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Introduction

Asymptotically efficient tests for nonstandard problems

• Unit root/cointegration tests: Elliott, Rothenberg and Stock (1996), El-
liott (1999), Müller and Elliott (2003), Elliott, Jansson and Pesavento
(2005), Jansson (2005)

• Tests about cointegrating vector with local-to-unity stochastic trend:
Stock and Watson (1996), Jansson and Moreira (2006)

• Structural breaks: Nyblom (1989), Andrews and Ploberger, Elliott and
Müller (2006)

• Weak IV: Andrews, Moreira and Stock (2006, 2007)
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Standard Asymptotic Efficiency I

1. Consider first canonical parametric version of model, typically with
Gaussian i.i.d. disturbances

Unit Root Test: yt = ρyt−1 + εt, y0 = 0, εt ∼i.i.d.N (0, 1)
H0 : ρ = 1 against H1 : ρ = ρ1 < 1

2. Derive small sample efficient test in that canonical model

LRT = exp[−12(1− ρ1)(y
2
T −

P
(∆yt)

2)− 1
2(1− ρ1)

2P y2t−1]

3. Take limits of small sample efficient test against local alternatives

ρ = ρT = 1− θ/T

H0 : θ = 0 against H1 : θ = θ1 > 0

LRT Ã exp[−12θ1(Jθ(1)
2 − 1)− 1

2θ
2
1
R
Jθ(s)

2ds]

Jθ(s) =
R s
0 e
−θ(s−r)dW (r)
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Standard Asymptotic Efficiency II

4. Construct robustified version of test statistic to obtain correct coverage
also for non-canonical versions of the modeldLRT = exp[−12θ1(ĴT (1)2 − 1)− 1

2θ
2
1
R
ĴT (s)

2ds]

ĴT (·) = T−1/2ω̂−1T yb·Tc Ã Jθ(·)

End-product is test that

i. is asymptotically efficient in canonical model

ii. has same asymptotic rejection probabilities for all models where robustified
version yields same weak limits

whenever ω̂T and εt are such that T−1/2ω̂
−1
T yb·Tc Ã Jθ(·)

But: There could exist a test that is also efficient in the canonical model, with
higher asymptotic power against some non-canonical model
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Semiparametric Efficiency

• Model has infinitely dimensional nuisance parameter, such as distribution
of disturbance

• Well developed only for standard problem with locally asymptotic normal
likelihood ratios

• Jansson (2007)

— Unit root test for model yt = ρyt−1 + εt, where εt ∼ iidF (0, 1), and
F is nuisance parameter

— Semiparametric power envelope with F known

— Adaption only possible for symmetric F . Otherwise, still asymptotic
power gains overdLRT

⇒dLRT test asymptotically inadmissible in this set-up
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This Paper

1. For test of H0 : θ = θ0 against H1 : θ = θ1 on double-array data YT ∈
RnT , consider typical weak convergence XT = h(YT )Ã X ∼ P (θ)

XT = ĴT (·) = T−1/2ω̂−1T yT,b·Tc Ã X = Jθ(·)

2. Derive best test in limiting problem with X observed

L(X) = exp[−12θ1(X(1)
2 − 1)− 1

2θ
2
1
R
X(s)2ds] is RN-derivative

by Neyman-Pearson: reject for large values of L(X)

3. Robustness requirement: Tests in original problem must have correct as-
ymptotic rejection probability whenever XT Ã X ∼ P (θ0)

Robust unit root tests do not overreject whenever ĴT (·)ÃW (·)
further step in progression to weaker assumptions about disturbances

Stock (1994), White (2001), Breitung (2002), Davidson (2007) define

I(1) property in terms of T−1/2yT,b·Tc Ã ωW (·)
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Main Result

4. Asymptotically best robust test is optimal test in limiting problem, evalu-
ated at sample analogues

Rejecting for large values of

L(XT ) =
dLRT = exp[−12θ1ĴT ((1)2 − 1)− 1

2θ
2
1
R
ĴT (s)

2ds]

identical to ERS

⇒ For any test that has higher asymptotic power than best robust test, there
exists model with XT Ã P (θ0) where test overrejects asymptotically

there exists T−1/2ω̂−1T yT,b·Tc ÃW (·) for which Jansson’s (2007) test

has asymptotic rejection probability larger than nominal level
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Scope and Applications

• Generic result whenever null and alternative hypotheses induce weak con-
vergences. Very weak regularity conditions beyond a.e. continuity of best
test in limiting problem.

• General set-up allows for

— composite hypotheses

— additional restrictions on tests: unbiasedness, (conditional) similarity,
invariance

• Applications

— Broader sense of asymptotic efficiency of tests mentioned in introduc-
tory slide

— Müller and Watson (2007, 2008) and Ibragimov and Müller (2007) that
take weak convergence as a starting point
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Plan of Talk

1. Introduction

2. Set-up and Statement of Result

3. Heuristic Proof

4. Generalizations and Discussion

5. Applications: Weak IV, GMM Parameter Stability Test and t-statistic
Based Correlation Robust Inference

6. Conclusion
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Set-Up

• Suppose we observe double array YT ∈ RnT whose distribution FT (m, θ)

in model m depends on a parameter θ. We are interested in testing

H0 : θ = θ0 against H1 : θ = θ1.

• Consider function hT : RnT 7→ S, where S is a (complete and separable)
metric space. Let PT (m, θ) be the distribution ofXT = hT (YT ). Assume
that for the typical model m,

XT = hT (YT )Ã X ∼ P (θ)

where P (θ0) and P (θ1) are mutually absolutely continuous.

• Tests ϕT are RnT 7→ [0, 1] functions, so that ϕT (yT ) is the probability of
rejection conditional on observing YT = yT . Null and alternative rejection
probabilities are

R
ϕTdFT (m, θ0) and

R
ϕTdFT (m, θ1).
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Robustness and Limiting Problem

• A test is robust if it has correct asymptotic null rejection probability for
large set of models m.

Let M0 be the set of models m for which hT (YT ) Ã X with θ = θ0,
i.e. PT (m, θ0)Ã P (θ0). Then call a test is robust if

lim sup
T→∞

Z
ϕTdFT (m, θ0) ≤ α for all m ∈M0.

LetM1 be the set of models m for which PT (m, θ1)Ã P (θ1).

• Limiting problem

H
lp
0 : X ∼ P (θ0) against H

lp
1 : X ∼ P (θ1)

with tests ϕS : S 7→ [0, 1].

• Let L : S 7→ R be the Radon-Nikodym derivative L = dP (θ1)/dP (θ0).

By Neyman-Pearson the best test in the limiting problem, ϕ∗S, rejects for
large values of L.
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Main Result

Theorem: Suppose ϕ∗S : S 7→ [0, 1] is the best level α test of Hlp
0 against

H
lp
1 , and ϕ

∗
S is P (θ0) almost everywhere continuous. Then ϕ̂

∗
T : RnT 7→ [0, 1]

with ϕ̂∗T (yT ) = (ϕ
∗
S ◦ hT )(yT ) = ϕ∗S(XT ) satisfies

(i) limT→∞
R
ϕ̂∗TdFT (m, θ0) = α for all m ∈M0, and

limT→∞
R
ϕ̂∗TdFT (m, θ1) =

R
ϕ∗SdP (θ1) for all m ∈M1.

(ii) For any level α robust test ϕT : RnT 7→ [0, 1],

lim sup
T→∞

Z
ϕTdFT (m, θ1) ≤ lim

T→∞

Z
ϕ̂∗TdFT (m, θ1) =

Z
ϕ∗SdP (θ1)

for all m ∈M1.

Application to Unit Root testing:

• ERS’s test is asymptotically point optimal among all robust tests.

• Jansson’s (2007) semiparametric test is not robust.
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Heuristic Proof I

• Reconsider unit root testing problem, where

XT = ĴT (·) = T−1/2ω̂−1T yT,b·Tc Ã X = Jθ(·)

and in limiting problem with X observed, Neyman-Pearson test of H0 :
θ = 0 against H1 : θ = θ1 > 0 rejects for large values of

L(X) = exp[−12θ1(X(1)
2 − 1)− 1

2θ
2
1

Z
X(s)2ds]

• Idea of proof: For any XT ∼ QT Ã Jθ1(·), one can construct XT ∼
PT Ã J0(·) such that the best small sample test of

HT,0 : XT ∼ PT against HT,1 : XT ∼ QT

rejects for L(XT ). Robust tests must control asymptotic size under H0,T ,
and no test can have a better asymptotic level and power trade-off than a
sequence of small sample optimal tests.
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Heuristic Proof II

• For simplicity, pretend that 1L is bounded and continuous.

• LetQT be any given probability measure ofXT Ã Jθ1(·) ∼ Q. Construct
measure PT asZ

A
dPT = κ−1T

Z
A

1

L
dQT for all measurable A ⊂ RT

κT =
Z
1

L
dQT

where L : D[0,1] 7→ R is Radon-Nikodym derivative of Q with respect to
P (L = dQ/dP ). By construction dQT/dPT = κTL.

• Note that κT =
R 1
LdQT →

R 1
LdQ =

R 1
LLdP = 1. Also, for any

bounded and continuous function ϑ : D[0,1] 7→ R, PT satisfiesZ
ϑdPT = κ−1T

Z
ϑ

L
dQT →

Z
ϑ

L
dQ =

Z
ϑ

L
LdP =

Z
ϑdP

so that PT Ã J0(·) ∼ P .
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Generalizations

• Composite null and alternative hypothesis, using weighted average power
as criterion for efficiency of tests

• Additional restrictions on tests in limiting problem, with analogous restric-
tions in original problem:

⇒ Invariance, unbiasedness, (conditional) similarity

• Consistently estimable parameters that affect limiting distribution
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Discussion

• Complete class of tests in limiting problem that are continuous a.e., eval-
uated at sample analogues, form an "asymptotically essentially complete
class of robust tests".

• Appeal of efficiency property of depends on appropriateness of robustness
constraint

— Weak convergences as regularity condition. Much more natural in time
series context.

— Conservative. How sure are we about conventional primitive conditions,
such as mixing?

— Quality of small sample approximation.

• Construction of reasonable tests for complicated models.
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Low-Frequency Unit Root Tests

• Standard unit root test literature assumes T−1/2uT,b·Tc Ã ωJθ(·).

• Müller and Watson (2007) instead consider point-optimal scale invariant
unit root test under the strictly weaker assumption(

T−1/2
Z 1
0
ψl(s)uT,bsTcds

)q
l=1

Ã
(
ω
Z 1
0
ψl(s)Jθ(s)ds

)q
l=1

(1)

where ψl(s) =
√
2 cos(πls) and q is chosen so that the frequency of the

weight functions ψl, l = 1, · · · , q are below business cycle frequency for
the span of the data under study (so that q = 13 for data spanning 50
years).

• Results here imply that low-frequency unit root test is point-optimal among
all tests that controls asymptotic size whenever (1) holds with θ = 0.
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Robustified Efficient Test in Canonical Model I

• Consider the hypothesis test H0 : θ = θ0 against H1 : θ = θ1 in the
canonical model m∗, so that the best test rejects for large values of LRT

LRT = exp[−12(1− ρ1)(y
2
T −

P
(∆yt)

2)− 1
2(1− ρ1)

2P y2t−1]

• Write LRT = L(X∗T )+op(1), where L is a continuous function of X∗T =
h∗T (YT ), and X

∗
T Ã X with X ∼ P (θ). By CMT, LRT Ã L(X).

X∗T = T−1/2yb·Tc Ã X = Jθ(·)

L(x) = exp[−12θ1(x(1)
2 − 1)− 1

2θ
2
1
R
x(s)2ds]

• Robustified test is based on L(XT ), where XT Ã X ∼ P (θ) in many
models m of interest, including m∗

XT (·) = T−1/2ω̂−1T yb·Tc Ã Jθ(·)
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Robustified Efficient Test in Canonical Model II

• LeCam’s Third Lemma: If the models YT ∼ FT (m
∗, θ0) and YT ∼

FT (m
∗, θ1) are contiguous with likelihood ratio statistic LRT , and under

YT ∼ FT (m
∗, θ0), (LRT ,X∗T )Ã (L(X),X) withX ∼ P (θ0) and some

function L : S 7→ R, then under YT ∼ FT (m
∗, θ1), X∗T Ã X ∼ Q, and

the Radon-Nikodym derivative of Q with respect to P (θ0) is equal to L.

• In canonical alternative model YT ∼ FT (m
∗, θ1), X∗T Ã X ∼ P (θ1), so

that Q = P (θ1), and L(X) is best test in limiting problem.
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Comparison to Traditional Semiparametric
Efficiency via Limit of Experiments (TSE)

• Both approaches yield a semiparametric efficiency bound via consideration
of a simpler ’limit experiment’.

• But different focus and advantages
— TSE typically describes underlying models in terms of moment condi-
tions (and regularity to ensure weak convergence of the likelihood ratio
process), whereas this paper starts with weak convergence assumption
for particular function of h(YT ) to a parametric model

— TSE has many (often i.i.d.) observations of underlying model, whereas
in this paper, there is only one approximate parametric model for all
data YT , and an i.i.d. structure is not easily imposed

— TSE well developed and understood for models with LAN likelihood
ratio, whereas results here are straightforward to apply to nonstandard
testing problems
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Uniformity

• With M0 the set of all models where PT (m, θ0) Ã P (θ0), no uniform
claim is possible.

• For some sequence δT → 0, letMu
0(δ) be the set of models such that

∆(PT (m, θ0), P (θ0)) ≤ δT

where ∆ is a metric on the space of distributions on S which metrizes
weak convergence.

• For suitable choice of ∆ (such as the Prohorov metric), one can show that
under the conditions of Theorem 1

lim sup
T→∞

sup
m∈Mu

0(δ)

Z
ϕ̂∗TdFT (m, θ0) ≤ α. (2)

• Does not settle question of efficiency of ϕ̂∗T in class of tests that satisfy
(2). Paper provides limited result of asymptotic efficiency under stronger
smoothness assumptions on the limiting problem.
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Weak IV Regression I

• Structural and reduced form equation

y1,t = y2,tβ + ut,1

y2,t = z0tπ + vt,2 zt : k × 1

• Reduced form

y1,t = z0tπβ + vt,1

• AMS consider small sample efficient tests of

H0 : β = β0

for nonstochastic zt and vt = (v1,t, v2,t)
0 ∼i.i.d.N (0,Ω) with Ω known.

By sufficiency, tests may be restricted to functions of

TX
t=1

Ã
zty1,t
zty2,t

!
∼ N

ÃÃ
Szπβ
Szπ

!
,Ω⊗ Sz

!
, Sz =

TX
t=1

ztz
0
t
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Weak IV Regression II

• AMS derive weighted average power (WAP) maximizing similar tests that
are invariant to the group of transformations

{zt}Tt=1→ {Ozt}Tt=1 for any orthogonal matrix O.

• AMS then consider Staiger and Stock (1997) weak instrument asymptotics,
where π = T−1/2C for some fixed C

• AMS derive test that

1. maximizes WAP among all asymptotically invariant and asymptotically
similar tests when vt ∼i.i.d.N (0,Ω) independent of {zt}Tt=1

2. yields correct asymptotic null rejection probability under much broader
conditions, including heteroskedastic and autocorrelated vt
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Weak IV Regression III

• Typical weak convergence under weak IV asymptotics

D̂z = T−1
PT
t=1 ztz

0
t
p→ Dz Σ̂

p→ Σ

XT = T−1/2
PT
t=1

Ã
zty1,t
zty2,t

!
Ã X ∼ N

ÃÃ
DzCβ
DzC

!
,Σ

!

• In just-identified case (Dz a scalar), rely on AMS small sample result for
uniformly most powerful similar test in limiting problem (actually Moreira
(2001))

⇒ reject for large values of Anderson-Rubin statistic (b00XT )
2/b00Σ̂b0,

where b0 = (1,−β0)0

⇒ by results here, uniformly most asymptotically powerful similar robust
test

• In overidentified case, no general known solution for best limiting test
(AMS results apply only when Σ = Ω⊗Dz for some Ω)
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Weak IV Regression IV

• Robustness constraint is large, since weak convergence

T−1/2
TX
t=1

Ã
zty1,t
zty2,t

!
Ã N

ÃÃ
DzCβ
DzC

!
,Σ

!
can hold for many ’weird’ data generating processes.

• To rule out at least some ’weird’ DGPs, assume in addition

T−1/2
b·TcX
t=1

Ã
zty1,t
zty2,t

!
Ã G(·)

G(s) = s

Ã
DzCβ
DzC

!
+Σ1/2W (s)

Since G(1) is sufficient for (C, β), does not change best test in limiting
problem.
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GMM Stability Test I

• GMM framework with parameter β ∈ Rk. Parametrize

βT,t = β0 + T−1/2θ(t/T )

where θ ∈ Dk
[0,1] and θ(0) = 0.

Parameter stability test

H0 : θ = 0 against H1 : θ 6= 0.

• Let gT,t(β) ∈ Rp with p ≥ k be the sample moment condition for yT,t
evaluated at β. Under standard conditions

GT (·) = T−1/2
b·TcX
t=1

gT,t(β̂T )Ã G(·), ĤT
p→ H, V̂T

p→ V

G(s) = V 1/2W (s)− sH(H0V −1H)−1H0V −1/2W (1)

+H

ÃZ s

0
θ(l)dl− s

Z 1
0
θ(l)dl

!
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GMM Stability Test II

• Sowell (1996) derives WAP maximizing test in limiting problem (with G
assumed observed), that is ϕ∗S, and calls this test, evaluated at sample
analogues (that is, ϕ̂∗T ) an "optimal" test for structural change

• Counterexample to unqualified optimality:

— Let yT,t = β + θ(t/T ) + εt, where εt is i.i.d. with P (εt = −1) =
P (εt = 1) = 1/2

— Let ϕ∗∗T be the test that rejects whenever any one of {yT,t−yT,t−1}Tt=2
is not −2, 0 or 2

— Then ϕ∗∗T has level zero for any T ≥ 2 and asymptotic power equal to
one against any local alternative

Results here provide precise sense in which ϕ̂∗T is an asymptotically efficient
test
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t-statistic Based Correlation Robust Inference

• Problem of testing H0 : β = β0 where β is first element of k × 1 GMM
parameter θ from data set YT with correlations of largely unknown form.

• Partition data in q groups, estimate the model q times using data from
each group only, and assume that resulting estimators satisfy

{n1/2(β̂j − β0)}
q
j=1⇒ {Xj}qj=1 (3)

whereXj ∼ N (b, σ2j) independent ofXi for i 6= j, and b = n1/2(β−β0).

• Ibragimov and Müller (2007) show that usual 5% level t-test based on
{Xj}qj=1 is uniformly most powerful scale invariant test in limiting problem
H
lp
0 : b = 0 (using the result of Bakirov and Székely (2005) that this test

if of size 5% over {σ2j}
q
j=1).

• Results here imply that if there is a corresponding small sample scale invari-
ance group, then the 5% level t-test based on {β̂j}

q
j=1 is the asymptotically

most powerful scale invariant robust test relative to (3).
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Conclusion

• Alternative sense of asymptotic efficiency

1. for a number of tests that are efficient in canonical models

2. for nonstandard methods that start with weak convergence assumption

• Stringent robustness constraint
⇒ Most natural in time series context

• Asymptotic efficient robust tests are simply best tests of limiting problem,
evaluated at sample analogues
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