)
ight)$$

for any cdf Π on Θ .

Size Control Under Mixtures II

Theorem 1: With $W^0 = (l, W)$, let $\Omega_0 = W^{0'}\Sigma_0 W^0$ and $\Omega(\theta) = W^{0'}\Sigma^p(\theta)W^0$. Suppose $A_0 = D(cv)\Omega_0$ with $D(cv) = diag(1, -cv^2 I_q)$ is diagonalizable, and let P be its eigenvectors. Define $A(\theta) = P^{-1}D(cv)\Omega(\theta)P$ and $\overline{A}(\theta) = \frac{1}{2}(A(\theta) + A(\theta)')$, and suppose A_0 and $A(\theta)$, $\theta \in \Theta$ are scale normalized such that $\lambda_1(A_0) = \lambda_1(A(\theta)) = 1$, where $\lambda_i(\cdot)$ is the *i*th largest eigenvalue. Let

$$\nu_{1}(\theta) = \lambda_{q}(-\bar{\mathbf{A}}(\theta)) - \lambda_{1}(\bar{\mathbf{A}}(\theta))\lambda_{q}(-\mathbf{A}_{0}) - (\lambda_{1}(\bar{\mathbf{A}}(\theta)) - 1)$$

$$\nu_{i}(\theta) = \lambda_{q+1-i}(-\bar{\mathbf{A}}(\theta)) - \lambda_{1}(\bar{\mathbf{A}}(\theta))\lambda_{q+1-i}(-\mathbf{A}_{0}) \text{ for } i = 2, \dots, q.$$

If $\inf_{\theta \in \Theta} \sum_{i=1}^{j} \nu_i(\theta) \ge 0$ for all $1 \le j \le q$, then for any cdf Π on Θ , $\mathbb{P}(|\tau| > cv) \le \alpha$ under $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \Sigma_0)$ implies

$$\mathbb{P}(| au| > \mathsf{cv}) \leq lpha \quad \mathsf{under} \;\; \mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, \int \mathbf{\Sigma}^p(heta) d\mathsf{\Pi}(heta)
ight).$$

Intuition

• With $\Omega(\theta) = \mathbf{W}^{0'} \Sigma^p(\theta) \mathbf{W}^0$ and $\mathbf{X} = (X_0, \mathbf{X}'_{1:q})' \sim \Omega(\theta)^{1/2} \mathbf{Z} \sim \mathcal{N}(0, \Omega(\theta))$

$$\mathbb{P}\left(\tau^{2} > \mathsf{cv}^{2}\right) = \mathbb{P}\left(\frac{X_{0}^{2}}{\mathbf{X}_{1:q}^{\prime}\mathbf{X}_{1:q}} > \mathsf{cv}^{2}\right) = \mathbb{P}\left(X_{0}^{2} - \mathsf{cv}^{2}\mathbf{X}_{1:q}^{\prime}\mathbf{X}_{1:q} > 0\right)$$

$$= \mathbb{P}\left(\mathbf{X}^{\prime}\mathbf{D}(\mathsf{cv})\mathbf{X} > 0\right) = \mathbb{P}(\mathbf{Z}^{\prime}\mathbf{\Omega}(\theta)^{1/2}\mathbf{D}(\mathsf{cv})\mathbf{\Omega}(\theta)^{1/2}\mathbf{Z} > 0)$$

$$= \mathbb{P}\left(\sum_{i=0}^{q}\omega_{i}(\theta)Z_{i}^{2} > 0\right) = \mathbb{P}\left(Z_{0}^{2} > -\sum_{i=1}^{q}\frac{\omega_{i}(\theta)}{\omega_{0}(\theta)}Z_{i}^{2}\right)$$

where $D(cv) = diag(1, -cv^2 I_q)$ and $\omega_i(\theta)$ are the eigenvalues of $\Omega(\theta)^{1/2}D(cv)\Omega(\theta)^{1/2}$, or, equivalently, of $D(cv)\Omega(\theta)$.

- Can show: $\mathbb{P}\left(Z_0^2 > \sum_{i=1}^q \delta_i Z_i^2\right)$ is Schur convex in $\{\delta_i\}_{i=1}^q$.
- Use majorization results on eigenvalues of linear combinations of matrices, and additional calculations, to obtain result.

Robustness of SCPC Under Alternative Forms of Persistence

- If u_l is isotropic $(\sigma_u(r-s) = \tilde{\sigma}_u(||r-s||)$ for some $\tilde{\sigma}_u : \mathbb{R} \mapsto \mathbb{R}$), then spectrum $\mathfrak{f} : \mathbb{R}^d \mapsto \mathbb{R}$ satisfies $\mathfrak{f}(\omega) = f(\omega)$ for $\omega = ||\omega||$ and some $f : \mathbb{R} \mapsto [0, \infty)$.
- Normalize f(0) = 1. SCPC controls size under $f_0 = f_{c_0}^{\text{bnch}} = c_0^3 / (\omega^2 + c_0^2)^{3/2}$.
- One definition of less persistence: f is such that $r(\omega) = f(\omega)/f_0(\omega)$ (weakly) increasing in $|\omega|$.
- If $\lim_{\omega\to\infty} r(\omega) = M \ge 1$, any such r has representation $r(\omega) = 1 + (M 1)\Pi(|\omega|)$ for some CDF Π on $[0,\infty)$.

 \Rightarrow Any less persistent f with $\lim_{\omega\to\infty} f(\omega)/f_0(\omega) \leq M$ has representation $f(\omega) = \int f_{\theta}^{\text{step}}(\omega) d\Pi(\theta)$, where $f_0^{\text{step}} = f_0$ and for $\theta > 0$

$$f_{\theta}^{\text{step}}(\omega) = \mathbf{1}[|\omega| \le \theta] f_0(\omega) + \mathbf{1}[|\omega| > \theta] M \cdot f_0(\omega).$$

Robustness of SCPC Under Alternative Forms of Persistence II

Robustness of SCPC Under Alternative Forms of Persistence III

- U.S. states spatial designs:
 - Draw n = 500 locations from density g within each contiguous U.S. state, with $g \in \{g_{uniform}, g_{light}\}$.
 - Repeat 5 times, so obtain 240 s for each $g \in \{g_{uniform}, g_{light}\}$.
- Parametric covariance matrices $\Sigma^p(\theta)$ implied by f_{θ}^{step} , $\theta \geq 0$.
- Compute $\inf_{\theta \in \Theta} \sum_{i=1}^{j} \nu_i(\theta)$ for SCPC with $\bar{\rho}_0 = 0.03$ in U.S. states spatial designs for M = 10.

 \Rightarrow Find that SCPC inference is valid in large class of stationary Gaussian isotropic processes that are less persistent than worst-case benchmark model.

• Similar results also in classic time series case.

Weak Correlation: Set-up of Lahiri (2003)

- Location s_l are sampled i.i.d. with density g on $\mathcal{S} \subset \mathbb{R}^d$.
- Conditional on locations $\mathbf{s}_n = (s_1, \ldots, s_n)$, for some sequence $c_n > 0$,

 $u_l = B(c_n s_l)$

with B a mean-zero stationary random field on \mathbb{R}^d independent of s with $\mathbb{E}[B(s)B(r)] = \sigma_B(r-s)$.

• Calculation: $\bar{\rho}_n = O_p(1/c_n^d)$, so weak dependence when $c_n \to \infty$.

 \Rightarrow Turns out: nature of weak dependence characterized by $a_n = c_n^d/n \rightarrow a \in [0, \infty)$.

 $\Rightarrow a \rightarrow \infty$ corresponds to asymptotically negligible spatial correlation.

Weak Correlation: Weighted Averages

• Lemma (Lahiri 2003): Let $\mathbf{w}^0(s) = (1, \mathbf{w}(s)'), \mathbf{w}(s) = (w_1(s), \dots, w_q(s))'$ where $w_i : S \mapsto \mathbb{R}$ are continuous weight functions. Under appropriate mixing and moment assumptions on B

$$n^{-1/2}a_n^{1/2}\sum_{l=1}^n \mathbf{w}^0(s_l)u_l | \mathbf{s}_n \Rightarrow_p \mathcal{N}(\mathbf{0}, \mathbf{\Omega}) \quad \text{with} \quad \mathbf{\Omega} = a\sigma_B(\mathbf{0})\mathbf{V}_1 + \left(\int_{\mathbb{R}^d} \sigma_B(s)ds\right)\mathbf{V}_2$$

where

$$\mathbf{V}_1 = \int_{\mathcal{S}} \mathbf{w}^0(s) \mathbf{w}^0(s)' g(s) ds \quad \text{and} \quad \mathbf{V}_2 = \int_{\mathcal{S}} \mathbf{w}^0(s) \mathbf{w}^0(s)' g(s)^2 ds.$$

 \Rightarrow V₁ is what we would expect from i.i.d. data, large *a* corresponds to very weak correlation. \Rightarrow V₂ proportional to V₁ only under constant *g*.

• Convergence holds conditional on s_n: Randomness in locations doesn't drive variability of weighted averages.

Weak Correlation: Projection T-statistics

- Recall: $n^{-1/2}a_n^{1/2}\sum_{l=1}^n \mathbf{w}^0(s_l)u_l|\mathbf{s}_n \Rightarrow_p \mathcal{N}(\mathbf{0}, \Omega)$ with $\Omega = a\sigma_B(\mathbf{0})\mathbf{V}_1 + (\int \sigma_B(s)ds)\mathbf{V}_2$.
- Theorem 2: With $\mathbf{X} = (X_0, \mathbf{X}'_{1:q})' \sim \mathcal{N}(0, \Omega)$, under assumptions of Lemma,

$$\mathbb{P}\left(\left|\frac{\sum_{l=1}^{n} u_{l}}{\sqrt{q^{-1}\sum_{j=1}^{q} \left(\sum_{l=1}^{n} w_{j}(s_{l}) u_{l}\right)^{2}}}\right| > \mathsf{cv} \left| \mathbf{s}_{n} \right) \xrightarrow{p} \mathbb{P}\left(\frac{|X_{0}|}{\sqrt{q^{-1}\mathbf{X}_{1:q}'\mathbf{X}_{1:q}}} > \mathsf{cv}\right)$$

• If $\Omega \propto V_1 = \int w^0(s) w^0(s)' g(s) ds = I_{q+1}$, then critical value from student-t_q.

 \Rightarrow But $\Omega \propto V_1$ only if g uniform, so projection t-statistic with student-t critical value not generically valid.

 \Rightarrow In light design, 5% level Sun and Kim (2012) test with 10 Fourier weights has asymptotic null rejection probability of 6.2%-30.0% under $\Omega \propto V_2$.

Weak Correlation: Size Control

• Since t-statistic is scale invariant, no loss of generality to normalize

$$\Omega = \kappa \mathbf{V}_1 + (1-\kappa)\mathbf{V}_2, \quad \kappa \in [0,1)$$

where

$$\mathbf{V}_1 = \int_{\mathcal{S}} \mathbf{w}^0(s) \mathbf{w}^0(s)' g(s) ds \quad \text{and} \quad \mathbf{V}_2 = \int_{\mathcal{S}} \mathbf{w}^0(s) \mathbf{w}^0(s)' g(s)^2 ds.$$

 \Rightarrow Scalar parameter $\kappa \in [0, 1)$ fully characterizes all possible limits under weak correlation.

SCPC benchmark model σ_u(s_l − s_ℓ) = exp(−c||s_l − s_ℓ||) traces out all such limits with appropriate choices of c = c_n → ∞.

Theorem 3: SCPC critical value construction $\sup_{c \ge c_0} \mathbb{P}^0_{\Sigma(c)}(|\tau_{\text{SCPC}}(q)| > \operatorname{cv}_{\text{SCPC}}(q)|\mathbf{s}) = \alpha$ implies size control under arbitrary sequences $c_n \ge c_0$, and, therefore, under generic weak correlation.

Weak Correlation: Additional Results

- Convergence of first q eigenvectors of $M\Sigma_0M$ to limiting eigenfunctions $\varphi_i : S \mapsto \mathbb{R}$ in appropriate sense.
- Analogous results to those above for t-statistics with fixed-b kernel variance estimators

$$\hat{\sigma}^2 = n^{-1} \sum_{l,\ell} k\left(\frac{||s_l - s_\ell||}{b}\right) \hat{u}_l \hat{u}_\ell$$

with cv obtained from distribution in i.i.d. model, as in Bester, Conley, Hansen, and Vogelsang (2016).

 \Rightarrow Generic size control under weak correlation again only with g uniform.

Efficiency of SCPC Confidence Intervals

• Back to small sample with n = 500, $\mathbf{y} \sim \mathcal{N}(\mathbf{l}\mu, \boldsymbol{\Sigma})$. For given $c_1 > c_0$, compare

$$\mathbb{E}_{\mathbf{\Sigma}(c_1)}\left[\int \mathbf{1}[x \in \mathsf{Cl}(\mathbf{y})]dx\right]$$

under $\mathbf{y} \sim \mathcal{N}(\mathbf{l}\mu, \boldsymbol{\Sigma}(c_1))$, $c_1 \in \{2c_0, 5c_0, \infty\}$ $(c_1 \to \infty \text{ is i.i.d. model})$.

Two comparisons: (i) with intervals from other spatial t-statistics and cv computed under Σ(c₀);
 (ii) with lower-bound on length of best confidence interval of the form

$$\mathsf{Cl}(\mathbf{y}) = [\bar{y} - \delta(\hat{\mathbf{u}}), \bar{y} + \delta(\hat{\mathbf{u}})]$$

where $\delta : \mathbb{R}^n \mapsto [0, \infty)$ is scale invariant, $\delta(\lambda \hat{\mathbf{u}}) = \lambda \delta(\hat{\mathbf{u}})$, but otherwise unrestricted.

 \bullet Impose that $\mathsf{CI}(y)$ has no worse size control than SCPC under

$$f_{\theta}^{\mathsf{kink}}(\omega) = \mathbf{1}[|\omega| \le \theta] f_0(\omega) + \mathbf{1}[|\omega| > \theta] \frac{f_0(\theta)}{f_1(\theta)} f_1(\omega), \quad \theta > \infty$$

for $f_0 = f_{c_0}^{\text{bnch}}$ and $f_1 = f_{c_1}^{\text{bnch}}$ ("approximately least favorable", as in Dou (2020)).

Efficiency of SCPC Confidence Intervals II

Efficiency of SCPC Confidence Intervals III

5th, 50th and 95th percentiles of CI length relative to oracle interval 95% confidence interval $\bar{y} \pm 1.96\sigma/\sqrt{n}$. Lower bound computed using techniques in Müller, Elliott and Watson (2015) and Müller and Wang (2019).

Efficiency of SCPC Confidence Intervals IV

- Results imply limit on possibility of using data-dependent methods to learn about c_0 :
 - Consider pre-test whether there is any spatial correlation (that is, whether one may pick $c_0 \rightarrow \infty$). If spatial correlation is detected, use very wide interval.
 - If it was possible to do this reliably, then can construct δ that (i) controls size under f_{θ}^{kink} ; and (ii) is nearly as efficient as oracle interval in the i.i.d. case.
 - \Rightarrow Lower bound results imply this is impossible.
 - Same argument also for other values of c_0 .
- Justifies treating c_0 (or, equivalently, $\overline{\rho}_0$) as given and construction of corresponding bias aware SCPC inference (cf. Armstrong and Kolesár (2018, 2020, 2021), etc.)

Conclusions

- New method to conduct spatial correlation robust inference that remains valid under
 - some interesting forms of strong spatial correlations
 - all forms of weak correleation
 - even when the locations are not uniformly distributed.
- Approach and results also potentially applicable in network econometrics or more generally under a given form of plausible correlation structures.