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Abstract

This paper considers the problem of constructing confidence sets for the date of a single break in a
linear time series regression. We establish analytically and by small sample simulation that the
current standard method in econometrics for constructing such confidence intervals has a coverage
rate far below nominal levels when breaks are of moderate magnitude. Given that breaks of
moderate magnitude are a theoretically and empirically relevant phenomenon, we proceed to develop
an appropriate alternative. We suggest constructing confidence sets by inverting a sequence of tests.
Each of the tests maintains a specific break date under the null hypothesis, and rejects when a break
occurs elsewhere. By inverting a certain variant of a locally best invariant test, we ensure that the
asymptotic critical value does not depend on the maintained break date. A valid confidence set can
hence be obtained by assessing which of the sequence of test statistics exceeds a single number.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is fairly common to find some form of structural instability in time series models. Tests
often reject (Stock and Watson, 1996) the stability of bivariate relationships between
macroeconomic series. Similar results have been established for data used in finance and
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international macroeconomics. Lettau and Ludvigson (2001) and Timmermann and Paye
(2004), for example, find instabilities in return forecasting models. The next step after
finding such instabilities is to document their form. In general, the answer to this question
is going to be the evolution of the unstable parameter over time. With the additional
assumption that the parameters change only once, the answer boils down to the time and
magnitude of the break. Arguably, the date of the break is typically of greater interest. This
paper examines a multiple regression model and considers inference about the date of a
single break in a subset of the coefficients.

Determining when parameters change is interesting for a number of reasons. First, this is
often an interesting question for economics in its own right. Having observed instability in
the mean of growth, we may well be interested in determining when this happened in order
to trace the causes of the change. Second, such results can be useful for forecasting. When
models are subject to a break, better forecasts will typically emerge from putting more
(or all) weight on observations after the break (Pesaran and Timmermann, 2002). Finally,
from a model building perspective, it is of obvious interest to determine the stable periods,
which are determined by the date of the break.

The literature on estimation and construction of confidence sets for break dates goes
back to Hinkley (1970), Hawkins (1977), Worsley (1979, 1986), Bhattacharya (1987) and
others—see the reviews by Zacks (1983), Stock (1994) and Bhattacharya (1994) for
additional discussion and references. The standard econometric method for constructing
confidence intervals for the date of breaks relies on work by Bai (1994), which is further
developed in Bai (1997a,b, 1999), Bai et al. (1998) and Bai and Perron (1998). For the
problem of a single break in a linear time series regression, the main reference is Bai
(1997b).

As is standard in time series econometrics, Bai (1997b) relies on asymptotic arguments to
justify his method of constructing confidence intervals for the date of a break. The aim of
any asymptotic argument is to provide useful small sample approximations. Specifically,
for the problem of dating breaks, one would want the asymptotic approximation to be
good for a wide range of plausible break magnitudes, such that confidence sets of the break
date have approximately correct coverage irrespective of the magnitude of the break.

The asymptotic analysis that underlies Bai’s (1994, 1997b) results involves a break of
shrinking magnitude, but at a rate that is slow enough such that for a large enough sample
size, reasonable tests for breaks will detect the presence of the break with probability close
to one. In other words, this asymptotic analysis focusses on the part of the parameter space
where the magnitude of the break is ‘large’ in the sense that p-values of tests for a break
converge to zero. Inference for the presence of a break becomes trivial for such a ‘large’
break, although the exact date of the break remains uncertain. In contrast, one might
speak of a ‘small’ break when both the presence and the date of the break are uncertain.
Analytically, a small break can be represented by an asymptotic analysis where the
magnitude of the break shrinks at a rate such that tests for a break have nontrivial power
that is strictly below one.

In many practical applications, breaks that are of interest are arguably not large in this
sense. After all, formal econometric tests for the presence of breaks are employed precisely
because there is uncertainty about the presence of a break. From an empirical point of
view, the observed p-values are often borderline significant; in the Stock and Watson
(1996) study, for instance, the QLR statistic investigated by Andrews (1993) rejects
stability of 76 US postwar macroeconomic series for 23 series at the 1% level, for an
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additional 11 series at the 5% level and for an additional 6 series at the 10% level. In a
similar vein, variations in the conduct of monetary policy that some argue are crucial to
understand the US postwar period are small enough that a debate has arisen as to both the
size and nature of the breaks and whether they are there at all. For example, Orphanides
(2004) argues that the relationships are quite stable. Clarida et al. (2000) argue that the
economic differences pre and post the Volcker chairmanship of the US Federal Reserve
Board are economically important although they did not test for the break. Boivin (2003)
finds based on tests and a robustness analysis that a fixed ‘“Volcker’ break does not capture
well changes in the Taylor rule relationships. In all, any changes to the relationship are
small compared to the variation of the data even though their existence is important for
assessing the conduct of monetary policy.

Breaks that are small in this statistical sense are, of course, not necessarily small in an
economic sense. As usual, economic and statistical significance are two very distinct concepts.
As an example, consider the possibility of a break in the growth of income. Postwar quarterly
US real gross domestic product growth measured in percentage points has a standard
deviation of about unity. Even if growth is independent and identically distributed (i.i.d.)
Gaussian, this variation will make it very difficult to detect, let alone date, a break of mean
growth that is smaller than 0.25 percentage points. But, of course, a break that leads to yearly
growth being one percentage point higher is a very important event for an economy.

Given the importance of ‘small’ breaks, one might wonder about the accuracy of the
asymptotic approximation that validates the confidence intervals developed in Bai (1997b).
As we show below, the coverage rates of these confidence intervals are far below nominal
levels for small breaks. This is true even for breaks whose magnitude is such that their
presence is picked up with standard tests with very high probability. These findings are
consistent with the recent simulation study of Bai and Perron (2006).

The question hence arises of how to construct valid confidence sets for the date of a
break when the break is, at least potentially, small. We follow the standard approach to
constructing confidence sets by inverting a sequence of tests; see, for instance, Lehmann
(1986, p. 90). This approach to confidence set construction has been used before in
nonstandard time series problems by Stock (1991) and Hansen (2000).

The idea is to test the sequence of null hypotheses that maintain the break to be at a
certain date. The hypotheses are judged by tests that allow for a break under the null
hypothesis at the maintained date, but that reject for breaks at other dates. If the
maintained break date is wrong, then there is a break at one of these other dates, and the
test rejects. The confidence set is the collection of all maintained dates for which the test
does not reject. By imposing invariance of the tests to the magnitude of the break at the
maintained date, we ensure that coverage of this confidence set remains correct for any
magnitude of the break, at least asymptotically. By a judicious choice of the efficient tests
we suggest inverting the critical values of the sequence of test statistics does not depend on
the maintained break date in the limit. The construction of a valid confidence set for the
break date of arbitrary magnitude can hence be generated by comparing a sequence of test
statistics with a single critical value.

In the next section we analytically investigate the coverage properties of the popular
method of obtaining confidence intervals when the magnitude of the break is small. This
motivates the need for a new method. The third section derives the test statistics to be
inverted. Section 4 evaluates the methods numerically for some standard small sample data
generating processes. Proofs are collected in an Appendix.
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2. Properties of standard confidence intervals when breaks are small

This paper considers the linear time series regression model
nw=Xp+1t>t)X;0+Zy+u, t=1,...,T, (1)

where 1[-] is the indicator function, y, is a scalar, X, f and J are k x 1 vectors, Z, and y are
px 1, {y,X:Z;} are observed, 7o, f, 6 and y are unknown and {u,} is a mean zero
disturbance. Define Q, = (X),Z]). Let ‘2> denote convergence in probability and ‘=’
convergence of the underlying probability measures as 7' — oo and let [-] be the greatest
smaller integer function. For the asymptotic results, we impose the following regularity

condition on model (1):

Condition 1. (i) 7o = [roT] for some 0<ro<1.
() 7720 X, = @2 W(s) for 0<s<ry and T2 0 Xou, = 0 (W(s) -
W(ry)) for ro<s<1 with Q; and Q, some symmetric and positive definite k x k matrices

and W(-) a k x 1 standard Wiener process.
(iil) supg<,< 1 177202 Zuaul) = Op(D).
(iv)

[sT7] > >
— p X1 XZ1
TIE:QIQ/I—>SZQ1=S< 5 )
—1 Z1

2z7x1

uniformly in 0<s<rp and

o P 2x2  Zxzn
7' > 0,0, >(s—r)Zg = (s—ro) Sp

uniformly in ro<s<1, where 2y and X, are full rank.

In the asymptotic analysis considered in this paper, the number of observations that
precede and follow the break are in the fixed proportion ry/(1 — ry). This is standard in the
structural break literature, although recently alternative asymptotics have been considered
by Andrews (2003). With 7y = [r(T], the data generated by this model necessarily becomes
a double array, as 7( depends on 7, although we do not indicate this dependence on T to
enhance readability. Conditions (ii)—(iv) are standard high-level time series conditions, that
allow for heterogeneous and autocorrelated {u,} and regressors {Q,}. Condition 1 also
accommodates regressions with only weakly exogenous regressors. As in Bai (1997b), both
the second moment of {Q,} and the long-run variance of {Q,u,} are allowed to change at
the break date 7.

The state-of-the-art econometric method to obtain confidence intervals for 7y developed
by Bai (1997b) proceeds as follows: minimize the sum of squared residuals of the linear
regression (1) over all coefficient vectors and break dates. Denote the minimizing choice
for the break magnitude and break date by J and 7, respectively. A level C confidence
interval for 7 is then constructed as

[% — [/1(14_(})/27}’!] — 1,% — [)V(I_C)/zm] + l], (2)
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where m = 8'Q,6 / (3’2 X13)2 and A. is the 100c¢ percentile of the distribution of an
absolutely continuous random variable whose distribution depends on two parameters
that can be consistently estimated by §'Q,5/(6'Q210) and &' 225 /(8’2 x10)—see Bai (1997b)
for details. In the special case where Q; = 2, and Xy = Xx;, A, is the 100c¢ percentile of
the distribution of arg ming W (s) — |s|/2. This distribution is symmetric, so that the level C
confidence interval becomes [t — [Auyc)2m] — 1,7 + [Aascyom] + 11 with m = 6'Q0/
('2x0)*. Typically, Q; and Xy; for i=1,2 are unknown, but can be consistently
estimated. For expositional ease, we abstract from this additional estimation problem and
assume 2; and Xy; known in the following discussion of the properties of the confidence
intervals (2).

As shown by Bai (1997b), intervals (2) are asymptotically valid when 6 = T~'/?+¢d
for some 0<e<% and d#0. Although the magnitude of the break ¢ shrinks under these
asymptotics, the generated breaks are still large in the sense that they will be detected with
probability one with any reasonable test for breaks: the neighborhood in which the tests of
Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994) and Elliott and Miiller
(2006) have nontrivial local asymptotic power is where ¢ = 0. In other words, under
asymptotics that justify the confidence intervals (2) the p-values of any standard test for
breaks converge to zero. With O<e<%, there is ample information about the break in the
sense that it is obvious that there is a break, the only question concerns its exact date.

In fact, when 0<8<%, 7/ T is a consistent estimator of r—see Bai (1997b). The break is
large enough to pinpoint down exactly its date in terms of the fraction of the sample. The
uncertainty that is described by the confidence interval (2) arises only because the break
date 7¢ is an order of magnitude larger than ry, since 79 = [Tr¢].

As argued above, it is unclear whether breaks typically encountered in practice are
necessarily large enough for this asymptotic analysis to yield satisfactory approximations.
The p-values of tests for breaks are never zero, and quite often indicate only borderline
significance. Also from an economic theory standpoint there is typically nothing to suggest
that breaks are necessarily large in the sense that their statistical detection is guaranteed.
This raises the question as to the accuracy of the approximation that underlies (2) when in
fact the break is smaller.

In order to answer this question, we consider the properties of the confidence interval (2)
when 0 = T7'/2d, i.e. where ¢ = 0. These asymptotics provide more accurate representa-
tions of small samples in which the break size is moderate in the sense that p-values of tests
for breaks are typically significant, but not zero. This applies to large breaks in a relatively
small sample, or smaller breaks in a large sample. When ||d| is very large, then the
probability of detecting the break is very close to one. One might hence think of
asymptotics with = T~/2d as providing the continuous bridge between a stable linear
regression (when d = 0) and one with a large break (||d|| large).

In contrast to the setup with O<s<%, ro is not consistently estimable when 6 = T~'/2d
for any finite value of ||d|. The reason is simply that if even efficient tests cannot
consistently determine whether there is a break (although for ||d|| large enough their
power will become arbitrarily close to one), there cannot exist a statistic that con-
sistently estimates a property of that break. In other words, the uncertainty about
the break date in asymptotics with = T~!'/2d extends to the fraction ry. It is interesting
to note that running regression (1) with 7y replaced by 7 and ignoring the fact
that 7 is estimated will therefore not yield asymptotically correct inference about ¢ and S,
in contrast to asymptotics where & = T~'/2*¢d for some 0<3<%.
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For expositional ease and to reduce the notational burden, the following proposition
establishes the asymptotic properties of the confidence interval (25 when 6 = T~'2d in the

special case where Q| =, =Qand 2o =2 =29 = ):Zz); ZZXZ‘

Proposition 1. For any %>):>0, define for a standard k x 1 Wiener process W(-),
M(s) = Q2 W (s) + 1[s=r0](s — r0)Z xd,

M(s) 23 M(s) LM - M(s)) 25" (M(1) — M(s))
s 1—s ’

G(s) =

Then under Condition 1, when G(s) has a unique maximum with probability one on [1,1 — 7],
Q=0H=0Q X0 =2p=29and =T,

T_l(%,m):> fa,% s
(5;2X5a)

where © minimizes the sum of squared residuals in the linear regression (1) with o replaced by
T over all t € (AT,(1 — 2)T) and

Fo =arg max _G(s),

A<s<1-4
3(1 — 2)—(] fa]‘/{(l) - AM(fa)
Fo(1 = 7,)

Several comments can be made regarding Proposition 1. First, in the statement of the
proposition, the potential choices of the break date are trimmed away from the endpoints.
Such trimming is standard in the literature on tests for breaks (Andrews, 1993; Andrews
and Ploberger, 1994).

Second, the margin of error of the confidence intervals (2) is m~T (i.e. m = Op(T) and m
is not op(7T)). As discussed, the uncertainty about the break date under these local
asymptotics extends to uncertainty about ry. Although the confidence intervals (2) have
not been constructed for this case, they automatically adapt and cover (with probability
one) a positive fraction of all possible break dates asymptotically.

Third, note that the asymptotic distribution of 77'(3,m) is the same for d = d, and
d = —d, for any d, so that asymptotic coverage properties are symmetric in the sign of the
break.

Finally, the asymptotic distribution of (% —1¢)/m 1is no longer given by
argming W (s) — |s|/2, but it depends on ry, Q and Xy in a complicated way. It is hence
not possible to construct asymptotically justified confidence intervals for local asymptotics
by adding and subtracting the margin of error m from 7. The precise magnitude of the
effects and whether the confidence interval (2) undercovers or overcovers are unclear and
require a numerical evaluation.

Table 1 depicts the asymptotic coverage rates of nominal 95% confidence intervals (2)
for k=1, Q =2y =1 and various values of d and ry, along with the asymptotic local
power of a 5%-level Nyblom (1989) test for a break in . The trimming parameter / is set
to £ = 0.05; smaller values of / lead to worse coverage for breaks with d <8, while leaving
results for larger breaks largely unaffected. For d = 8, coverage rates are below 88%, and
much smaller still for d = 4. This is despite the fact that breaks with ¢ = 8 have a high
probability of being detected with Nyblom’s tests for breaks, at least as long as they do not
occur close to the beginning or end of the sample. The asymptotic distribution of p-values
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Table 1
Local asymptotic properties of Bai’s (1997b) CIs
d ro = 0.5 ro = 0.35 rp = 0.2
Cov. Nybl. Cov. Nybl. Cov. Nybl.
4 0.711 0.438 0.707 0.375 0.700 0.204
8 0.877 0.953 0.870 0915 0.840 0.651
12 0.923 1.000 0.918 0.999 0.907 0.956
16 0.936 1.000 0.939 1.000 0.930 0.999

For each ry, the first column is asymptotic coverage of the confidence intervals (2), and the second column is local
asymptotic power of the 5%-level Nyblom (1989) test for the presence of a break. Based on 10,000 replications
with 1000 step approximations to continuous time processes.

of the Nyblom test for d =4 and ry = 0.35 is such that 17% are below 1%, 20% are
between 1% and 5% and 13% are between 5% and 10%. This corresponds at least roughly
to the distribution of p-values found by Stock and Watson (1996) for the stability of 76
macroseries, although this comparison obviously suffers from the lack of independence of
the macroseries. When d = 16, which corresponds to a break that is big enough to be
almost always detected, the asymptotic approximation that justifies (2) seems to become
more accurate, as effective coverage rates become closer to the nominal level.

Returning to the example of US GDP growth introduced in the Introduction, suppose
one wanted to date a break in mean growth with a sample of 7 = 180 quarterly
observations. When quarterly growth is i.i.d. with unit variance (which roughly
corresponds to the sample variance), then d = 12 corresponds to a break in the quarterly
growth rate of % = 0.89 percentage points. For the asymptotic approximation
underlying (2) to be somewhat accurate, the break in mean growth has hence to be larger
than 3.5% on a yearly basis!

This asymptotic analysis suggests that the standard way of constructing confidence
intervals based on (2) leads to substantial undercoverage when the magnitude of the break
is not very large, but large enough to be detected with high probability by a test for
structural stability. A small sample Monte Carlo study in Section 4 below confirms this to
be an accurate prediction for some standard data generating processes.

3. Valid confidence sets for small breaks

As shown in the preceding analysis, the standard method for constructing a confidence
interval for the date of a break in the coefficient of a linear regression does not control
coverage when the break is small. At the same time, small breaks are often plausible from a
theoretical point of view and are found to be relevant empirically. This raises the question
of how to construct confidence sets that maintain nominal coverage rates when breaks are
small or large.

A level C confidence set can be thought of as a collection of parameter values that
cannot be rejected with a level 1 — C hypothesis test; see, for instance, Lehmann (1986,
p. 90). In standard setups, estimators are asymptotically unbiased and Gaussian with a
variance that, at least locally, does not depend on the parameter value. If one bases the
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sequence of tests on this estimator, the set of parameter values for which the test does not
reject becomes a symmetric interval around the parameter estimator.

The problem at hand is not standard in this sense, as the asymptotic distribution of the
estimator 7 is not Gaussian centered around rp—see Proposition 1 above. What is more,
the asymptotic distribution of 7 depends on rj in a highly complicated fashion. Basing valid
tests for specific values of ry (or equivalently ty) on 7 therefore becomes a difficult
endeavor. But this does not alter the fact that a valid level C confidence set for 7y can be
constructed by inverting a sequence of level (1 — C) tests, each maintaining that under the
null hypothesis, the true break date 7y coincides with the maintained break date 7y, i.e.
Hoy: 79 =ty for 7, = 1,..., T. As long as the test with the true null hypothesis has correct
level, the resulting confidence set has correct coverage, as the probability of excluding the
true value 71y is identical to the type I error of the employed significance test. For tests with
Tm #Tg, the break occurs at a date different from the maintained break. Tests that reject
with high probability when faced with a break that occurs at a date other than the
maintained break date 7, will result in short confidence sets. The more powerful the tests
are against this alternative, the shorter the confidence set becomes on average (cf. Pratt,
1961).

Confidence sets for the break date of the coefficient in a linear regression model hence
can be obtained by inverting a sequence of hypothesis tests of the null hypothesis of a
maintained break at date 7, against the alternative that the break occurs at some other
date

Hgy: 19 =ty against H;j:7g#1n. 3)

The construction of these tests faces three challenges: (I) Their rejection probability under
the null hypothesis must not exceed the level for any value of the break size 6. (IT) It is
powerful against alternatives where 7o#71y,. (III) A practical (but not conceptual)
complication is that the critical value of test statistics of (3) will typically depend on the
maintained break date t,,. For the construction of a confidence set, one would hence need
to compute 7 test statistics, and compare them to 7 different critical values, which is highly
cumbersome.

Consider these complications in turn. First, concerning (I), in order to control the
rejection probability under the null hypothesis for any value of §, we impose invariance of
the test to transformations of y, that correspond to varying ¢. Specifically, we consider
tests that are invariant to transformations of the data

{ytﬂ Xfa ZI} g {yt + X;b() + 1[t>Tm]X;d0 + Z;QO; XI, ZI} for all bOst, 9Jo- (4)

When {X,, Z,} is strictly exogenous, this invariance requirement will make the distribution
of the test statistic independent of the values of 8, y and ¢ under the null hypothesis. But
even if {X;, Z,;} is not strictly exogenous, the asymptotic null distribution of the invariant
test statistics will still be independent of f, y and 6 under Condition 1, as shown in
Proposition 3 below. For a scalar AR(1) process with no Z; and X, = y,_,, for instance,
the requirement of invariance to the transformations {y,,y,_;} = {¥, — boy,_,»,_;} for all
by amounts to the sensible restriction that the stability of the regression of {y,} on {y,_;}
should not be decided differently than the stability of the regression of {Ay,} on {y,_;}. In
practice, the invariance will be achieved by basing tests on OLS residuals of regression (1)
with 7o replaced by .
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Second, in order to ensure that the tests to be inverted are powerful (II), one would like
to choose the most powerful test of (3). For the construction of efficient tests based on the
Neyman—Pearson lemma, one needs an assumption concerning the distribution of the
disturbance {u,} and other properties of model (1).

Condition 2. (i) u, is i.i.d. A47(0,¢?).
(i1) {u,},T:1 and {Qt},T:] are independent.

Part (i) of the condition specifies the distribution of {i,;} to be Gaussian. Only the
efficiency of the following test depends on this (often unrealistic) assumption, but not the
validity of the resulting test. In fact, the asymptotic local power of the efficient test tailor-
made for Gaussian disturbances turns out to be the same for all models with i.i.d.
innovations of variance ¢2. The assumption of Gaussianity of {i} for the construction of
efficient tests is least favorable in this sense. If {u;} were serially correlated with known
correlation structure, then efficient tests would be constructed from the GLS transforma-
tion of the model. This will result in a different small sample optimal test, which will in
general have higher power even asymptotically.

Part (ii) of Condition 2 requires Q, to be strictly exogenous. To the best of our
knowledge, all small sample optimality results for invariant tests, such as those derived in
Andrews et al. (1996) and Forchini (2002), make this assumption. Again, Condition 2 (ii) is
only required for the small sample efficiency of the test derived in Proposition 2 below; the
test remains asymptotically valid under much weaker assumptions, which include models
with weakly exogenous {X, Z,}.

Unfortunately, even under Condition 2, a uniformly most powerful test does not exist,
as efficient test statistics depend on both the true break date 7y and 9, both of which are
unknown. In fact, under the invariance requirement (4), the parameter ¢ that describes the
magnitude of the break under the alternative is not identified under the null hypothesis, as
the distribution of any maximal invariant to (4) does not depend on ¢ (at least in the case
of strictly exogenous {X,, Z,}). As in Andrews and Ploberger (1994), we therefore consider
tests that maximize weighted average power: a test ¢ is an efficient level « test ¢* of g = 7y
against 7(# t, when it maximizes the weighted average power criterion

> w / P(¢ rejects|ty = t,0 = d)dv,(d) (5)

t#Tm

over all tests which satisfy P(¢ rejects |19 = 1) = o, where {w,}IT: | 18 a sequence of
nonnegative real numbers, and {vt}IT=1 is a sequence of nonnegative measures on R¥. The
prespecified sequences {w,}"_, and {v,}_, direct the power towards alternatives of certain
dates 7y and break magnitudes, respectively. From a Bayesian perspective, the weights {w,}
and {v,}, suitably normalized to ensure their integration to one, can be interpreted as
probability measures: if 7o and ¢ were random and followed these distributions under the
alternative, then ¢* is the most powerful test against this (single) alternative.

The efficient tests depend on the weighting functions {w,} and {v,}, so the question is how
to make a suitable choice. As demonstrated in Elliott and Miiller (2006), however, the
power of tests for structural stability does not greatly depend on the specific choice of
weights, at least as long as they do not concentrate too heavily on specific values for 7y and
0. With power roughly comparable for alternative weighting schemes, ease of computation
becomes arguably a relevant guide.
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A solution to the final complication (III), the dependence of the critical value of the
sequence of tests on the maintained break date, can hence be generated by a judicious
choice of the weighting functions with little cost in terms of inadequate power properties.
Specifically, consider measures of the break size v, that are probability measures of mean
zero k x 1 Gaussian vector with covariance matrix b°H,, where

{ 120! for t<tm,
t =

, —1 Vit
(T — ) 205" for 1>z 04 1#1 ©)

This choice of weighting functions puts equal weight on alternative break dates.
Furthermore, the direction of the break as measured by the covariance matrix of the
measures v, is proportional to the long-run covariance matrix of {X,u,} (which depends on
whether <1, or £>1,). The magnitude of the potential break is piecewise constant before
and after the maintained break date t,. Even if Q; = Q,, the break size will not be
identical, though, but depends on 7,: when 1, is close to 7T, for instance, then this choice
of v, puts less weight on large breaks that occur prior to t,, compared to those that occur
after.

While not altogether indefensible, this choice of weighting scheme is mostly motivated
by the fact that the resulting efficient test statistic has an asymptotic distribution that does
not depend on t,,. This makes the construction of an (asymptotically) valid confidence set
especially simple, as the sequence of test statistics can be compared to a single critical
value, as in Hansen (2000).

Proposition 2. Under Condition 2, the locally best test with respect to b* of (3) that is
invariant to (4) and that maximizes the weighted average power (5) with weighting functions
(6) rejects for large values of the statistic

UT(Tm) = Tr;2 sz (i US) Ql_l (i Us)
t=1 s=1 s=1
T ' ! t
H(T =) Y ( > m) QJ( > vs>, ()

=Tm+1 \s=Tm+1 S=Tpm+1

where v, = X,e, and e; are the residuals of the ordinary least-squares regression (1) with t
replaced by tp,.

Busetti and Harvey (2001) and Kurozumi (2002) suggest a specialized version of Uz(tyy)
for constant and trending {X,} as a test statistic for the null of stationarity under a
maintained break at date 7, although they do not derive optimality properties. The locally
best test against martingale variation in the coefficients of a linear regression model has
been derived by Nyblom (1989). Specialized to the test of a single break of random
magnitude and occurring at a random time (which results in a martingale for the now
random coefficient), the usual Nyblom statistic applied to a stable linear regression model
puts equal probability on the break occurring at all dates, and the covariance matrix of the
break size is constant. It is possible to apply the Nyblom statistic to the breaking regression
model (1) with 7y replaced by the maintained break date 7y, although one would not
recover the asymptotic distribution derived by Nyblom (1989), as the regressor
{1[t> 1] X} does not satisfy the necessary regularity conditions.
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From this perspective, the weighting scheme (6) can be understood as yielding the sum of
two Nyblom statistics, at least when there is no Z;: one for the regression for t =1, ..., 1y
and one for the regression t = 1, + 1,..., T. This makes perfect intuitive sense: when the
maintained break 7y, is not equal to the true break date 7, there is one break either prior or
after 7. One way to test this is to use a Nyblom statistic for the (under the null hypothesis
stable) standard regression model for t = 1,..., 1, and another Nyblom statistic for the
(under the null hypothesis also stable) standard regression model for t =1, +1,..., 7.
Proposition 2 shows that this procedure does not only make intuitive sense, but is also
optimal for the weighting scheme (6).

As described in Proposition 2, the test statistic Up(ty,) is not a feasible statistic, as €
and @, are typically unknown. But under the null hypothesis of 1y = 11,, under weak
regularity conditions on X, and u;, 2| and €, can typically be consistently estimated by
any standard long-run variance estimator applied to {v/};», and {v,}tT:Tm 41— for primitive
conditions see, for instance, Newey and West (1987) or Andrews (1991). Denote by Ur(tm)
the statistic Ur(t,) with Q; and Q; replaced by such estimators Q; and €.

Proposition 3. If f)l LS Q, and Qz LY Q,, then under Condition 1

1
Ur(to) =>/ B(s) B(s) ds,
0
where B(s) is a (2k) x 1 vector standard Brownian bridge.

The distribution of the integral of a squared Brownian bridge has been studied by
MacNeill (1978) and Nabeya and Tanaka (1988). For convenience, critical values of
Ur(ty) for k =1,...,6 are reproduced in Table 2.

As required, the asymptotic null distribution of Uz(ty,) does not depend on . For any
size of break 9, the collection of values of 7, = 1,..., T for which the test fJT(fm) does not
exceed its asymptotic critical value of significance level (1 — C) hence has asymptotic
coverage C, i.e. is a valid confidence set: the only way the true value is excluded from this
confidence set is when UT(rm) = UT(IO) exceeds the critical value. Note that this in
particular implies that the confidence set is valid under asymptotics with & = T~'/2d for
some fixed d, in contrast to the confidence interval (2).

In detail, one proceeds as follows:

e Forany 1, =p+2k+1,...,T —p—2k — 1, compute the least-squares regression of
{yt}thl on { X, 1[t>1tm]X,, Zt},Tzl .
e Construct {v,}f=l = {Xtet}thl, where e, are the residuals from this regression.

Table 2
Critical values of UT(rm)

k (%) 1 2 3 4 5 6

10 0.600 1.063 1.482 1.895 2.293 2.692
5 0.745 1.238 1.674 2117 2.537 2.951
1 1.067 1.633 2.118 2.570 3.036 3.510

Based on 50,000 replications and 1000 step approximations to continuous time processes.
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o Compute the long-run variance estimators f)l and f)z of {v};", and {v,}tT:Tm 41
respectively. An attractive choice is to use the automatic bandwidth estimators of
Andrews (1991) or Andrews and Monahan (1992). If it is known that Q; = 5, then it is
advisable to rely instead on a single long-run variance estimator Q based on {v,}, 1

e Compute Ur(ty) as in (7) with Q; and Q, replaced by Q, and Q, respectively.

e Include 7., in the level C confidence set when UT(Tm)<CV1_C and exclude it otherwise,
where cv_c is the level (1 — C) critical value of the statistic fJT(rm) from Table 2.

There is no guarantee that this method yields contiguous confidence sets. The reason for
this is straightforward. The confidence set construction procedure looks for dates that are
compatible with no breaks elsewhere. When the break is small, there may be a number of
possible regions for dates that appear plausible candidates for the break. The confidence
set includes all these regions. Note that this is not a sign that there are multiple breaks, but
rather that the exact date of one break is difficult to determine. A confidence set with good
coverage properties will reflect this uncertainty.

It is also possible that the confidence set is empty—this will happen when the test rejects
for each possible break date. When the model contains multiple large breaks, this will

Table 3
Empirical small sample coverage and length of confidence sets: model (M 1): constant regressor, i.i.d. disturbances
d=4 d=238 d=12 d=16
Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
rp = 0.5
Ur(tm).eq 0.949 71.7 0.949 42.4 0.949 22.1 0.949 15.1
Uz (tm).neq 0.950 77.2 0.950 423 0.950 227 0.950 15.8
Bai.eq 0.698 54.5 0.890 33.1 0.940 17.0 0.959 10.5
Bai.het 0.698 54.5 0.890 33.1 0.940 17.0 0.959 10.5
Bai.hneq 0.686 53.0 0.882 33.1 0.938 17.0 0.956 10.5
Nyblom 0.428 0.948 1.000 1.000
ro = 0.35
Ur(tm).€q 0.952 79.0 0.952 443 0.952 22.5 0.952 15.0
Uz (tm).neq 0.954 78.7 0.954 44.1 0.954 23.1 0.954 15.7
Bai.eq 0.692 52.5 0.878 32.8 0.937 17.1 0.962 10.5
Bai.het 0.692 52.5 0.878 32.8 0.937 17.1 0.962 10.5
Bai.hneq 0.676 50.8 0.873 32.6 0.932 17.1 0.959 10.5
Nyblom 0.366 0.902 0.999 1.000
rgp = 0.2
Ur(tm).€q 0.949 83.2 0.949 55.7 0.949 27.1 0.949 15.3
Ur(tn).neq 0.951 83.3 0.951 56.1 0.951 27.9 0.951 16.2
Bai.eq 0.660 46.8 0.851 313 0.926 17.4 0.955 10.7
Bai.het 0.660 46.8 0.851 31.3 0.926 17.4 0.955 10.7
Bai.hneq 0.631 44.4 0.832 30.2 0.914 17.0 0.947 10.5
Nyblom 0.189 0.617 0.939 0.997

The model is y, = ﬁ+dT’1/21[t>[r0T]] + u;, u~iid A°(0,1), T =100. Cov. and Lgth. refer to the coverage
probability and average number of dates in the confidence sets of the various methods described in the text.
Nyblom indicates the rejection probability of 5%-level Nyblom (1989) test for stability of f5, using the asymptotic
critical value. Based on 10,000 replications.
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happen asymptotically with probability one. In practice then one would take this as a
signal that the maintained model of a single break is not appropriate for the data. The
converse situation, where there are no breaks, will result in confidence sets that suggest a
break could be anywhere and so for models without a break most dates will be included in
the confidence set. The reason for this is that the test, looking for a break in the sample
away from the maintained break date, will fail to reject with probability equal to one
minus the level of the test. Also this property makes sense. If there is weak to no evidence
of a break, then a procedure that tries to locate the break finds it could be anywhere.

4. Small sample evaluation

This section explores the small sample properties of the confidence sets suggested here
and those derived in Bai (1997b). We find that the analytic results of Section 2 accurately
predict the performance of Bai’s (1997b) confidence intervals, as they tend to substantially
and systematically undercover when the break magnitude is not very large. In most
practical applications this renders these intervals uninterpretable. Since we do not know a
priori the size of the break, we cannot tell whether the intervals provide an accurate idea as

Table 4
Empirical small sample coverage and length of confidence sets: model (M2): constant regressor, disturbances with
breaking variance

d=4 d=238 d=12 d=16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
rgp = 0.5
Ur(tm).€q 0.936 85.1 0.936 68.8 0.936 46.0 0.936 29.1
Ur(tm).neq 0.950 85.4 0.950 67.5 0.950 44.6 0.950 28.6
Bai.eq 0.572 54.2 0.735 49.5 0.846 349 0.894 22.5
Bai.het 0.572 54.2 0.735 49.5 0.846 349 0.894 22.5
Bai.hneq 0.614 53.5 0.762 47.5 0.869 34.8 0.918 23.0
Nyblom 0.204 0.613 0.922 0.996
ro = 0.35
Ur(tm).q 0.963 87.5 0.963 74.5 0.963 53.6 0.963 34.9
Uz (tm).neq 0.954 86.9 0.954 71.4 0.954 48.6 0.954 30.7
Bai.eq 0.562 60.1 0.735 55.7 0.856 40.8 0.906 26.6
Bai.het 0.562 60.1 0.735 55.7 0.856 40.8 0.906 26.6
Bai.hneq 0.584 53.7 0.747 459 0.866 34.5 0.916 23.5
Nyblom 0.135 0.469 0.834 0.983
rop = 0.2
Ur(tm)-eq 0.978 90.2 0.978 83.2 0.978 69.0 0.978 49.9
Ur(tm).neq 0.951 89.3 0.951 80.6 0.951 64.4 0.951 44.4
Bai.eq 0.550 62.4 0.694 55.7 0.829 43.4 0.904 30.6
Bai.het 0.550 62.4 0.694 55.7 0.829 434 0.904 30.6
Bai.hneq 0.552 54.6 0.681 43.5 0.814 32.1 0.897 23.3
Nyblom 0.071 0.196 0.442 0.717

The model is y, = f+dT 1> [ro T + u, u, = (1 4+ 1[r>[roT e, &~iid A(0,1), T = 100. The notes of
Table 3 apply.
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to the uncertainty in the data over the break date. A comparison of confidence set lengths
reveals that confidence sets constructed by inverting the sequence of tests based on fJT(rm)
tend to be somewhat longer even for breaks that are large enough for Bai’s (1997b) method
to yield adequate coverage. At the same time, effective coverage rates of confidence sets
constructed by inverting the tests UT(rm) are very reliable and thus can be interpreted in
the usual way.

The small sample data generating processes we consider are special cases of model (1)

w=Xp+1t>t)X,0+Zy+u, t=1,...,T ®)

with T = 100. Specifically, we consider six models: (M1) a break in the mean, such that
X, = 1 and there is no Z,, and i.i.d. Gaussian disturbances {u,}; (M2) same as model (M1),
but with disturbances that are independent Gaussian with a variance that quadruples at
the break date; (M3) same as model (M1), but with disturbances that are a mean zero
stationary Gaussian AR(1) with coefficient 0.3; (M4) same as model (M1), but with
disturbances that are a mean zero stationary Gaussian MA(1) with coefficient —0.3; (M5)
{X,} a mean zero stationary Gaussian AR(1) with coefficient 0.5 and unit variance, Z, = 1
and i.i.d. Gaussian disturbances {u,} independent of {X,}; (M6) a heteroskedastic version

Table 5
Empirical small sample coverage and length of confidence sets: model (M3): constant regressor, AR(1)
disturbances

d=4 d=28 d=12 d=16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
rgp = 0.5
Ur(tm).€q 0.965 82.6 0.965 58.2 0.965 38.4 0.965 30.2
Uz (tm).neq 0.971 81.2 0.971 57.9 0.971 423 0.971 37.9
Bai.eq 0.734 55.8 0.890 322 0.942 16.5 0.962 10.2
Bai.het 0.734 55.8 0.890 322 0.942 16.5 0.962 10.2
Bai.hneq 0.708 53.7 0.874 33.0 0.930 17.1 0.952 10.6
Nyblom 0.359 0.884 0.994 1.000
ro = 0.35
Ur(tm).€q 0.963 83.2 0.963 59.7 0.963 39.1 0.963 30.3
Uz (tm).neq 0.970 82.3 0.970 60.8 0.970 45.1 0.970 40.5
Bai.eq 0.727 54.2 0.880 31.9 0.937 16.6 0.965 10.3
Bai.het 0.727 54.2 0.880 319 0.937 16.6 0.965 10.3
Bai.hneq 0.691 51.2 0.860 322 0.922 17.1 0.953 10.6
Nyblom 0.298 0.810 0.982 0.998
rgp = 0.2
Ur(tm)-eq 0.965 85.8 0.965 68.7 0.965 47.8 0.965 34.6
Uz (tm).neq 0.970 85.9 0.970 72.9 0.970 59.9 0.970 53.9
Bai.eq 0.710 49.7 0.857 31.0 0.928 17.0 0.961 10.5
Bai.het 0.710 49.7 0.857 31.0 0.928 17.0 0.961 10.5
Bai.hneq 0.644 44.0 0.815 29.4 0.896 16.9 0.942 10.6
Nyblom 0.149 0.455 0.762 0.905

The model is y, = f + dT’l/zl[t> [ro T + us, uy = 030,y + &, &~iid A"(0,0.49), T = 100. The notes of Table 3
apply.
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of (M5), where the disturbances {u,} are given by {&/|X,|}, where {¢,} are i.i.d. Gaussian
independent of {X,}. The variance of the disturbances is normalized throughout such that
the long-run variance Q; of {X,u,} prior to the break is unity (that is, the spectral density of
the stationary process {X,u,} of the prebreak data generating process evaluated at zero
is 1/(2n)).

In models with uncorrelated {X,u,}, i.e. (M1), (M2), (M5) and (M6), we estimate
variances rather than long-run variances of {X,u,}. For models (M3) and (M4), we employ
in all methods the Andrews and Monahan (1992) AR(1) prewhitened second stage
automatic bandwidth quadratic spectral estimator, where the bandwidth selection is based
on an AR(1) model. We consider a version of ﬁT(rm) that imposes equivalence of the long-
run variances of {X,u,} prior to and after the break, Q; = Q,, denoted by Uz(t).eq, and
one that does not, denoted by ﬁr(rm).neq. While ﬁT(rm) is automatically robust against
heteroskedasticity, this is not the case for the basic Bai confidence set (2). We therefore
compute three versions of Bai confidence sets: one imposing both Q) =@, and
homoskedasticity (Bai.eq), one imposing Q; = 2, but allowing for heteroskedasticity
(Bai.het) and one allowing for both Q; # €, and heteroskedasticity (Bai.hneq). In models
(M1)—-(M4), of course, Bai.eq = Bai.het.

Table 6
Empirical small sample coverage and length of confidence sets: model (M4): constant regressor, MA(l)
disturbances

d=4 d=238 d=12 d=16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
rgp = 0.5
Ur(tm).€q 0.975 82.7 0.975 55.0 0.975 31.2 0.975 21.1
Ur(tm).neq 0.978 81.8 0.978 54.5 0.978 32.6 0.978 23.3
Bai.eq 0.685 57.2 0.893 38.7 0.950 20.6 0.967 12.6
Bai.het 0.685 57.2 0.893 38.7 0.950 20.6 0.967 12.6
Bai.hneq 0.684 57.0 0.887 394 0.943 21.0 0.959 12.9
Nyblom 0.291 0.875 0.998 1.000
ro = 0.35
Ur(tm).q 0.976 83.4 0.976 57.0 0.976 31.8 0.976 21.1
Uz (tm).neq 0.977 82.7 0.977 56.9 0.977 33.7 0.977 23.7
Bai.eq 0.674 54.4 0.886 37.8 0.948 20.6 0.966 12.6
Bai.het 0.674 54.4 0.886 37.8 0.948 20.6 0.966 12.6
Bai.hneq 0.674 54.3 0.880 38.3 0.939 21.0 0.957 12.9
Nyblom 0.235 0.797 0.992 1.000
rop = 0.2
Ur(tm)-eq 0.972 86.2 0.972 67.6 0.972 40.3 0.972 22.8
Ur(tm).neq 0.976 86.0 0.976 69.1 0.976 449 0.976 28.4
Bai.eq 0.654 48.0 0.845 34.2 0.931 20.5 0.956 12.8
Bai.het 0.654 48.0 0.845 342 0.931 20.5 0.956 12.8
Bai.hneq 0.640 48.0 0.830 34.4 0.917 20.8 0.946 13.0
Nyblom 0.113 0.433 0.820 0.978

The model is y, = ff + dT’l/zl[t>[r0 TN + uyy uy = & — 0.3g,_y, g~iid A°(0,2.04), T = 100. The notes of Table 3
apply.
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Table 7
Empirical small sample coverage and length of confidence sets: model (MS5): stochastic regressor, i.i.d.
disturbances

d=4 d=38 d=12 d=16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
rop = 0.5
Ur(tm)-eq 0.954 79.7 0.954 51.7 0.954 31.0 0.954 21.9
Ur(tm).neq 0.955 79.1 0.955 51.2 0.955 32.0 0.955 23.5
Bai.eq 0.699 54.7 0.856 33.7 0.899 17.5 0.902 10.7
Bai.het 0.682 51.8 0.842 31.9 0.889 16.8 0.893 10.4
Bai.hneq 0.647 49.6 0.819 322 0.873 17.3 0.886 10.7
Nyblom 0.373 0.882 0.994 1.000
ro = 0.35
Ur(tm).eq 0.953 80.5 0.953 54.0 0.953 32.1 0.953 222
Uz (tm)-neq 0.954 80.2 0.954 53.9 0.954 333 0.954 239
Bai.eq 0.693 53.1 0.856 333 0.896 17.6 0.903 10.8
Bai.het 0.671 50.3 0.841 31.6 0.885 16.9 0.896 10.5
Bai.hneq 0.639 47.7 0.820 31.6 0.866 17.3 0.880 10.7
Nyblom 0.313 0.803 0.978 0.998
rop = 0.2
Ur(tm).eq 0.954 83.3 0.954 63.6 0.954 414 0.954 27.3
Uz (tm)-neq 0.958 83.8 0.958 65.1 0.958 44.0 0.958 30.4
Bai.eq 0.666 48.4 0.819 31.8 0.881 18.0 0.900 11.0
Bai.het 0.650 46.1 0.803 30.2 0.870 17.2 0.893 10.7
Bai.hneq 0.601 42.6 0.760 28.8 0.832 17.2 0.865 10.8
Nyblom 0.169 0.505 0.782 0914

The model is y, = X,B+dT "2 X A[t>[roTN + y + uy, w~iid /'(0,1), X, =05X,_ + &, &~iid A7(0,0.75),
T = 100. The notes of Table 3 apply.

Tables 3—8 show the empirical coverage rates and average confidence set lengths for the
confidence interval (2) and confidence sets constructed by inverting the test statistics

fJT(rm) as described in Section 3, based on 10,000 replications. In all experiments, we
consider confidence sets of 95% nominal coverage, and breaks that occur at date [ryT],
where ro = 0.5, 0.35 and 0.2. The tables also include the rejection probability of a 5%-level
Nyblom test for the presence of a break in f, i.e. based on the test statistic

Ny = T‘2Z,T:1(Z;zlXSL}S)/Q_I(Z;:IXJQJ), where i, are the residuals of a regression of
{y,} on {X,,Z,}, Q= T‘lthzlﬁthX; in models without autocorrelation and in models

(M3) and (M4), Q is Andrews and Monahan’s (1992) long-run variance estimator of
{Xi1;}. The Nyblom test is based on the asymptotic critical value; unreported results show
size control to be very reasonable.

Overall, the small sample results confirm the asymptotic results of Section 2: the Bai
method fails to cover the true break date with the correct probability so long as the break is
small. For all six models and three break dates, the usual method for constructing
confidence intervals has coverage far below nominal coverage whenever the break is small
enough for the Nyblom statistic to have power substantially below one. For example, in
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Table 8
Empirical small sample coverage and length of confidence sets: model (M6): stochastic regressor, heteroskedastic
disturbances

d=4 d=38 d=12 d=16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.
ro = 0.5
Ur(tm)-eq 0.959 78.6 0.959 47.5 0.959 27.7 0.959 20.0
Ur(tm).neq 0.964 77.7 0.964 46.5 0.964 28.5 0.964 21.4
Bai.eq 0.547 27.4 0.745 12.7 0.857 6.9 0.921 4.8
Bai.het 0.742 53.9 0.879 29.0 0.938 15.0 0.969 9.4
Bai.hneq 0.674 48.1 0.849 27.6 0.923 14.6 0.958 9.1
Nyblom 0.413 0.922 0.996 1.000
ro = 0.35
Ur(tm).cq 0.959 79.5 0.959 49.6 0.959 28.9 0.959 20.5
Uz(tm).neq 0.964 78.8 0.964 48.6 0.964 29.3 0.964 21.7
Bai.eq 0.544 27.2 0.742 12.8 0.848 7.0 0.922 4.8
Bai.het 0.736 52.7 0.878 29.0 0.939 15.1 0.970 9.4
Bai.hneq 0.665 46.0 0.843 27.0 0.916 14.4 0.958 9.1
Nyblom 0.349 0.857 0.987 0.999
rog = 0.2
Ur(tm).eq 0.956 82.7 0.956 59.9 0.956 36.9 0.956 24.4
Ur(tm)-neq 0.965 82.9 0.965 59.9 0.965 379 0.965 26.1
Bai.eq 0.515 27.6 0.712 13.5 0.844 7.2 0914 49
Bai.het 0.716 50.1 0.852 28.8 0.930 15.5 0.965 9.6
Bai.hneq 0.629 414 0.795 24.5 0.900 13.8 0.947 8.7
Nyblom 0.191 0.556 0.825 0.934

The model is y, =X+ AT "X A[t>[ro T + 7 + s, ur = &l Xal, &~iid 47(0,0.333), X, =0.5X,_1 + ¢,
&,~iid A7(0,0.75), T = 100. The notes of Table 3 apply.

model (M2) with ry = 0.35 and d = 8, the Nyblom test rejects for half of the samples, yet
confidence intervals based on (2) have coverage below 75%. When power of the test for a
break gets closer to one, coverage of these confidence intervals is closer but not necessarily
at the nominal 95% rate. For example, in model (M5) with ry = 0.35 and d = 12, the
Nyblom test rejects the null hypothesis of no break 98% of the time, yet coverage for these
confidence intervals is still below 90%. It is only when the breaks are large enough to be
essentially always detected that empirical coverage of the Bai confidence intervals equals
nominal coverage.

For the cases where coverage is not controlled, there is no way of comparing the average
lengths of the confidence sets. However, it is clear from the experiments that the
undercoverage translates into confidence intervals (2) that are relatively short, giving a
misleading impression as to the uncertainty over the break date. In contrast, confidence
sets based on inverting ﬁr(rln) control coverage remarkably well. For the case where both
the Bai method and the method suggested here result in confidence sets of correct coverage,
however, it is seen that the Bai method delivers the smaller set. This effect is especially
pronounced in models (M3) and (M4) that yield autocorrelated {X,u;}. Pronounced
autocorrelations of the underlying disturbances render Nyblom (1989)-type tests ill
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behaved, with size and power of these tests strongly dependent on the long-run variance
estimator employed—see Miiller (2005). In addition, as pointed out by Vogelsang (1999)
and Crainiceanu and Vogelsang (2002), long-run variance estimation adversely affects
the power of stationarity tests, as the low-frequency component of the time varying
deterministics are mistakenly attributed to low-frequency dynamics. This latter
effect increases the length of the confidence sets based on Ur(rm), but has no effect on
coverage.

When the break in the regression coefficient is accompanied by a break in the variance of
{Xu;}, as in model (M2), the methods that account for that possibility perform somewhat
better in terms of coverage and confidence set lengths. As one might expect, in the presence
of heteroskedasticity as in model (M6), the Bai method that fails to account for
heteroskedasticity does not do well. The effective coverage rates of the asymptotically
robust versions of the Bai statistic get closer to the nominal level in model (M6) compared
to the homoskedastic model (M5). The reason for this is that the normalization of the
variance of {¢,}—in order to ensure a long-run variance of {X,u,} = {|X,|X &} equal to
unity—makes the disturbance variance of model (M6) smaller than in model (M5).

Overall, the small sample experiments are encouraging for constructing reliable
confidence sets for the break date by inverting a sequence of tests based on fJT(ﬂ:m).
Empirical coverage rates are very close to nominal coverage rates for all data generating
processes considered here, making the method developed in this paper an attractive choice
for applied work.

5. Conclusion

It is more difficult to determine the date of a break than it is to distinguish between
models with and without breaks. In practice, breaks that can be detected reasonably well
with hypothesis tests are often difficult to date and standard methods of constructing
confidence intervals for the break date fail to deliver an accurate description of this
uncertainty. It may be possible to use subsampling or bootstrap techniques to account for
these difficulties.

The approach taken in this paper is to use an alternative method of constructing a
confidence set by inverting a sequence of tests. Each of the tests maintains the null
hypothesis that the break occurs at a certain date. By imposing an invariance requirement,
the tests control coverage for any magnitude of the break. The confidence sets so obtained
hence control coverage also for a small break. In addition, the test statistics that are
inverted have an (asymptotic) critical value that does not depend on the maintained break
date. The confidence set can hence be computed relatively easily by comparing a sequence
of T test statistics with a single critical value, where T is the sample size.
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Appendix

Proof of Proposition 1. For 1, € AT, (1 = D)T), let [=1y,/T. Define 5, =u+
T*1/21[Z>10]X;d, and let {Z,} be the least-squares residuals of a regression of {Z,} on

{X;, 1]t > 1] X,}. By standard linear regression algebra, the sum of squared residuals of an
OLS regression of {#,} on {X,, 1[t>1tn]X;, Z;} is given by

T Tm ! Tm Tm
Sr(tm)= > 1, — (Z th> (Z X,X;> ZXm,
=1 =1 =
T T -7
- ( > Xﬂh) ( Z 2) > X,
T

t=1ym+1 t=Tm+1

T / o
- (ZM) (Y22) Yz
=1 =1 =1
For t<rm=[lT], Zi=7Z -7 X/)(zfm X, X)7'X, and, similarly, for ¢>1ty,
Z, = (ZSTTmH X’)(Z\ e Xs X)) 'X,. From the uniform convergence of 77!

ST X,Z’ and T7'S M X, in s and supyo, 1772 Xm0 = Oy(1) and
supo<, <1 177> S)01Zim || = Op(1) we find

where Z, = Z, — 2zx2y 'X,. Note that Z, does not depend on ty,. Furthermore, 7~ IZT‘“

; P m /
XX, 512y, T2 X, = M(D), T7'S0. XX, >(1 - )2y and T2
Xm, = M(1) — M(/) uniformly in 0</<1. Hence,

arg  min St(tm) = arg_ min _S7([IT])

IT<tn<(1-D)T I<i<1-]
(7] [T =1 um
=arg_max_<ZX,n,> <ZXX> ZXM,
i<i<i-i\‘5 p
T -7
+< > m) < > XX/) > X+ Re(l)
=[IT]+1 (=[IT]+1 (=[IT]+1

= arg max _G(/),
2<I<1-2

where sup;_,,_; |R7(])] = op(1) and the last line follows from the continuous mapping
theorem. The continuous mapping theorem is applicable due to the arguments put forward
in Kim and Pollard (1990), as an application of their Theorem 2.7.
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Let S(Tm) be the least-squares estimator of ¢ with 7y replaced by tm = [/T], 0</<]1,
in (1), and let {X,} be the residuals of a regression of {1[t>1t,]X,} on {Q,}. Then,

T -l
3tm) = <Z X,XQ) Z Xm,.
t=1 =1
- , _ . _ P
Now &y =11>tnlX, (5, 1 X0 Q007 0 With T30 L, 0,0, >(1 = 1)
2o uniformly in 0</<1 from Condition 1,
T T
TN XX, =T X A[1>1]X,
=1

t=1

T T T -7
=7 Y XX, - T*( > X,Q;> (Z Q,Q;> > ox;
=1

t=Tm+1 t=Tm+1 t=tm+1
2 - nzy,
and also
T T T T -7
Y K =T Y xtn,—TW( 3 X,Q;) (z Q,Q;) Son
=1 t=Tm+1 t=tm+1 =1 =1

= IM(1) — M(]),

since T/ ZZ; 1Zm, = Op(1). The application of the continuous mapping theorem now
yields the result for m. O

Proof of Proposition 2. Let B be the T x (T — 2k — p) matrix that satisfies BB = I7_y_,
and BB = My, where My is the projection matrix off the column space spanned by {R,},
where R, = (X, 1[t>1u]X|,Z)). Let y=(y,...,yr), and denote by {e,} the OLS
residuals from a regression of {y,} on {R,}. Then (B'y, Q) is a maximal invariant to the
group of transformations (4). Furthermore, conditional on Q, By~.A"(BZE(t)J,
o?Ir_s—p), where E(7) is a T x k matrix with sth row X/ when s>¢ and a 1 x k zero
row vector otherwise. By the Neyman—Pearson lemma, Fubini’s theorem and the
likelihood structure in Condition 2, an efficient invariant test of (3) maximizing (5) can
hence be based on

LRy = Z i / exp [azy’BB’E(t)f — ;ozf’E(t)’BB’E(t)f] dv,(f)

t#Tm

Z w. F(1).

1#Tm

Under the choice of weight functions (6), we compute for <1y,
[y -
F(r) = / exp [G_zy/MRE(l)f —50_2f E@) MrE(n)f } dvi(f)

— /(2%)_k/2|bzfr;291_l |—]/2

! a 1 ! / 1 — /
X exp [o‘zf > Xe - za_zf E(tY MRE(f — Eb 20| df
s=t
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2 _—20-1,—-1/2,3,—2.2 -2 = —1/2
= P2t 2Q7 Vb2 Q) + 0 2E() MrE()| 7Y

s . ,
xexp|yot( D Xeew | (BP0 + 0 B MREW) T D Xees
L s=t

s=t
= I} 4+ BP0 2 Q7 E(0) MRE(r)| 712
_1 Tm ! Tm
X eXp 50_4192 Z X e (ran] + 020 E(1) MrE(1) ™! Z X e
s=t s=t

. T .
since Zs:rm 41 Xses = 0. By a one-term Taylor expansion around P =0,

I
Tm Tm
AP - =07 Y Xeeo )| ' D Xee
s=t s=t

— bro 2 tr(Q E(1) MRE(1)) + o(b).

Proceeding analogously for #>1,, and collecting terms whose distribution depends on ¢
and 1¢ yield the result. [

Proof of Proposition 3. Proceed similarly as in the proof of Proposition 1 to show that
under Condition 1, for s<ry,

[sT] ST [sT] [ro T -1 1071

[
T2 " Xie, =T X, — | Y XX, || Y XX, T2y X
=1 t=1 t=1 t=1 t=1

[sT] -1

T T
(S xz) (Y zz) (1773 Zaw
=1 =1 =1
S
=0/’ (W(s) - W(r0)> .

With the analogous result for s>ry, the proposition becomes a consequence of the
continuous mapping theorem. [I
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