CHAPTER?3

Low-Frequency Econometrics
Ulrich K. Miiller and Mark W. Watson

Wluny questions in economics involve long-run or “trend” variation and covari-
ation in time series. Yet, time series of typical lengths contain only limited
information about this long-run variation. This paper suggests that long-run
sample information can be isolated using a small number of low-frequency
trigonometric weighted averages, which in turn can be used to conduct infer-
ence about Jong-run variability and covariability. Because the low-frequency
weighted averages have large sample normal distributions, large sample valid
inference can often be conducted using familiar small sample normal inference
procedures. Moreover, the general approach is applicable for a wide range
of persistent stochastic processes that go beyond the familiar 7(0) and /(1)
models,

1 INTRODUCTION

This paper discusses inference about trends in cconomic time scries. By
“trend” we mean the low-frequency variability evident in a time series after
forming moving averages such as low-pass (cf. Baxter and King, 1999) or
Hodrick and Prescott (1997) filters. To measure this low-frequency variabil-
ity we rely on projections of the series onto a small number of trisonometric
functions (c.g., discrete Fourier, sine, or cosine transforms). Ihl tact that
a small number of projection coefficients capture low-frequency variability
reflects the scarcity of low-frequency information in the data, leading to what
is effectively a “small-sample” econometric problem. As we show, it is still
relatively straightforward to conduct statistical inference using the small sam-
ple of low-frequency data summaries. Moreover, these low-frequency methods
are appropriate for both weakly and highly persistent processes. Before getting
into the details, it is useful to fix ideas by looking at some data.

We thank Frank Schorfheide for a thoughtful discussion at the 2015 World Congress in Mon-
tréal. Support was provided by the National Science Foundation through grant SES-1226464,
Replication files are available at www.princeton.edu/~mwatson.
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Figure 1 Trends in US Time Series

Figure 1 plots the value of per-capita GDP growth rates (panel A) and price
inflation (panel B) for the United States using quarterly data from 1947 through
2014, and where both are expressed in percentage points at an annual rate.!
The plots show the raw series and two “trends.” The first trend was constructed

using a band-pass moving average filter designed to pass cyclical components

Three data series are used in this paper. All are quarterly series from 1947:Q1 to 2014:Q4 for
the United States. Real per capita gross domestic product is available from FRED as series
A939IRX0QO48SBEA. Inflation is measured using the price deflator for personal consumption
expenditures (FRED series DPCERD3QO86SBEA). Total factor productivity is from Fernald
(2014) and is available at www.frbsf.org/economic-research/economists/john-fernald/.
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with periods longer than 7/6 ~ 11 years, and the second is the full-sample pro-
jection of the series onto a constant and twelve cosine functions with periods
2T/jfor j =1, ..., 12, also designed to capture variability for periods longer
than 11 years.> A glance at the figure shows that the band-pass and projec-
tion trends essentially coincide both for GDP, for which there is only moderate
trend variability, and inflation, for which there is substantial trend variability.
This paper focuses on trends computed by projection methods because, as we
will see, they give rise to simple methods for statistical inference.

Figure 1 raises several empirical questions. For example, the trend in GDP
zrowth has been low for the last decade. Does this portend low average growth
over the next decade? Or, is there mean reversion in the trend so that the next
decade is more likely to exhibit faster than average growth? And, what /s the
value of the population mean growth rate of GDP? The plot for inflation shows
large persistent variation in its trends over the past sixty years. Does this sug-
gest that the inflation process is 1(1)? Or is this behavior consistent with an
1(0) process? Alternatively, what about something “between” the I(0) and
1 (1) processes? More generally, the average value of inflation varies consider-
ably vver non-overlapping 10- or 25-year time periods; average GDP growth
rutes show less, but still substantial variability. How much variability should we
expect o see in future 10- and 25-year samples? Section 3 takes up these ques-
tions, along with several other questions that can be answered using univariate
time series methods.

Figure 2 plots both total factor productivity (TEP) and GDP growth rates.
The trend components of the series move together, suggesting (for good rea-
son) that long-run variation in GDP and TFP growth rates are closely related.
But, exactly how closely are they related? And, by how much is the trend
growth rate in GDP predicted to increase if the trend growth rate of TFP
increases by, say, 10 basis points? Section 4 takes up questions like these that
involve multiple (here two) time series.

The paper begins, in Section 2, with notation and (finite and large-sample)
properties of discrete “cosine transforms,” the trigonometric projections used
in our analysis.® Sections 3 and 4 show how these cosine transforms can be
used to answer trend-related inference questions. “Low-frequency” variability
conjures up spectral analysis, and Section 5 uses frequency-domain concepts
to explain several facets of the analysis. To keep the focus on key ideas and
concepts, the analysis in the body of the paper uses relatively simple stochastic
processes, and Section 6 briefly discusses some extensions and concludes.

2 The low-pass values were computed using an ideal low-pass filter truncated after 7'/2 terms
applicd to the padded series using forecasts/backeasts constructed from an AR(4) model. The
cosine projections are the fitted values from the regression of the series onto a constant term and
Vacos (j (- ,',) /'r) forj=1,...,12.

3 As discussed below, analogous properties hold for other transforms such as discrete Fourier
transforms.
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Figure 2 Trends in GDP and TFP Growth Rates

2 SOME PROPERTIES OF LOW-FREQUENCY
WEIGHTED AVERAGES

Let x; denote a scalar time series that is observed for t = 1,..., T, and
let W;(s) = V2cos(jsm), so that W; (t/T) has period 2T /j. Let W(s) =
[W1(s), Wals), ..., ¥, ()Y, a B9 valued function, and let W7 = [W(/] -
1/2)/T), Ww((2~-1/2)/T), ..., W({(T'~1/2)/T)) be the T xq matrix obtained
by evaluating W (-) ats = (r — ;—)/T,t =1,..., T. The low-frequency projec-
tions shown in Figures 1 and 2 are the fitted values from the OLS regression ol
[x1,x2,.. x7 ] onto a constant and Wr; thatis, X, = X+W((t—=1/2)/T) X,

where ¥ = 71 Zt 1 X and X7 are the OLS regression coefficients. Because
the columns of Wy are orthogonal, sum to zero, and have length T (that is,
7'“1\D}.\U7' = I, and \11’7.61- = 0, where £r denotes a T' x 1 vector of 1s), the
OLS regression coefficients have a simple form

.
Xy =T71 Y Wit = 1/2)/T)x:.
=1
The jth regression coefficient, X7, is called the jth cosine transform of
[xi, x2, .., xr).

2.1 Large-Sample Properties of X

Suppose that x; can be represented as x, = fu+u,, where g is the mean of x and
u; is a zero mean stochastic process. Because the cosine weights sum to zero.
the value of 1 has no effect on X7, so cosine wug’hted averages of x; and of
uy coincide (T~ T W((@ = 1/2)/Tyx, = TV W(@ ~ 1/2)/ Tuy).
Scaled versions of these weighted averages are normally distributed in large
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samples if i, satisfies certain moment and persistence properties. In Section 5.3
we present a central limit theorem that relies on assumptions about the spectral
density of 1r,. Here we use a simpler argument from Miiller and Watson (2008)
that relies on the assumption that suitably scaled partial sums of u, behave like
a Gaussian process in large samples.

Specifically, suppose that for some number «, the linearly interpolated par-
tial sum process of u, scaled by T7%, Gp(s) = T™* ZL’” uy +T7%6T —
LsT Dy )+1, converges to a Gdussmn process, Gr() = G(+). Using an
identity for the cosine weights (f('r /T 7 Wi(s)ds = l_ 1\IIJ((z‘ - 1/2)/T)
with [j7 = sin(j /(2T))/(jm /(2TY)), the following represenmtlon for the jth
cosine transform follows directly

,
TV X, = T Wt = 1/2)/ T,
=1
=l -« Zf Wi ()51 41ds @))]
-0/ T

z[ (591 5) - Gr () ()

/7
—/ Ilfj(S)GT(S)ds:l
(t=1)/T

1
= LrV;(HGr (1) —fo V()G (s)ds]
1
= W;(DHG(1) —f Vi(s)G(s)ds
0

1
= / W (s)dG(s)
0

whcr'e the first two lines use the properties of W;, the third uses Gr(s) =

/0 uirr 4+1dr and integration by parts with ¥;(s) = d¥; j(s)/ds, the
Ilith uses the continuous mapping theorem and /;7 — 1, and the final line
uses the stochastic calculus version of integration by parts. This representation
holds jointly for the elements of X7, so

1
TI*X = X = / W(s)dG(s) ~ N(O, ). )
0

The clements of the covariance matrix £ follow directly from the covariance
kernel of G and the cosine weights (see Miiller and Watson, 2008). The key
idea of our approach to low-frequency econometrics is to conduct inference
based on the large sample approximation (2), T X7 ~ N/ 0, ).

Figure 3 plots the first 12 cosine transforms for GDP growth rates and infla-
tion. Roughly speaking, the cosine transforms for GDP growth rates look like
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Figure 3 Cosine Transforms of GDP Growth and Inflation

a sample of i.i.d. random variables, while the cosine transforms for inflation
appear to be heteroskedastic, with larger variance for the first few cosine trans-
forms. The value of the covariance matrix ¥ in the 7 (0) and 7 (1) models helps
explain these differences. In the 7(0) model T-1/2 Z,L:llj u; = oW() with
W a standard Wiener process and w? > 0 the long-run variance, ¥ = w? I,.
s0 X; is LLdN'(0, 0?). Tn the 1(1) model T-32 YT u, = w f; W(s)ds.
T = w?D, where D is a diagonal matrix with elements Dj; = I/(j:r)z.
so the X ;s are independent but heteroskedastic.* In the following section we

* The asymptotic covariance matrix T is diagonal in both the 7(0) and /(1) models because the
cosine functions are the eigenfunctions of the covariance kernel of a demeaned Wiener process;
cf. Phillips (1998).
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present tests for both the 7(0) and (1) null hypotheses. Given these scat-
ter plots, it is not too surprising that the /(0) null is not rejected for GDP
growth, but the /(1) null is rejected, and just the opposite result obtains for
inflation.

While ¥ has a simple form for the 7(0) and I(1) models, it can be
more complicated for other stochastic processes, so it is useful to have a
simple numerical method for obtaining accurate approximations for . As
representation (2) suggests, X can be approximated by the large-7' finite sam-
ple covariance matrix Var[T1=%Xy] = T“z"\l’;vET\DT where E7 is the
T x T covariance matrix of [uy, u2, ..., ur] under any (not too heavy-
tailed) process for u, that induces the same Gaussian process limit of its
partial sums. For example, if u, is 7(0), then X can be approximated using
the large-T' finite-sample covariance matrix of the cosine transform of an

I . . 2 D

i.id. process with variance w”, T = w7 1\11,}\117 = a)z[,[. Indeed,
o) . . . .

because Z = w~l; for the I(0) model, this approximation is exact.

When u, is I(1) T can be approximated using the large-T finite sam-
ple covariance matrix of the cosine transforms of a random walk process,
T re ’]“3\11.’r E¢Wy, where Eg has (i, j)th element w? min(i, j). In Section 3,
we consider the local-to-unity AR model and fractional 7(d) model, and the
covariance matrices for these processes can be approximated in analogous
fashion.

While this discussion has focused on discrete cosine transforms, the rep-
resentation in (1) is seen to hold for any set of smooth set of weights, W(s).
Because our interest is focused on trends, it is important that the weighted
averages extract low-frequency variability from the data, and Figure 1 shows
that the cosine transforms do just that (also see Section 5.1 below). But,
low-frequency Fourier or sine transforms are equally well suited and can be
used instead of the cosine transforms after appropriate modification of the
covariance matrix ¥

And finally, it is worth stressing that in the asymptotic analysis presented
in this section the dimension of Xy, which we have denoted by ¢, is held
fixed as T grows large. Such asymptotics reflect the notion that there is only
a relatively modest amount of information about low-frequency phenomena
in, say, 65-year realizations of macro time series. In practice, this translates
into using a relatively small number of low-frequency averages from a long
time series. Our empirical analysis uses ¢ = 12 from 7 = 272 quarterly
observations because, from Figures | and 2, this produces a sensible notion of
the “trend” in inflation and growth rates in GDP and TFP, corresponding to the
periodicities longer than 11 years. The econometric challenge then is to draw
valid conclusions from these ¢ observations. Further discussion of the choice
of ¢ may be found in Section 5.

5 For example, while the cosine transforms of an (1) process have the diagonal covariance matrix
discussed in the last paragraph, the covariance matrix of Fourier transforms is somewhat more
complicated (ctf. Akdi and Dickey, 1998).
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3 INFERENCE EXAMPLES: UNIVARIATE TIME SERIES

This section takes up five examples of statistical inference involving the low-
frequency properties of a univariate stochastic process. In each case, the normal
limit for X ¢ discussed in the last section yields a simple, and standard, small-
sample inference problem involving a normal random vector.

3.1 1(0) inference

The first two examples assume the 7(0) model and concern inference about the
long-run variance (w?) and mean (u) of x. These problems are related as both
involve cuz, in the first instance because it is the parameter of interest, and in
the second because it characterizes the variability of the sample mean. There
is a large literature on consistent estimation of w?, including the important
contributions of Newey and West (1987) and others, and earlier work on spec-
tral estimation (see Priestley, 1981 for a classic textbook treatment). As is now
widely understood, consistent long-run variance estimators can perform poorly
in finite samples even for only moderately persistent series. Motivated by these
poor finite-sample properties, a burgeoning literature studies inconsistent long-
run variance estimators (see Kiefer, Vogelsang, and Bunzel, 2000 and Kiefer
and Vogelsang, 2002, 2005; Jansson, 2004; Phillips, 2005b; Sun, Phillips, and
Jin, 2008; Phillips, Sun and Jin, 2006, 2007; and Gongalves and Vogelsang,
2011; and Miiller, 2014 for a recent survey), and estimators constructed from
the cosine transforms as suggested by Miiller (2004, 2007) provide a leading
example.

Thus, consider using X7 to learn about the value of w?. Because /T X7 =>
X ~ N, »* 1,), asymptotically justified inference proceeds as in the familiar
small sample i.i.d. normal model. Letting SSX7 = T'X}. X7 = SSX = X'X
denote the (scaled) sum of squares, the large-sample log-likelihood is propor-
tional to — % [¢ In (a)z) +S88X /w?] and the corresponding maximum likelihood
estimator (MLE) for w? is c?)% = SSX7r /¢q. Because cb% is computed using
only ¢ observations (and in the asymptotics ¢ is held fixed as T — 00),
(7)%4 is not consistent. Indeed, using ¢ = 12, Xy contains limited informa-
tion about w?, so there is considerable uncertainty about its value. Figure -t
shows the log-likelihood for w constructed using X7 for real GDP growth
rates. The MLE is @7 = 4.8, but the plot shows that values of w as small
as 3.5 and as large as 6.5 have likelihood values within one log-point of the
maximum. Because X' X /w? ~ x,? confidence intervals for w are readily con-
structed (P(SSXr /)((2,]_0[/2 < w? < SSXy /x(iu/z) — | — «, with X(:])-,p the
pth quantile of the C{li-squared distribution with ¢ degrees of freedom), and
the resulting confidence intervals for the long-run standard deviation of GDP
growth rates and inflation are shown in Table 1.

Next, consider inference about g, the mean of x,. The same arguments used
in Section 2 show that VT[(X — ), X.]' = (Xo, X") ~ N(0, @?*I,41).
so inference about p can be obtained as in the standard small-sample normal
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Table 1 Descriptive statistics for GDP growth rates and Inflation:
1947:02-2014:Q4

GDP Inflation
Sample mean ¥ 1.94 3.12
Sample long-run standard deviation oy 4.76 9.25

90% Confidence interval for w in 7(0) model  [3.60;7.21]  [6.99;14.02]
90% Confidence interval for  in 7(0) model  [1.43;2.45] [2.12;4.12]
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Figure 4 Low-Frequency Log-Likelihood for the Long-Run Standard Devia-
tion of GDP Growth

probiem. In particular, VT X - /or = 14 (the Student-t distribution with
g degrees of freedom), so inference about  follows directly. Table 1 shows
99 percent confidence intervals for the mean GDP growth rate and the mean
inflation rate constructed as X + 1.786)7'/\/7, where 1.78 is the 95th percentile
of the 117 distribution.

These confidence intervals for w? and p are predicated on the assumption
that x; ~ 1(0) and, particularly for inflation, this assumption is suspect. The
next inference examples concern the persistence of the x, process.

3.2 Inference About Persistence Parameters

As discussed in Section 2, the normal limit for X7 holds under conditions more
general than the 7(0) model, and the parameters characterizing the persistence
of x; determine the covariance matrix X. Thus, inference about these parame-
ters can be conducted using methods for inference about the covariance matrix
of a multivariate normal random variable. This section discusses three classes
of examples. First a few preliminaries,

Some Parametric Models of Persistence. Section 2 discussed the covari-
ance matrix ¥ for 7(0) and /(1) processes. Here we describe three other
widely used parametric models for persistence in economic time series. The
first is a sum of 7(0) and I(1) processes: with appropriate scaling for the
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components this is a version of Harvey’s (1989) “local-level-model” (LLM)
X = vy + (bT)‘l Z;:l vyy where (v, vo) is bivariate 7(0) with fong-run
covariance matrix w>l>. Another is the “local-to-unity AR” model (LTUM)
in which 1, = ppu;—1 + vy, with AR coefficient p; = | — ¢/T and v, an
1(0) process, as introduced by Cavanagh (1985), Chan and Wei (1987) and
Phillips (1987). A third is the “fractional” model (FRM) (1 — LYy, =,
where v, is 1(0) with =3 < d < 3 (cf. Baillie, 1996 and Robinson, 2003
for surveys). Each of these processes exhibits different degrees of persis-
tence that depend on the value of the model’s parameter value. For example,
1(0) behavior follows when b is very large in LLM, d = 0 in FRM, and
¢ very large in LTUM. The processes exhibit /(1) persistence when b = 0
(LLM), ¢ = 0 (LTUM) and d = 1 (FRM). Alternative parameter values
yield persistence between /(0) and 7(1), and the FRM withd < Qord > 1
allows for persistence beyond these extremes. Excluding their /(0) and (1)
parameterizations, the models yield subtly different low-frequency behavior
as evidenced by their (pseudo-) spectra discussed in Section 5.2. For now
we simply note that this behavior results in different values of the covariance
matrix X.°

Scale Invariance/Equivariance. In many inference problems, interest is
focused on the persistence of the process (say b, ¢, or d) and not on the scale of
the process (w). This motivates basing inference on statistics that are invariant
to scale transformations, which in our setting corresponds to basing inference
onX’ = Xy/ X.’I.XT.7 The continuous mapping theorem implies that X'j. =>

X' = X/VX’'X, and the density fx:(x*|X) of X* is explicitly computed in
King (1980) and proportional to fys (x*| ) o |Z|~1/2(x¥ £~ 1x%)~49/2,

Armed with these preliminaries we are now ready to tackle inference about
persistence parameters. We will construct hypothesis tests, and In some cases
invert these tests to construct confidence sets. We focus on three classes of efti-
cient tests: (1) point-optimal, (ii) weighted average power (WAP) optimal and
(iii) approximately optimal tests constructed using numerical approximations
to least favorable distributions. Each is discussed in the context of a specific
testing problem.

" The scaling factor for Xy is 71/2 for LLM, T~1/2 for LTUM, and is 71/2=4 for FRM. The
covariance matrix X for each of these models is given in Miiller and Watson (2008), and can be
approximated using the appropriate choice of Z¢ for the finite-sample methods in Section 2: the
covarianc: matrix for the LTUM can be approximated using the autocovariances of a stationary
AR(1) process with coefficient (1 — ¢/T'); and the covariance matrix for the LLM is the sum
of the I (0) covariance matrix and (I)T)_2 times the 7 (1) covariance matrix. The covariance
matrix for FRM with ~1/2 < d <« 1/2 can be approximated using the autocovariances for
(1 - L)‘/u, = ¢, where ¢ is white noise with variance o? and the autocovariances for 1 are
given, for example, in Baillie (1996); for 1/2 < d < 3/2, ¥ can be approximated using the
autocovariances of Z;:O uy, where (1 — L)"‘]u, == ¢;, Miiller and Watson (2008) show that
the resulting limiting covariance matrix X is continuous at = 1/2 in the FRM.

Note that the 717% scale factor cancels in X%, so the value of x no longer matters for the

~

analysis.,
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Point-Optimal Tests. Let @ denote the value of a persistence parameter (say
b, ¢, or d in the models described above), so that £ = ¥ (0), and the scale of
2 does not matter because of the form of the density for X*. Several problems
of interest follow the classic Neyman-Pearson setup with a simple null and
simple alternative, Hy : 0 = 6y versus H, : 6 = 0,, so the likelihood ratio
statistic yields the most powerful test. Given the form of the density fys, this
means rejecting the null for large values of the ratio of generalized sums of
squares: (X7.Z (99) ! X7)/ (X432 (0" X 7). Such tests are “point-optimal” in
the sense of having best power against the 6 = 6, alternative.® Two examples
are low-frequency “unit-root” (LFUR) and “stationarity” (LFST) tests, which
respectively test the (1) and 7(0) null hypotheses, as previously derived in
Miiller and Watson (2008). We discuss them in turn.

Dufour and King (1991), Elliott, Rothenberg, and Stock (1996) and Elliott
(1999) derive efficient Neyman-Pearson tests in the AR(1) Gaussian model
with AR coefficient pp = 1 and p = p, under the alternative, and the latter
two references extend these tests to more general settings using asymptotic
approximations for LTUM where the unit root null corresponds to ¢g = 0
and the alternative to ¢ = ¢,. While a uniformly most powerful test does not
exist, Elliott, Rothenberg, and Stock (1996) show that the point optimal test
associated with a particular value of ¢, exhibits near optimality for a wide
range of values of ¢ under the alternative. The low-frequency version of the
point-optimal unit root test rejects for large values of

X5 E(eo) X

LFUR = ————
Xy E () 1 Xr @

where X (cp) is the covariance matrix under the null (the 7(1) model with
ty = 0) and X (c,) is the covariance matrix using c,. Table 2 shows
the p-value of this LFUR test for GDP growth rates and inflation using
Eiliott’s (1999) choice of ¢, = 10, The I (1) model is not rejected for inflation
{ p-value = 0.18), but is rejected for GDP growth rates (p-value = 0.00).

Nyblom (1989) and Kwiatkowski, Phillips, Schmidt, and Shin (1992)
develop tests for the null of an 7(0) model versus an alternative in which the
process exhibits LLM-type nonstationary behavior.” As in the unit root prob-
lem, a uniformly most powerful test does not exist, but a Neyman-Pearson
point-optimal test against the alternative with b = b, follows directly. Given
the special structure of the 7(0) and 7(1) X matrices, the point-optimal test
has a particularly simple form:

1 2
LFST = Liey Xir

. 4
S XP (U 1/ (baim)?) ! ®

¥ Miiller (2011} shows that these point optimal tests, viewed as a function of X7, are asymp-
totically point optimal in the class of all scale invariant tests that control size for all processes

satistying (2).
9 See Stock (1994) for a survey and additional references.
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Table 2 Persistence tests for GDP growth rates and

inflation

GDP Inflation

p-values
LEST (.53 0,03
LFUR 0.00 0.18
Confidence intervals for  in [ (d) model

67% level [—0.24;0.27] 10.48;1.01)]
90% level [—0.49;0.44] {0.32;1.21]

Notes: LEST and LFUR are point-optimal tests for the 1(0) and I(1)
models, respectively, Confidence intervals for d in the 1(d) model were
constructed by inverting WAP-optimal tests for d. See the text for details.

Miiller and Watson (2013) tabulate critical value for this test using b, = 1/10,
and show that the test has power close to optimal power for a wide range of
values of b. Table 2 shows the p-values of this test for GDP growth rates (p-
value = 0.53) and for inflation (p-value = 0.03).

Weighted Average Power (WAP) Tests. LFST and LFUR test the / (d) mode!
ford = 0 and d = 1, but what about other values of d? And, how can the tests

be inverted to form a confidence set for the true value of d? One approach
is to use point-optimal tests for the null and alternative Ho : d = dyy versts
Hy : d = d, for various values of dy; the collection of values of gy that are not
rejected form a confidence set. But an immediate problem arises: what value
of d, should be used? A desirable test should have good power for a wide
range of values of d,, both larger and smaller than dy, so that point-optimal
tests (which specify a single value of d,) are not appealing. A useful criterion
in these situations is to consider the “weighted average power” (WAP) of tests,
where the weights put mass on different values of d,;. As explained in Andrews
and Ploberger (1994), for example, optimal WAP tests are easy to construct.
The logic is as follows: consider an alternative in which d is a random variable
with distribution function F,. This is a simple alternative Hy, ;,: X* has mixture
density f Sxs (x*, X (d))d Fu(d), and the optimal test of Ho versus H, r., is the
Neyman—Pearson likelihood ratio test. Rearranging the power expression for
this test shows that it has greatest WAP for H,, : d = d,, using F, as the weight
function,!”

Figure 5 shows the large-sample log likelihood for d using X3. for real GDP
growth rates and inflation. The MLE of d is near zero (c? = ~0.006) for GDP,
but much larger (c? = 0.80) for inflation. But the plots indicate substantial
uncertainty about the value of d. Using a weighting function I, that is uniform
on =0.5 < d < L5, we construct WAP tests for a fine grid of values of

10 Ag pointed out by Pratt (1961), the resulting confidence set CS(X) C R for d has minimal
expected weighted average length E[ [ 1{d € CS(X)1d Fy (d)] among all confidence sets of the
prespecified level.
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Figure 5 Low-Frequency Log-Likelihood in Fractional Model

dy. Inverting these tests yields a confidence set for d, and these are shown in
Table 2. For GDP, the 67 percent confidence sets for d ranges from —0.24 to
0.27, and for inflation it ranges from 0.48 to 1.01. Ninety percent confidence
sets are wider.

Least Favorable Distributions. Our final example considers the follow-
ing question: how much should we expect the sample average value of x,
(GDP growth rates or inflation) to vary over long periods of time, say a
decade or a quarter of century? To be specific, let X1, denote the sample
mean constructed using observations 1 through /i and consider the variance
ogf(h) = Var[X;41:21 — X1:1], for large values of /. The parameter o5 (1)
is the standard deviation of the change in the sample mean over adjacent non-
overlapping sample periods of length .M In the large sample framework, let

T Note that oz is well defined even for some infinite variance processes, such as the FRM with
1/2 <d = 3/2.
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r = h/T and consider asymptotic approximations constructed with r held
fixed as T — o0. To conduct inference about agf(r'l') using X7, we must
determine how agf(r’]‘) relates to the value of X, the limiting covariance
matrix for X7 (appropriately scaled). This is straightforward: first an extension
of the central limit result discussed in Section 2 yields

Lk [ XrT+12rT = X1 Y'Y N O<ZYY Zyx )
()= () e (5 2)

Second, because Var[(Xp 4101 — X1p)/oas(rT)] = 1, Xv/oaz(rT) =
N, T) where T' = Zyx/Zyy. A test of Hy : oaz(rT) = aavo(r?)
against I, : oax(rT) # oaxo(rT) may thus be based on the statistic
Xo = X7/oazo(rT). Under Hy, X, = N(0,T), and under H;, X, =
N0, (;;;-“;f(r";))zr‘), so the problem again reduces to an inference problem
about the covariance matrix of a multivariate normal.

The alternative can be reduced to a single alternative H,, 5, by maximizing
a weighted average power criterion, as above. The problem is still more chal-
lenging than the previous example, however, because the (large sample) null
distribution of X, = N (0, I') depends on nuisance parameters that describe
the persistence of the x; process. In the FRM, for example, I' = I' (d) with
d € D for some range of values D. In the jargon of hypothesis testing, the null
hypothesis is composite because it contains a set of probability distributions
for X5 indexed by the value of d. The challenge is to find a powerful test of
Hy that controls size under all values of d € D.

One general solution to this type of problem uses the same simplifica-
tion that was used to solve the weighted average power problem: introduce
a weighting function, say A (d) for the values of d € D and use the mixture
density Ho n : Xo ~ [ fx,(xs, ' (d))dA (d) as the density under the null.
This yields a simple null hypothesis (that is, a single probability density fo:
the data), so the best test is again given by the likelihood ratio. However, while
the resulting test will control the probability of a false null rejection on aver-
age over the values of d with d drawn from A, it won’t necessarily control the
rejection probability for all values of d allowed under Hy; that is, the test may
not have the correct size. But, because any test that controls the null rejection
probability for all values of d automatically controls the rejection frequency
on average over d, any test with size o under Hy is also a feasible size o under
under Hy, A, so it must have power less than or equal to the power-maximizing
test for Hy o . Thus, if a distribution A can be found that does control size tor
all d, the resulting likelihood ratio test for Hy 4 is guaranteed to be the optimal
test for Hy. Such a A is called a “least favorable distribution” (LFD). In some
problems, least favorable distributions can be found by clever reasoning (sce
Lehmann and Romano, 2005 for examples), but this is the exception rather
than the rule. Numerical methods can alternatively be used to approximate the
LFD (see Elliott, Miiller, and Watson, 2015 for discussion and examples), and
we will utilize that approach here.
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With this background out of the way, we can now return to the problem
of determining the value of aix(lz). We do this in the I(d) model for persis-
tence, and allow d to take on any value between —0.4 to 1.4. The weighting in
the WAP criterion is uniform on d, and, conditional on d, sets the alternative
covariance matrix equal to I’y = I' (d) eV where U is uniformly distributed
on (-5, 5).!2 Figure 6 summarizes the resulting (pointwise in /i) 90% con-
fidence sets for oax (h) for i ranging from 15 to 70 years. For averages of
GDP growth rates computed over 20 years, the 90 percent confidence interval

12 The numerical work uses fine discrete grids for the I, and the approximate LFD.
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for a7 ranges from approximately 0.5 to 1.3 percentage points, and the range
shifts down somewhat (to 0.25 to 1.2 percentage points) for averages computed
over 60 years. The lower range of the confidence set essentially coincides with
the corresponding 1(0) confidence set (which only reflects uncertainty about
the value of the Tong-run variance of GDP growth), but the upper range is sub-
stantially larger than its 7(0) counterpart, reflecting that the data does not rule
out some non-/ (0) persistence. The confidence intervals for inflation indicate
both large and uncertain values for oat, reflecting the clearly larger persistence
in the series. The uncertainty about persistence in inflation leads to very wide
confidence intervals for averages computed over long samples.

4 INFERENCE EXAMPLES: MULTIPLE TIME SERIES

In this section we use the same structure and tools discussed in the last section
to study some inference problems involving multiple time series. Thus, now
let x; denote an 1 x 1 vector of time series and X j1 denote the n x I vec-
tor composed of the jth cosine transform for each of the n variables. Let X
denote a ¢ > n matrix with jth row given by X’ ... In the multivariate model,
the assumption of Section 2 about the large sample behavior of the partial sum
process becomes Yy Z,L':IIJ u; = G(+), where G is now an n x 1 Gaussian pro-
cess and Y7 is an n x n scaling matrix.!3 Using the argument from Section 2,
this implies 777 X7 = X with vec(X) ~ N (0, £). In this section we discuss
inference problems in the context of this limiting distribution. We first consider
the multivariate 7(0) model and inference about its key parameters. We then
relate these parameters to population properties of the trend projections, and
return to the empirical question of the relationship between the trend in GDP
and TFP growth rates discussed in the introduction. We end this section with a
discussion of inference in cointegrated models; these are characterized by lin-
ear combinations of the data that are 7(0) and other linear combinations that
are I(1).

4.1 Inference in the 7 (0) Model

In the multivariate 7(0) model x; = p +u,, we set Yy = T~1/2 1, and assume
- T . . .
=172 Z}:H u; = QUY2W(.), where Qis the n x n long-run covariance matrix
of uy and W is a n % 1 multivariate standard Wiener process. The covariance
matrix of vec (X) then becomes £ = Q ® [, so that Xj ~ ii.d. N, Q),
where X;. is the jth row of X.

Inference About 2. With ﬁXjr approximately i.i.d N'(0, ), standard
methods for i.i.d. multivariate normal samples (see, for instance, Anderson,

13 The scaling matrix Y7 replaces the scale factor T1™% of Section 2 to allow the partial sum
of linear combination of u, to converge at different rates, which occurs, for example, if the
elements of u; are cointegrated.
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1984) can be used to obtain inference. In particular, the limiting distribution
of the multivariate sum of squares is Wishart: SSXy = TXyXr = SSX =
X'X ~ Wy(Q,q), and Q = SSXy /q is the (low-frequency) MLE of Q.
This can be used directly for inference about the n x 1 parameter §2. Often
it will be more interesting to conduct inference about the scalar correlation
parameters pij = £2;/,/€2;;€2;. By the continuous mapping theorem, p;; =
Qij/\Quij; = SSXi; /,/SSXi; SSX ;. This limiting distribution is known
and is a function only of p;; and ¢ (see Anderson’s 1984 Theorem 4.2.2),
allowing the ready construction of confidence intervals for p; ; based on gj;.
For example, for the GDP and TFP growth rates, we obtain an equal-tailed 90
percent confidence interval for the low-frequency correlation of [0.28: 0.86].

Now partition x; into a scalar y, and ak x 1 vector z;, x; = (y;, z;)’ (so that
k = n — 1), with corresponding cosine transforms X jr = (Yjr, Z}T)’ and

A(5)-(5) b (3 %)
Zir Zj Qi  Q
A function of € of potential interest is the k x 1 vector 8 = Q'Q;,. Since
conditional on Z = (Zy,...,Z,), ¢; = Yj — Z;ﬂ is i.i.d N0, ¢?) with
a” = Qyy—Q ,:Q;zl 2.y, B is the population regression coefficient in a regres-
sionof Y;onZ;, j = 1,..., q. Substantively, Z},B provides the best predictor
of ¥; given Z, so it gauges how low-frequency variability in z, predicts corre-
sponding low-frequency variability of y,. The population R? of this regression
(that is, the square of the multiple correlation coefficient) is p? = 1 — g2/ Qy,
und it measures the fraction of the low-frequency variability in y, that can be
explained by the low-frequency variability in z,.!*

Aslongas k < g, inference about these regression parameters follow imme-
diately from standard small sample results for a linear regression with i.i.d.

normal errors:

q ! q
T = ZZJ'TZ;’T ZZjTYjT = f

=>

1
q q
— 7 .’- / 7 . .
=|2.%7 > ZjY;

q q
RSSy =T Y (Yjr — ZjBr)* = RSS = Y "(¥; = Z/§)*
Jj=1 j=1

14 Regressions like these using discrete Fourier transforms are familiar in the literature on band-
spectral regression (e.g., Engle, 1974). Much of the analysis presented here can be viewed as
versions of these methods for a narrow frequency band in the 1/ T neighborhood of zero.
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with RSS /o? ~ X(?—k’ the standard error of the regression is (}.12. =
RSSy /(g — k) = 62 = RSS /(q — k), the total sum of squares iy

— q 2 ! _ 5 2, e OTEC] R
T§ST = TY iaVr = ’ISSO_ > =1 Y; and the regression R* i
Ry = 1 —RS8S7/TSSy = R* = | — RSS/TSS. By standard argu-
ments (e.g., Anderson, 1984 section 4.4.3), the distribution of R? depends

2 ~ ~ o .

only on p~ and ¢, so that a confidence set for p~ is readily computed
from R?. Furthermore, with S; = c},‘;‘(q“lTZ(;:l Z,-r,vzj.,,,)-’ = § =
G2(q 1 Z(j:] ZjZ;.)“l, inference about B can be performed by the usual
F-statistic F = q(Br — BYS7'(Br — B) = Fr gt (With F,,, the central
F-distribution with n and m degrees of freedom in the numerator and denom-
inator, respectively). For scalar elements of 8, 8;, usual t-statistic inference i

applicable: \/5(,{377 - ;6)/\/3'77,- = ﬁ(ﬁ,- - ,8)/‘/3‘,-,- ~Student-t,.
Inference About 1. Let ¥ = (x,..., X,)" be the n x 1 vector of sample
means. In exact analogy to the derivations of Section 3.1, we now have

- /
T vec ( (x}—(—]:u) ) = N(0,Q® Ig41)
so that in large samples, /T ((¥ — ), X175 Xo7s -+, Xgr) ~ iid N, Q).
Thus, as previously suggested by Miiller (2004), Hotelling’s (1931) T2 statistic
T(x- u)’fz;l xX—pn) = ﬁ% Fy q+1—n provides a basis for inference about
. Figure 7 shows 67 percent and 90 percent confidence ellipses for the average
growth rates of TFP and GDP based on the 72 statistic.

Interpreting Elements of Q in Terms of Time-Domain Projections: Fig-
ure 2 plotted low-frequency trends for GDP and TFP growth rates, and the
two series appear to be highly correlated. Figure 8 plots the cosine trans-
forms of the two series which are also highly correlated. These are closel)
related. Denoting the two series by y, (GDP) and z, (TFP), the projections
are §i = § 4+ YpW((t - 1/2)/T) and 3, = % + ZpW((t = 1/2)/T) 50

3L 67% confidonce ellipse

90% confidence ollipse

TFP
Figure 7 Joint Confidence Sets for Mean GDP and TFP Growth
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7! ')_:,[_l (Z =20 — ) = Z3.Y7. Thus, the variability and covariability of

the projection sample paths, (37, 7;), are determined by the cosine transforms
(Yr, Zy) and the sample means (y, 7). Consider the projection sample path of
yi, centered at puy, and expressed as a fraction s of the sample, §,7| — Hy.
Then, from Section 2, T'2(§.7r) — 1y) = py() = Yo + Y'W(), and
similarly for z,. Thus, the large-sample variability and covariability of the pro-
jections correspond to the variability and covariability of X = (X, X’)’ and

Y = (Yy, Y'Y, For example, E [fol py(s)zds] = E[t(YY)] = (q + DQyy.

I [_/;)1 pz(s)?'ds] =(q + 1)Q,;,and E [fol Py (5) pz () ds] = (g + 1)Qy-.

Thus, py, = Qy;/,/yyQ;, is alternatively interpreted as the population
correlation between the low-frequency trends py(s) and p,(s), averaged over
thz sample fraction s, Correspondingly, the regression coefficient g = Q;l Ry
is the population regression coefficient of a continuous time regression of
Py (*) on p, {-). The conditionally mean zero error function in this regression,

pe(-) = py (-} = Bp; (), is the part of the variation of p,(-) that is indepen-
dent of p, (-). Also, the sample correlation coefficient Py: = Q).Z/ 5*7.},),52::
is recognized as the sample correlation between the projections §; and %,
1 = 1,..., T, and the sample regression coefficient S can alternatively be
computed by a linear regression of ¥, on z, and a constant «.

Table 3 shows the results from the OLS regression of the cosine transforms
of the growth rate of GDP onto the growth rate of TFP. The OLS estimate of B
is 0.88, suggesting that a trend increase in the TFP growth rate of 15 leads to a
0.88% increase in the trend growth rate of GDP. However, this estimate is based
on only 12 observations, and the 90% confidence interval for 8 ranges from
0.38 10 1.39.15 The regression R? is roughly 50%, and the 90% confidence
interval for the correlation of the GDP and TFP trends ranges from 0.31 10 0.86,

15 To put these values in perspective, recall that the standard neoclassical model, which exhibits
balanced growth, implies that a permanent one percentage point increase in TFP leads 10 a
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Table 3 OLS regression of cosine transform of GDP growth
rates on TFP growth rates

Statistic

Sample size (q) 12

B 0.88

se(B) 0.28
t-statistic 3.16

90% confidence interval for 8 [0.38;1.39]
Standard error (&) 0.22

R? 0.48

90% confidence interval for /)2 [0.09;0.75]

Notes: The 90% confidence interval tor 8 is computed using the Student-¢ distri-
bution with 11 degrees of freedom. The 90% confidence interval for p? is based
on the 90% confidence interval for p, which in turn is computed from the exact
distribution of the sample correlation coefficient p as explained in the text,

ST U0 P00 OO RGP SR JUUPUS S SN

40 1950 1960 1970 1980 1990 2000 2010 2020
Date

Figure 9 GDP Growth Trend and Predicted Trend from Regression on TEP

Growth

suggesting that variations in TFP are important, but not the sole factor, behind
variation in trend per-capita GDP growth rates. Figure 9 plots the historical
trend growth of GDP, §,, along with the predicted values & -+ B3, from the
low-frequency linear regression. TFP explained slightly more than half of the
above average trend GDP growth in the 1960s and nearly all of the below and
then above average growth in 1990s, but explains little of low growth in the
late 1950s. More recently, the plot indicates that TFP growth played only a
small role in the slower than average growth in GDP over the past decade.'®

£ = (1 — )1 percentage point long-run increase in GDP, where ¢ denotes the elasticity of
output with respect to capital. Thus g = 1.5if ¢ = 2/3.

15 These empirical results are sensitive to the population series used to construct the per-capita
values of real GDP. The data used here are from the US NIPA accounts (Table 7.1) which use
the total US population including armed forces overseas and the institutionalized population.
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4.2 Cointegration

In the general cointegration model there are n variables with different linear
combinations of the variables being integrated of different orders. The notation
for the general model can be taxing, but many insights can be gleaned from a
bivariate model with x; = [y, z,]', where y, and z, are scalar, z; ~ I(1) and
v; = yr — Bz; ~ 1(0). The partial sum process then satisfies

1= )
T2yl w2 i (oW1 (5) + (1 = p?)1/2W; (s))ds

TRy, < 01 Wi() )
=]

where Wy and W» are independent Wiener processes and the parameter p
denotes the long-run correlation between the 1(0) and I (1) components. Thus,
letting V= Yy — BZ¢, [TYV2Vy, T™V227) = [V, Z] with [V, Z') ~
N0, Z). Because v, ~ I(0) and z; ~ I(1), the covariance matrix T has the
partitioned form: Zyy = 0?l, £z = wiD,and Ty = wywap D2, where
D is the (1) covariance matrix defined in Section 2.

There are a variety of inference questions that arise in the cointegration
model, and several of these are straightforward to address using the low-
freuency transforms of the data.!” For example, one question asks whether
the cointegrating coefficient takes on a specific value, that is whether 8 = By.
Miiller and Watson (2013) take up this question using the low-frequency
framework. The idea is straightforward. Write Y7 —80Z7r = Vr —(8—80)Z7.
If B = Py, then the term involving Z7 is absent, but otherwise this com-
ponent is present. Thus, [TV2(Yr — BoZ7), T2 Zp] = [V + boZ, Z]
where by = T'(Bp — B). The covariance matrix of [(V + byZ), Z') is read-
ily computed and depends on bg. Thus, a hypothesis about the value of the
cointegrating coefficient, say 8 = fo or equivalently by = 0, can be tested
as a restriction on the covariance matrix. After imposing invariance restric-
tions, Miiller and Watson (2013) show that the scales w; and w3 can be set to
unity, so that p is the only remaining parameter, and develop an optimal test for
B = Po using a numerical approximation to the LFD as discussed in the last
section. Thus, as in the other inference examples in the low frequency setting,
optimal inference about cointegrating coefficients becomes a standard problem
involving the covariance matrix of a normal random vector,

Perhaps a more interesting question involves the cointegration model’s
assumption that z, follows an I (1) process. What if z, followed another per-
sistent process, perhaps one of the parametric processes described in the last
section? In the context of “efficient” regression inferences about 8, Elliott
(1998) showed that the 7(1) assumption was crucial in the sense that large

We have also carried out the analysis using the non-institutionalized civilian population over
the age of 16. This alternative population series produces per-capita values of GDP growth
more closely related to long-run movements in TFP; the regression yields § = 1.2, R? = 0.6,
and 90 percent confidence interval that includes values of f between 0.7 to 1.6.

17" Also see Bierens (1997) and Phillips (2005a, 2014) for related approaches.
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size distortions can arise if z; follows a LTUM instead of an exact /(1) pro-
cess. The low-frequency analysis outlined in the last paragraph is not immune
to Elliott’s critique: it uses the full covariance matrix for [(V + boZY,Z'), and
therefore utilizes the 1(1) property of z; (through the I (1) covariance matrix
D that appears in Xzz and Zy 7). Miiller and Watson (2013) study optimal
tests for B = By under alternative assumptions about the trend process. In par-
ticular, they show that if the z; process is unrestricted, then the (essentially)
most powerful test simply involves testing whether y, — foz; is 1 (0) using the
LFST test in (4), a solution to the Elliott critique originally proposed by Wright
(2000), although not in the low-frequency setting.'8

5 RELATIONSHIP TO SPECTRAL ANALYSIS

This section relates our method to spectral analysis. A first subsection dis~
cusses why one cannot simply use traditional spectral analysis inference tools
to answer questions about low-frequency variability. A second subsection
derives the limiting covariance matrix of the cosine transforms in terms ot
the spectral density of the underlying time series. A calculation shows that the
covariance matrix is fully determined by the shape of the spectral density close
to the origin, a function we call the “local-to-zero spectrum.”!? In the third sub-
section, we present a central limit theorem for low frequency transforms under
general forms of the local-to-zero spectrum.

51 Scarcity of Low-Frequency Information and its Extraction Using
Cosine Transforms

Scarcity of Low-Frequency Information. In traditional spectral analysis (see,
for instance, Priestley, 1981, or Brockwell and Davis, 1991), the periodogram
is the starting point to learn about the spectral properties of a time series. Figs
ure 10 plots the periodogram for quarterly GDP growth rates. The shaded
portion of the figure shows the frequencies corresponding to periods of 11
years or longer. A mere six periodogram ordinates fall into this low-frequency
region, and this count would remain unaltered if GDP growth was instead sam.
pled a1 the monthly or even weekly frequency. Intuitively, 67 years of daty
contain only limited information about components with periods of 11 years
or longer.

Traditional inference about the shape and value of the spectral density is
based on averaging periodogram ordinates. The asymptotics are driven by
an assumption that the spectrum is locally flat (that is, the spectrum is fixed

18 ‘The Miiller and Watson (2013) result on the near-optimality of the LEST test holds in the coin-
tegration mode! with a single cointegrating vector, If there are multiple cointegrating vectors
then it is possible to obtain more powerful tests even absent assumptions on the process for the
common stochastic trends.

19 This subsection largely tollows the development in Miiller and Watson (2016).
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Figure 10 Periodogram of GDP Growth Rates

and continuous), so that as the sample size grows, eventually there will be
an increasing number of relevant periodogram ordinates to estimate the value
of the spectral density at any given point. Under such asymptotics, Laws
of Large Numbers and Central Limit Theorems are applicable and enable
asywptotically normal inference.

But with the relevant number of periodogram ordinates as small as six, such
asymptotics do not provide good approximations. What is more, in any non-
1(0) medel, the spectrum has non-negligible curvature even within a O (71
band around zero, and this band contains a fixed number of periodogram ordi-
nates. FFor these reasons, the traditional inference tools of spectral analysis are
not directly applicable.

Extracting Low-Frequency Information Using Cosine Transforms. Do a
small number of cosine transforms do a good job at extracting the low-
frequency information that is contained in the sample data? One useful way to
answer this question is to consider a perfectly periodic time series of frequency
¢, x; = sin(pt + ) with phase shift § € [0, 7). Ideally, the low- -frequency
cosine transforms X7 would capture the entire variation of x, for 0 < ¢ < ¢
for small values of (/) and none of the variation if ¢ > ¢. In large samples, with
& = A/ T for fixed X, the corresponding R~ of a regression of x; on Wy is well
approximated by the R? of a continuous time regression of sin(As + ¢) on the
q » 1 cosine functions W(s) and a constant for s € [0, 1]. Figure 11 plots this
continuous time R? as a function of A for A = 127 and q = 12. While the R?
plot does not follow the ideal step function form, it still provides evidence that
the low-frequency cosine transforins do a reasonably good job at extracting the
low-frequency information of interest.?’

ol - . . y . P ~ . . .
20 Low-frequency Fourier transforms perform similarly well for extracting low-frequency varia-
. A ;" N . ol
tions. See Miiller and Watson (2008) for the corresponding R= plot.
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5.2 Local-to-Zero Spectra

Because ¥ is the limiting covariance matrix of the cosine transforms, which
in turn are weighted averages of the underlying series x;, the elements of &
depend on the autocovariances of the x-process. These, in turn, are linked 1o
spectrum of the process, and this makes it possible to express X as a function
of the spectrum. Because the cosine transforms extract low-frequency infor-
mation in x, it should not be surprising that it is the spectrum close to zero that
determines Z. The remainder of this subsection makes this explicit by showing
that 2 can be expressed in terms of the spectrum evaluated at frequencies in 2
O(T 1 neighborhood of frequency zero, a function we call the “local-to-zero
spectrum”.

Local-to-Zero Spectrum for a Stationary Process. Suppose that x; is a sta-
tionary process with spectral density fr(¢).2! Suppose that in the O(T-1)
neighborhood of the origin, the suitably scaled spectral density converges (in
an Ly sense)

TV fr(A/T) — S(0). (5)

For example, the FRM is traditionally defined by the assumption that fr(¢) is
proportional to ||~ for small ¢, so that (5) holds with x = % —dand S(X)
12724 More generally, the function S(2.) is the large sample limit of the shape
of the original spectrum f7 close to the origin, and we correspondingly refer
to it as the local-to-zero spectrum,

Now consider a weighted average of x;,

1 r
nr =/ g(s)xsry41ds = 7! E BTt Xt
0

t=1

- . . s , ~ t/T N s
for some Rxerr‘umn mtefgrable function g and Bro = T f(,/_'l)/T g(s)ds. Inlight
of (1), the cosine transforms are an example of 7. Recalling that the jth auto-
covariance of x; is given by f7 fr($)e™%/d¢, where i = /=T, we obtain
for the covariance between two such weighted averages, )‘)}. and r),zr:

2 N . . N g . v

2 The 7 subscript on fy accommodates “double-array” processes such as the LTUM in which
the AR(1) coefficient depends on T'. To ease notation, we omit the corresponding 7" subscript
on xy, = x; in this subsection.
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s=1 =1
_—
=773 ) & &7, Elvex)
s=1 1=1
T T n
=T Y &rs8t. | fr9)e” 0 dg
s=1 =1 -
x T T
=T | fr($) (Z g%_w“”’) (Z §%,,e“i¢’> d¢
- s=1 r=1
= T1—2K T fl()\r/T) T—-l ZY:[;;I L’UJ/T
T o T,s
,
(T—l Zg%‘le—m/r) dx
=1
00 1 . 1
- / S\ ( / g‘(s)e‘“ds> < / gz(s)e“k*‘ds) dh..
—00 0 0

(6)

Thus the limiting covariance matrix X depends on fr only through S (albeit
for —00 < A < 00, a point we return to below).

Local-to-Zero Pseudo-Spectrum. This calculation requires the spectral den-
sity of x; 1o exist. For some models, such as the /(1) model, only the spectral
density of Ax, is well defined, so a generalization of (6) to this more general
case is required. This is possible when the g-weights add to zero, that is when

1 . P .
fo g(s)ds = 0 (otherwise, if X doesn’t have a finite second moment, then
-, neither does np).

Let fa 7(¢) denote the spectral density of Ax,, and assume it has a local-
to-zero spectrum defined as

T3 fp 1(0/T) = Sa(A). (7)

I o ot T = _ -1 - .
With gy, = 1T ./(l/—l)/T g(s)ds and G, = T™! Zi:ll g7.1» summation by
parts yields 771 Z;T:1 8raXry = — ZZ:I GT,,AxT',, since GT,T+1 = 0.

Thus
T T

720-0 piplp2) = 7210 F [(Z G},J&g) <§: G ,_,Ax,>:|

§= =1

n,I‘ 'IV ~ . n T .
— 7*3——2!( / fA,T()v/’r) (T'-l Z G%v'sell,\'/T ><7v—-l Z G:';“,(f_l)"/T) d)»
T
t=1

s=1
s=1

-~
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0 1 ) 1 )
— / NS, / G'(s)e™ds / GA(s)e Mds | dr = p1?
0

- 0
where G(s) = fo’ g(r)dr. Furthermore, by integration by parts and G(1) = 0,
fol G(s)eMds = — 01 g(s)e™Sds/(ir), so that

00 3 1 )
y12 :/ SANEA) (/ gl (9)eMds </ g2 ()e™H5d )(l).. (8)
e 22 0 0

Thus, when fol g (s)ds = ]()] g(s)ds = 0, equation (8) generalizes (6): if
the svectral density of x, is well defined, then fr(¢)|1 — e = Sr.a),
and (5) and (7) are equivalent, since T2|1 — e™*/ T2 — 32 50 that Sy (1) =
5(3)2%. On the other hand, if the spectral density of x, does not exist, then
frid) = fr.a(@)/]1 —e~]? suitably defines a “pseudo spectrum” of x, with
local-to-zero limit S(A) = Sa (1)/A%, so (8) still applies.

X as a Weighted Average of S(X). Several features of X follow from the
representation (8). Since § is an even function and g! and g? are real val-
ued, 12 can be rewritten as y'2 = 2 77 S()w'(W)dA, where w'?() =

{e[(f”l g! ()s')e”""dy) (j;)l ,g%s)e“”’%is)]. Elements of ¥ are thus equal to a

weighted average of the local-to-zero spectrum S. With gl (s) = V2 cos(m 7s)
and g%(s) = +/2cos(mks), a calculation shows that w!2(1) = wjr(d) =0
for 1 < jk < ¢gand j+k odd, so that E[X;X;] = O for all odd j + &,
mdcpemknt of the local-to-zero spectrum S. With X the suitably scaled limit
of the sample mean £ (so that g(s) = 1), this holds forall j,k =0,1,2....

Figure 12 plots w; (-) for selected values of j and k. The figure dis-
plays the weights w; x corresponding to the covariance matrix of the vector
(Xg, X1, X2, X3, X10, X11, X12)’, organized into a symmetric matrix of nine
panels corresponding to Xg, (X1, X2, X3)" and (X9, X11, X12). The weights
for the variances w;, ; are shown in bold and the weights for the covariances
Wik, j # k are shown as thin curves. A calculation shows that covariance
weights wjx, j # k, integrate to zero, which implies that for a flat local-
to-zero spectrum S, ¥ is diagonal. As can be seen from the panels on the
diagonal, the variance of X ; is mostly determined by the values of S in the
interval j % 2. Further, as long as S is somewhat smooth, the correlation
between X; and Xy is very close to zero for | j — k| large. For X, j > 0, the
weights w; ; put zero mass on A = 0; it is this feature that makes it possible
for X to be well defined even if S(A) is not integrable, as is the case if fr is
only a “pseudo-spectrum.” In contrast, because fol g(s)ds # 0 for Xg, therc
is positive weight placed on L = 0, so the variance of X¢ will not exist for
processes such as the 1(1) model.

Since the local-to-zero spectrum determines %, S is the key property of
the underlying process x, for the purposes of “low-frequency econometrics.”
It is instructive to revisit the three benchmark models LTUM, LLM and FRM
introduced in Section 3.2 from this perspective. As already noted above, the
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Figure 12 Weights on Local-to-Zero Spectrum for Covariance Matrix of
(X0, X1, X2, X3, X10, X11, X12)

FRM model has a (pseudo-) spectrum proportional to |¢|~2¢ for ¢ close to
zero, so that S(L) o« |17, —1/2 < d < 3/2. In particular S is constant for
the 7(0) model and it is proportional to A2 for the (1) model. This implies
that the local-to-zero spectrum of the LLM satisfies S(1) o b? 4 A2, Finally,
in the LTUM, a straightforward calculation shows that S(1) o 1/(A% + ¢2).
(Note that (b, ¢) — (00, 00) and (b, ¢) — (0, 0) recover the 7(0) and 1(1)
model, respectively). Figure 13 plots the logarithm of the local-to-zero spectra
of the three benchmark models for selected values of b, ¢ and d, and scale
normalised so that S(6m) = 1.

Choicé of q. The x-axes in Figures 11-13 are usefully thought of zooming
in on the shaded area in the periodogram plot of Figure 10: in terms of the
original time series, local-to-zero frequencies of, say, |A| < 127 correspond to
cycles of periodicity 7'/6. Thus, with 66 years worth of data (of any sampling
frequency), the shape of the spectrum for frequencies below 11 year cycles
more or less determines the properties of the cosine transforms for g = 12.
In the context of a specific model of low-frequency variability, such as the
1(0) or I(1) model, or parametric families such as the FRM, LLM or LTUM,
the choice of ¢ then governs the frequencies for which the model’s implica-
tions are exploited for inference. The choice of ¢ is thus a trade-off between
robustness and efficiency: a large g enables more powerful inference, as more
cosine transforms are used to learn about model parameters of interest, but a
large g also increases the danger of relying on a misspecified model for this
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Figure 13 Local-to-Zero Log-Spectra of some Benchmark Models of Low,.
Frequency Variability

inference, as the low frequency model must accurately describe the spectruy,
over a wider frequency band. Roughly speaking, the low-frequency model i
fit to the ¢ observations Xy, which suggests that in general, the degree of
misspecification is a function of ¢, without any obvious relationship to the
underlying sample size or time span. The choice of ¢ then amounts to a regulam-
ity assumption about the properties of the underlying data (relative to the modg]
of low-frequency variability) that makes inference possible.?? For instancy,
conducting inference about ¢ in the context of the 7(0) model with ¢ = 12
and 66 years of data implicitly assumes that the spectrum is approximately flig
over all frequencies corresponding to cycles of 11 years or more.

Multivariate Local-to-Zero Spectra. As a final generalization of the con-
nection between the second moments of weighted averages and the spectrum
of the underlying series, consider now the case where x; is a n x 1 vee-
tor. Its spectral density then is a n x n Hermitian matrix valued function
fr{e). Assume that for some n x n matrix Yr, TYr fr(A/T)Y; — S(1),
Lc[ r]"I = TYr f()l g;i(s‘)’rL\7'J+|(18' = Ty ZL] gf',flx, for i = 1,2, where

(0. 1] — B" and g g,, , = Tf(r 18 i(s)ds. Then proceeding as for (6)
/mlds

x 1 . !
E[’?%‘ﬂ%v]—’f /Ogl(s)e‘)""(ls S(A) /Og (s)e™ M ds dx,

-0

22 Without additionat strong cross-frequencies restrictions, it is not possible to systematically
select the appropriate ¢ from data: if one insists on correct inference whenever the crucial
central limit theorem (2) holds for some conservatively small ¢g, then no data dependent rule
for selecting g > gp can improve on inference that simply uses ¢ = go. See Miiller (2011),
especially page 414, for a formal discussion.
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andif 737 fa 7 (1/T)Y) — Sa()) and j;)‘ gl (s)ds = fO‘ g2(s)ds = 0, then
also

o [l s\ Sat [ ! .
E[n}.n%]—-)[ / gl (s)e™ds Ag) / g (s)e~ ™ ds | da.
—00 \JoO A 0

53 A Central Limit Theorem

The inference results presented in Sections 3 and 4 all depend crucially on the
large sample Gaussianity of the suitably scaled cosine transform X7, and not
just on the value of the limiting covariance matrix Z. In Section 2, we provided
an argument for this asymptotic normality based on existing results about the
large sample behavior of the partial sum process for some benchmark models.
The last subsection identified the local-to-zero spectrum S as the key feature
of x; that determines the asymptotic covariance matrix. We now present a cor-
responding vector central limit theorem that takes the local-to-zero behavior
of the spzctral density function as its starting point and is applicable to gen-
eral weighted averages T'1/2 _[0] g(s) x7,|y7j4+1ds. Miiller and Watson (2016)
derive a corresponding scalar CLT for weighted averages with weights that
add to zero, f()l g(s)ds = 0.

g o0 .
I'heorem 1 Letxy, =3 [0 . CT.sE—s, Wherecr s arenxnandg; isnx 1.
Suppose thar

(i) {e/. A1} is a ma:‘tingale difference sequence with Elgg] = %, I,
invertible, sup, Ellle: 1128 < oo for some § > 0, and

E”E[fl&; = Ze|Fromlll < &m 9

Sfor some sequence &, — 0.

(ii) For every € > O the exists an integer L. > 0 such that
Hmsupy o, T 372, oy (T supjgsy ||ch‘-H)2 <e.

(iii) 322 _ . ller.s| < oo (but not necessarily uniformly in T ). The spectral
density of xr,, thus exists; denote it by fr . [—x, 7] — H, where H is the
space of n x n Hermitian matrices.

(iv.a) Assume that there exists a function § : R > H such that
j;)l NS |d) < o0, f|°° HS()|IA~2d) < 00 and for all fixed K,

K A
/0 12 G2 = SO = 0. (10)

(iv.D) For every diverging sequence Kt — oo

bid nT
7! / 1 fr()llp~2dp = / N/ DA 2dr = 0. (1)
Kp/T Kr
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(iv.c)

T N TI'T
T—W/ ) W' e~ dy = 7'*‘/2/1 WSS T a0,
yr
(12)

(v) Each component of the function g : [0, 1] = R is of bounded varigtion.

Then
1 0 | !
T”Z/ g(s)/xT,L_,-7'J+1(/S=>N 0,/ /et)“sg(s)ds
0 —00 0
1 .
*xS(}) /Oe“‘)“"‘g(s)ds dA). (13)

The proof of Theorem 1 is in Appendix A.

The scaling of x7, in the theorem is such that fr(1/T) converges to the
local-to-zero spectrum without any additional scaling by a power of 7' (so
relative to the discussion in Section 5.2, x7, in Theorem 1 is multiplied by
T2 or T2y in the vector case).

To better understand the role of assumptions (ii) and (iii), consider some
leading examples for scalar series, n = 1. Suppose first that X7, 18 causal
and weakly dependent with exponentially decaying cr g, |c1.5] < Coe=C1% for
some Cy, Cy > 0, as would arise in causal and invertible ARMA models of
any fixed and finite order. Then 771372, . (T QU |CT_3|)2 — 0 for
any L > 0, S(A) is constant and equal to the long-run variance of x, divided
by 27, and (11) and (12) hold, since f7 is bounded, f,?j A72d) - 0 for any
Ky = coand T-1/2 f;ﬂT AldA =T In(xT) — 0.

Second, suppose x7, is fractionally integrated with parameter ¢ ¢
(=1/2,1/2). With xr, scaled by T7¢, ¢, =~ CoT 959! o that
Tt T (Tsuple |C7',sl)2 — Cg J17 5247245, which can be made
arbitrarily small by choosing L large. Further, for ¢ close to zero.

frig) == (,‘(2)(¢T)“2", so that S(A) = (2n)_‘C5A"2‘1. Under suit-
able assumptions about higher frequency propcrties'of xrs, (11) and
(12) hold, since 7' [ L @T) g 2dp = [ela=2=200 - ¢

and 7712 [ (T)~ ¢~ 1dg = T-V2 [FTa~d=lapn = T-124-1(1 -
(mT)~%) — 0. For instance, even integrable poles in fr at frequencies other
than zero can be accommodated.

Third, suppose x7, is an AR(1) process with local-to-unity coefficient
pr = 1 —¢/T and innovation variance equal to 7}, Then ¢y ; = 7! Jo
s > 0. Thus 7! ey (T SUJE lc'”[)2 - f1°° e~ ds, which can be
made arbitrarily small by choosing L large. Further, fr(¢) = (27)~'T~2/|1—
pre~|%, which is seen to satisfy (10) with S(A) = (27)~! (32 + ¢
Conditions (11) and (12) also hold in this example, since f7(¢) < (27)~ L.
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Corresponding central limit theorems for a vector of weighted averages of
one or multiple time series follow readily from Theorem 1 by invoking the
Cramer-Wold device,

For completeness, we also state the corresponding result for weights that

add up to zero, which only requires the existence of the spectral density of the
3

first differences.??
Corollary ¥ Let Ayr, = x7,, where xr 1 is as in Theorem 1. Assume that g :
[0, 1] = B satisfies fol g(s)ds = 0. Suppose that in addition to assumptions
(i)=(iii} and (v) of Theorem 1

(iv.a)’ There exists a function S : R +— H such thar fol [[S()]dr < oo,
I NSGINAT4dA < oo and for all fixed K,

K A

(iv.b) For every diverging sequence K — 0o

P nT
'1'-3/ T|1f7~(</))||¢"4d¢ =/K ILfr O/ TN *d) — 0.
T

K/

(ivc)
b3 rtT

32 / W fr @~ 2dg = T2 / Lfr (/T2 72dn — 0.
/7T 1

oy

en

-0

1 o0 1 !
’1‘”‘/2/ g6 yr.1sT01ds 2 N 0,/ / e‘“g(s)ds)
o 0

S L
x )E7) /e““g(s)ds da
- 0

With fr (@) = fr@)/|l — (3’“i¢’|2 the pseudo-spectrum of yr, and
Sy(A) = S()/ 22, the convergence in (14) is equivalent to

K X
/] Hf'r‘y(7) - SyMldr — 0

for all fixed K, so that the corollary proves a CLT with limiting variance
. ’ .
ffooo (fol e‘“g(s)ds) Sy(x) (fol e"“)"‘g(s)ds) dh, a function of the weights

3 The corollary corrects two inaccuracies in the statement of Theorem 1 of Miiller and Watson
(2010): Z?O:_oo lleg sl < o0 (and not Z?i._oc HCT'XHZ < 00) is necessary for the spectral
density of Ayr; to exist, and the local-to-zero spectral density S of Ayr, (corresponding to
w*S in Theorem 1 of Miiller and Watson, 2016) does not need to be integrable on R, but the
assumption (iv.a) of Theorem 1 above suffices.
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g and the local-to-zero pseudo-spectrum Sy. The relatively weaker assump-
tions in (iv) accommodate potential overdifferencing when y; is, say, 1(d)
with d € (—1/2, 1/2), so that for a scalar series, the local-to-zero spectrum of
xr = Ay, S(0) o« 224D s increasing in A.

6 CONCLUDING REMARKS

Inference about low-frequency phenomena is challenging because of the
scarcity of corresponding sampling information. We suggest extracting this
information by computing ¢ trigonometrically weighted averages of the time
series of interest. We then apply an asymptotic framework that explicitly
accounts for the scarcity by keeping the number ¢ fixed, so that in the limit,
the inference problem becomes a small sample problem involving ¢ Gaus-
sian variables. In many instances, this small sample problem is readily solved
by classic results about inference in small Gaussian samples. In other cases,
one can apply analytical or numerical approaches to derive powerful inference
from first principles.

The results presented here did not allow for a deterministic time trend in the
x; process. One approach to dealing with deterministic trends is to use infer-
ence methods that are unaffected by their presence. Alternatively, for example
in the context of measuring the covariability of multiple time series, one might
model the presence of common time trends. In either case, it is straightfor-
ward to isolate the deterministic trend component by using a suitable set of
¢ weight functions, where one is equal to the (demeaned) trend (and whose
value is potentially ignored in the subsequent analysis), and the other g — 1
trigonometric weights are orthogonal to both a constant and a time trend. One
such set of weights is derived in Miiller and Watson (2008).

The results presented here were also based on the large sample Gaussianity
of the ¢ weighted averages due to a central limit theorem. The key mecha-
nisms of the approach, however, can be used to deduce a non-Gaussian limit
distribution after suitably adjusting the solution of the now non-Gaussian limit
problem. For example, consider a stochastic volatility model for the scalar
series x;, where the volatility process is, say, local-to-unity. Conditional on the
volatility path, the cosine transforms have a Gaussian limit, with a covariance
matrix that depends on the realization of the volatility path. The uncondi-
tional distribution thus becomes a mixture of normals, and the corresponding
small sample problem becomes inference about the parameters of this normal
mixture.

More generally, we believe our approach to low-frequency econometrics
to be useful for issues beyond those discussed here. For instance, in Miiller
and Watson (2016), we use this framework to derive predictive sets for very
long-run predictions that are valid for a wide range of persistent processes.
We are currently working on inference about the degree of covariability of
potentially non-/(0) series. And it would also be of great interest to connect the
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low-frequency econometrics approach more directly with structural economic
models, such as asset pricing models that stress long-run uncertainty.

A PROOF OF THEOREM 1 AND COROLLARY 1

The proof of Theorem 1 is based on the following Lemmas. Without loss of
generality, let || - || denote the spectral norm.

Lemma 1 (i) Under assumption (v) of Theorem 1, there exists C < o0
such that (i.a) SUpgzyer.r (1 Yty €8l — Co™1) < 0 and (ib)
sup; (1 fiy e g(s)ds|| — CA~1) < 0.

(i) Under assumptions of Corollary 1, with G(s) = j()’ g(rYdr, there exists
= o0 such that (i.a) Supgpx 7| Z,l:, e‘“’”G(’,I;.])H —CT % <0
and (ib) sup,.o (Il fi} € G(s)ds|| — Cr72) < 0.

Proof (ia)Letr; =3y & e = (' — 1)/(1 — ¢'%). By summation by
parts,
T T
O it~ -~ ~ ~
DMy =rrgry — Z"!—I(ST.I —~ &71.1-1)
=1 =1

S T
=1 iem ((ew, = Dgrr - Zl(ew’('"” - D@1, — §7‘.:~1)>
=
withrg = g7, = 0.For0 < ¢ <, e (1—¢'?)~ 1| = 2sin(p/2))~! < 1/¢.
Furthermore, lim supy_, o, Z;I=1 Her.: — &r.i-1l] < 00, since g is of bounded
variation, and sup,, , et — 1| < 2.
(ib) Let R(s) = [ye™du = il — ™)/ By Riemann-Sticltjes
integration by parts,

1 1
/ e g(s)ds = R(1)g(1) — f R(s)dg(s)
0 0

. ] .
= 27N - e‘)‘)g(l) —/ (1 —¢")de(s)]
0

and the Riemann-Stieltjes integral with respect to dg exists, since g is of
bounded variation. The result now follows from sup; ge,<p 11 ~ €] < 2.

(ii.a) By summation by parts and G(1) = G(0) =0,
T f—1 T

> G() = = Loy
t=1 =1

i T
e (bt ~
— % T 1 Zel(f)tg,r‘r
1=1
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and the result follows from part (i.a) and lei‘f’(l — ei"s)‘1 | = @sin(¢p/2))! <

1/¢.
(ii.b) By integration by parts, i1 fol eMG(s)ds = — fol e g(s)ds, and the
result follows from part (i.b). 0

Lemma2 o7 = Var[T~!/2 ZLI 8y x4l = o?=[% (fol e“‘“g(s)ds)’
S0 (fy e g(s)ds ) d.

Proof We first show that o2 exists. For K > 0, define

K 1 ! 1
ai(K) = /K (/0 e‘)““g(s)ds) S (/0 e”“"g(s)ds) dX

so that we can write o2 :1 Ugo(l) + (0% — 0'020(1)). Then 030(1) exists by
assumption (iv.a), since |} fo e‘)""g(s)(lsll < SUPp<s<1 g ()] < oo (bounded
variation implies boundedness), and

el o 0 1 H 2
1);'|U" — o] Sf / e g(s)ds
1 0

2 [,
< c—/ ATHIS()[1dA < oo (15)
1

HS)IdA

by assumption (iv.a), where the second inequality follows from Lemma 1 (i.b).
Let I'7()) = Elxr xy, ;1= J7. € fr(g)dgp. We find

T
2 pr— ~ - N
of =T E gr.Tr — jér,;
Jil=1

T r '
=771 ) &y ( / e"””*”fr(«md¢) gr.j

jul=1 -

T r ! T .
= ’I‘“‘/ ( e“”'ér,z) Jr(@#) (Ze_‘“mg’r,r) d¢
T \r=1

=1

- T ) ' 4 5 T ]
:[ (T—l Z(-’U'I/TE’T,I> fT(?) (T—l Ze_l)‘t“ §7‘,r> d.
1=1 r=1

—nT

Now for any fixed K,

2 R i/T - A AL/ T =
o} (K) = f_ (1" 1Ze"~'”g7-,,) fr() (T—‘Ze"‘“”gr,,> dx (16)
. =]

K r=1
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K 1 ! 1
— (7020(1() = / (/ e“‘sg(x)ds> S(A) (/ e“i“g(s)ds> dx
—K 0 0

where the convergence follows from assumption (iv.a), and

T 1
-1 Z )J/lg7 = / el).,\‘g(s)ds
0
=1

< sup Hgmn/ [T — MUTIT=9) g

0=yl

1
< [ e gt0) = T g1
0

along with |1 —¢*| < |a| for any real a, so that sup;, . |1 — U7V T=9)| <
K)T = 0.
Thus, for any fixed K,
Sk(T) = 0}(K) — 02,(K) = 0.

Now for each T, define Ky as the largest integer K < T for which
SUpgr [8x(T")| < 1/K (and zero if no such K exists). Note that §x (T) — 0
for all fixed K implies that K7 — 00, and by construction, also 8k, (T) — 0.
Thus

of — 0% =8k, (T) + (07 — a7 (K1) — (62 — 02 (K1)

But
) 2 1 [ d i
Yot — oK)l < T~ f Fr@) - |3 .| d¢
KT/] r=1
i T i
<cir! f | fr(@)lp~*dr — 0 (17)
Kr/T
oy assumption (iv.b) and Lemma 1 (i.a), and similar to (15),
o0
3o —od (Kp)| < cz/ AN (18)
Kr
0 that from floo AISMNdA < oo in assumption (iv.a), fK AT2ISOY|d A
—» 0 by dominated convergence. O
Lemma 3 '1'“‘/2 sup,, || ijl ng,jCT,j—tH — 0.
Proof Recall that for any R” valued sequence {a;}° o0 and n x n valued

sequence {b; }°° oo with ij’:_oo ||aj|| < oo and Zj__mllbjll2 < 00,

Z].:_w b,_ L 7 A(p)*B(p)dg, where A(p) = Y2 aje” ¥ and

B((l)) Z]_wx) bje~ ¥/ and “*” denotes the conjugate transpose. Thus

2811”1 = Z A r+;°71=—_/ ¢ Gr(9)*Cr(¢)de

Jj=1 j=1-t
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where Cr(¢) = Y72 _socrje”? and Gr(p) = }:j’.:] e™Wigr i, so

that "' Gy (¢) = Z;;le‘i¢(j“’)§7", = Z'j’.';{_,e~i</'fg7~,,+,-. Now from
fr(®) = 2—‘};@7~(_¢)E£CT(¢)* (cf. Theorem 11.8.3 in Brockwell and Davis,
1991), it follows that ll(t‘yv((,b)ll < N2x|| fr)l - IIE,:III. We thus find

T ”
2|1 & jerjdl =11 | ¥ Gr@) Crig)dsl|
j=1 o

<V2rlZ N[ NG @I 1 fr @)y

-

so that it suffices to show that

T—I/Z/O NG7 (@)l - ||f'l'(¢)||1/2d¢ — 0.

Using |G ()|l < 31— I1&r.1l, we have

yr T 1
/0 WGT - WS () 2dp < T_IZH!?T,;‘H'/O L/ THIN P
j=1
T : 12
< T7') gl (L Hf"l'(k/T)Hdl>
j=1

1 1 1/2
“’/(; HS(S)HCIS'(/O HS(}»)H(U) < 00

where the convergence follows from assumption (iv.a) and straightforward
arguments. Furthermore, by Lemma 1 (i.a),

T2 /W NG @I ) dg < CT*‘“/ S @'~ dp —0
1T

(19
where the convergence follows from assumption (iv.c). O
Lemmad  Forevery € > 0 there exists a M > 0 such that
T MT T
S el —1/2 ~ -1/2 5
1{1{11 sup Var{7 / ng,’txr_,—T / Z ng,jCT,j—t &) <€
0 r=1 1=—MT \ j=I

e a2 e aepr—1/2 MT T = 1 = 7!
For this M, Oy = Varll / ,:_M7v(2j=187~'jcr,j—t> &gl =1
“MT T N 5 ticfioe 1im < 2
1=—MT (Z,‘:] g'r,jCT.j—t26“7‘,;’-;8T,j) satisfies limsupy_, o log 1 —
| <e.
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Proof We have

o0

T T

=172 ~/ ol o~ >

PR Erere= )\ g eri-n | e
=1 [=2=—00 J:]

so that, with ¢ = sup,_._, 118(s)}| < oo (bounded variation implies bounded-

vyl

ness),
T MT T
el —1/2 ~7 172 ~
le'[] / Zg.r‘rx-r'l -7 / Z ZgT.j(‘ij—f g,]
t=1 1=—MT j:l
-MT-1 T

r! g iC A -1
=1 Z Zg'r‘jcr'j_rEe(’T.j—rgT,j + 7

1=—00 j:]

xX)
~t 7 ~
Z 87,jCT.j—t BeCT, j (8T,

t=MT+1
00 T 2
~2 o —
<ZNZNTH D0 D dlerjmidl + ller )
t=MT+1 \ j=I
50 2
S4BT DT T sup el
(=MT+1 Islze-T
o0 2
=4Iz T Y T sup lersll
t=(M—1T+1 \ BIZI

which can be made smaller than € uniformly in T’ by choosing M large enough
via assumption (ii).

The second claim follows directly follows from this result and Lemma 2.

O

= . —1 ] /2 M T
Lemmas5  Forany large enough integer M > 0, (J'M‘IT[ s~ MT (Z

r=-MT \2oj=1
By jer i) & = N, D).

Proof By the second claim in Lemma 4 and Lemma 2, oyr =
O(1) and a_;;l,r = O(1). By Theorem 24.3 in Davidson (1994), it
thus suffices to show (a) 7~1/2 SUPj<r<r | Z?:I gf,‘jcr‘j_,g,w—m and (b)

2 :
1 MT T s T A T PR
T = mr [(Zj:l 81',,"?.1—181) =2 j=1 gr,jcl,J—rEecy;j_,gl,,]” 0.
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(a) is implied by the Lyapunov condition via Davidson’s (1994) Theorems
23.16 and 23.11. Thus, it suffices to show that

MT T 243
Z E||T7? Zng,jCT.j—t €y — 0.
t=~-MT j=I
Now
2
MT T 246
" -1/2 =/
Z E|\rY ZgT,jCT,J'—' &t
I=-MT J=1
Mr | 1 28
—1-58/2 s : 248
<TTR Y Y Ergery—|  EllledPY)
1=—MT || j=1
- 5
. 12+ —8)2 -
= (sup EQledP*°)) - T sup | > " g4 jerjs
! 1 j=1
mr | 2
] -
1=~MT j::l
r 5
=1 2 e - s
S B Gup EOledPHPD - [ 772 sup | > &5 jerjai]|| | - oy =0
! t X
Jj=1
2

where the last line uses ” ZJT:] 81,;CT,j—1

DS BTN & e
¢ j_,&r,j and the convergence follows from Lemma 3.
For (b), we apply Theorem 19.11 of Davidson (1994) with Davidson’s

2
. - ohocon ac YD — =1 T~ . - D D _
X and ¢ chosen as Xy, = 1 (stl gT'ch,J_,a,) —cp,and ¢, =

1T J ~ . . .
T‘ Zj:1 g,v'jcr,j_,EScT'j_,gT,j. Then X%’.,,/c% is uniformly integrable,
since

D T s 2
X'r,, 1= (ijl gT_jCT,j-fb"r)

D =T . T
Cyy Zj:] g']"j(‘T,j—-tEsCT,j._,gT,j

T ~ 2
Zj:] ”glr'ch,j—tH"”f?t”2

-1 2
TR S = Z - el
j=1 ||g7‘,jc7',j—t||

<Nz

almost surely, so that sup, E[(Xg,/c?, + DM2) < (S5 2 sup, E|e;
[12*] < co by assumption (i). Further,
MT

Z C%'),r = "1%1,'1‘ = 0(1)
1=—MT
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by Lemma 4, and

2
MT MT T -
D \2 _ p=2 A ;5
DR =T Y 1Y B jer i By @)
t==MT 1=—MT | j=1
T 2
8 =172 s
<HTell  sup T2 ) g0 ierjos
~MT=t<MT P
J=1
MT T
=1 ~/ L J ~
1 Z Z8'1‘,j‘7'.1—rESCT.,’—ngJ
1=—MT j=I
2
T |-
. 12N 5 2
= || Z¢]| M;EP<WT 1 /Zgr,,-cr.j—: Oy =0
- <1< j:l
where the convergence follows from Lemma 3. O

Proof of Theorem I: By Lemmas 2, 4 and 5, for large enough M,

T
- p— o _oMm,T OM,T
o1 Xy = ——Ar 4+ By
Z?’T.t T g A1 5 01
=1
where Ar = A0, 1), lim SUPT_, o0 E(B%) < € and limsupy_, {cff, =
o*| < €. Thus, by Slutzky’s Theorem, as € — 0, the desired convergence in
distribution follows. But € was arbitrary, which proves the Theorem. 0

Proof of Corollary 1:  Define G(s) = f(; g(r)dr. Then by summation by
parts and j()l g(s)ds = 0,

il

1 T
T-1/2 / g(S)_Y’I',LA\'TJ+1ds 737 ZgT.I.VT,!
0

t=]
L -1
= -T2 G(—)Ay;
Z ( T YAYT .
=1
! r—1
=-T712Y"G( X7
Z T X1
1=1
since 77! ‘;;11 gry = 0“—1)/7‘ g(s)ds = G(’—,}l). The proof now proceeds

analogously to the proof of Theorem 1, with —G(’—.;—l) replacing g7, through-
out. The weights G('—%l) are an order of magnitude smoother than gr,, as
formalized in the stronger inequalities of part (ii} of Lemma 1 compared to
part (i). The analogue of Lemma 2,
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t—1
T

T
o} = Var[T ™2 Y G(——)'xr,] = o?

r=1

50 1 ! 1
= / ( [ emG(s)ds> S(L) ( / e"‘“G(s)ds) dA,
—0 0 0

is proved just like Lemma 2, except that Lemma 1 part (ii) is employed .-
sharpen the analogue of the inequalities in (15), (17) and (18), so that t}h &
weaker assumptions (iv.a)” and (iv.bY are sufficient. Similarly, in the analog vz >
of Lemma 3, apply Lemma 1 part (ii.a) to the analogue of inequality (1 <
(where now Gr(¢) = — Z;:x e”i"’fG('—,;—l)) so that assumption (iv.c) is s 1™
ficient. With these modifications, proceeding as in the proof of Theorem: ¢

yields
172 L= * b ,
712 G(——)x7, =N 0,/ / e G(s)ds
g T t -0 0
l I
xS(A) / e MG (s)ds | dx
0
and the result follows from fol e“‘sg(s)ds = —iA fol eMG(s)ds using integray -
tion by parts, =
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