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Abstract

This paper considers the problem of constructing confidence sets for the date of a single break in a

linear time series regression. We establish analytically and by small sample simulation that the

current standard method in econometrics for constructing such confidence intervals has a coverage

rate far below nominal levels when breaks are of moderate magnitude. Given that breaks of

moderate magnitude are a theoretically and empirically relevant phenomenon, we proceed to develop

an appropriate alternative. We suggest constructing confidence sets by inverting a sequence of tests.

Each of the tests maintains a specific break date under the null hypothesis, and rejects when a break

occurs elsewhere. By inverting a certain variant of a locally best invariant test, we ensure that the

asymptotic critical value does not depend on the maintained break date. A valid confidence set can

hence be obtained by assessing which of the sequence of test statistics exceeds a single number.

r 2007 Elsevier B.V. All rights reserved.

JEL classification: C22; C12
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1. Introduction

It is fairly common to find some form of structural instability in time series models. Tests
often reject (Stock and Watson, 1996) the stability of bivariate relationships between
macroeconomic series. Similar results have been established for data used in finance and
see front matter r 2007 Elsevier B.V. All rights reserved.
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international macroeconomics. Lettau and Ludvigson (2001) and Timmermann and Paye
(2004), for example, find instabilities in return forecasting models. The next step after
finding such instabilities is to document their form. In general, the answer to this question
is going to be the evolution of the unstable parameter over time. With the additional
assumption that the parameters change only once, the answer boils down to the time and
magnitude of the break. Arguably, the date of the break is typically of greater interest. This
paper examines a multiple regression model and considers inference about the date of a
single break in a subset of the coefficients.

Determining when parameters change is interesting for a number of reasons. First, this is
often an interesting question for economics in its own right. Having observed instability in
the mean of growth, we may well be interested in determining when this happened in order
to trace the causes of the change. Second, such results can be useful for forecasting. When
models are subject to a break, better forecasts will typically emerge from putting more
(or all) weight on observations after the break (Pesaran and Timmermann, 2002). Finally,
from a model building perspective, it is of obvious interest to determine the stable periods,
which are determined by the date of the break.

The literature on estimation and construction of confidence sets for break dates goes
back to Hinkley (1970), Hawkins (1977), Worsley (1979, 1986), Bhattacharya (1987) and
others—see the reviews by Zacks (1983), Stock (1994) and Bhattacharya (1994) for
additional discussion and references. The standard econometric method for constructing
confidence intervals for the date of breaks relies on work by Bai (1994), which is further
developed in Bai (1997a,b, 1999), Bai et al. (1998) and Bai and Perron (1998). For the
problem of a single break in a linear time series regression, the main reference is Bai
(1997b).

As is standard in time series econometrics, Bai (1997b) relies on asymptotic arguments to
justify his method of constructing confidence intervals for the date of a break. The aim of
any asymptotic argument is to provide useful small sample approximations. Specifically,
for the problem of dating breaks, one would want the asymptotic approximation to be
good for a wide range of plausible break magnitudes, such that confidence sets of the break
date have approximately correct coverage irrespective of the magnitude of the break.

The asymptotic analysis that underlies Bai’s (1994, 1997b) results involves a break of
shrinking magnitude, but at a rate that is slow enough such that for a large enough sample
size, reasonable tests for breaks will detect the presence of the break with probability close
to one. In other words, this asymptotic analysis focusses on the part of the parameter space
where the magnitude of the break is ‘large’ in the sense that p-values of tests for a break
converge to zero. Inference for the presence of a break becomes trivial for such a ‘large’
break, although the exact date of the break remains uncertain. In contrast, one might
speak of a ‘small’ break when both the presence and the date of the break are uncertain.
Analytically, a small break can be represented by an asymptotic analysis where the
magnitude of the break shrinks at a rate such that tests for a break have nontrivial power
that is strictly below one.

In many practical applications, breaks that are of interest are arguably not large in this
sense. After all, formal econometric tests for the presence of breaks are employed precisely
because there is uncertainty about the presence of a break. From an empirical point of
view, the observed p-values are often borderline significant; in the Stock and Watson
(1996) study, for instance, the QLR statistic investigated by Andrews (1993) rejects
stability of 76 US postwar macroeconomic series for 23 series at the 1% level, for an
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additional 11 series at the 5% level and for an additional 6 series at the 10% level. In a
similar vein, variations in the conduct of monetary policy that some argue are crucial to
understand the US postwar period are small enough that a debate has arisen as to both the
size and nature of the breaks and whether they are there at all. For example, Orphanides
(2004) argues that the relationships are quite stable. Clarida et al. (2000) argue that the
economic differences pre and post the Volcker chairmanship of the US Federal Reserve
Board are economically important although they did not test for the break. Boivin (2003)
finds based on tests and a robustness analysis that a fixed ‘Volcker’ break does not capture
well changes in the Taylor rule relationships. In all, any changes to the relationship are
small compared to the variation of the data even though their existence is important for
assessing the conduct of monetary policy.
Breaks that are small in this statistical sense are, of course, not necessarily small in an

economic sense. As usual, economic and statistical significance are two very distinct concepts.
As an example, consider the possibility of a break in the growth of income. Postwar quarterly
US real gross domestic product growth measured in percentage points has a standard
deviation of about unity. Even if growth is independent and identically distributed (i.i.d.)
Gaussian, this variation will make it very difficult to detect, let alone date, a break of mean
growth that is smaller than 0.25 percentage points. But, of course, a break that leads to yearly
growth being one percentage point higher is a very important event for an economy.
Given the importance of ‘small’ breaks, one might wonder about the accuracy of the

asymptotic approximation that validates the confidence intervals developed in Bai (1997b).
As we show below, the coverage rates of these confidence intervals are far below nominal
levels for small breaks. This is true even for breaks whose magnitude is such that their
presence is picked up with standard tests with very high probability. These findings are
consistent with the recent simulation study of Bai and Perron (2006).
The question hence arises of how to construct valid confidence sets for the date of a

break when the break is, at least potentially, small. We follow the standard approach to
constructing confidence sets by inverting a sequence of tests; see, for instance, Lehmann
(1986, p. 90). This approach to confidence set construction has been used before in
nonstandard time series problems by Stock (1991) and Hansen (2000).
The idea is to test the sequence of null hypotheses that maintain the break to be at a

certain date. The hypotheses are judged by tests that allow for a break under the null
hypothesis at the maintained date, but that reject for breaks at other dates. If the
maintained break date is wrong, then there is a break at one of these other dates, and the
test rejects. The confidence set is the collection of all maintained dates for which the test
does not reject. By imposing invariance of the tests to the magnitude of the break at the
maintained date, we ensure that coverage of this confidence set remains correct for any
magnitude of the break, at least asymptotically. By a judicious choice of the efficient tests
we suggest inverting the critical values of the sequence of test statistics does not depend on
the maintained break date in the limit. The construction of a valid confidence set for the
break date of arbitrary magnitude can hence be generated by comparing a sequence of test
statistics with a single critical value.
In the next section we analytically investigate the coverage properties of the popular

method of obtaining confidence intervals when the magnitude of the break is small. This
motivates the need for a new method. The third section derives the test statistics to be
inverted. Section 4 evaluates the methods numerically for some standard small sample data
generating processes. Proofs are collected in an Appendix.
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2. Properties of standard confidence intervals when breaks are small

This paper considers the linear time series regression model

yt ¼ X 0tbþ 1½t4t0�X 0tdþ Z0tgþ ut; t ¼ 1; . . . ;T , (1)

where 1½�� is the indicator function, yt is a scalar, X t;b and d are k � 1 vectors, Zt and g are
p� 1, fyt;X t;Ztg are observed, t0, b, d and g are unknown and futg is a mean zero
disturbance. Define Qt ¼ ðX

0
t;Z
0
tÞ
0. Let ‘!

p
’ denote convergence in probability and ‘)’

convergence of the underlying probability measures as T !1 and let ½�� be the greatest
smaller integer function. For the asymptotic results, we impose the following regularity
condition on model (1):

Condition 1. (i) t0 ¼ ½r0T � for some 0or0o1.

(ii) T�1=2
P½sT �

t¼1X tut ) O1=2
1 W ðsÞ for 0pspr0 and T�1=2

P½sT �
t¼t0þ1 X tut ) O1=2

2 ðW ðsÞ �

W ðr0ÞÞ for r0psp1 with O1 and O2 some symmetric and positive definite k � k matrices
and W ð�Þ a k � 1 standard Wiener process.

(iii) sup0psp1kT
�1=2P½sT �

t¼1Ztutk ¼ Opð1Þ.

(iv)

T�1
X½sT �

t¼1

QtQ
0
t!

p
sSQ1 ¼ s

SX1 SXZ1

SZX1 SZ1

 !

uniformly in 0pspr0 and

T�1
X½sT �

t¼t0þ1

QtQ
0
t!

p
ðs� r0ÞSQ2 ¼ ðs� r0Þ

SX2 SXZ2

SZX2 SZ2

 !

uniformly in r0psp1, where SQ1 and SQ2 are full rank.

In the asymptotic analysis considered in this paper, the number of observations that
precede and follow the break are in the fixed proportion r0=ð1� r0Þ. This is standard in the
structural break literature, although recently alternative asymptotics have been considered
by Andrews (2003). With t0 ¼ ½r0T �, the data generated by this model necessarily becomes
a double array, as t0 depends on T, although we do not indicate this dependence on T to
enhance readability. Conditions (ii)–(iv) are standard high-level time series conditions, that
allow for heterogeneous and autocorrelated futg and regressors fQtg. Condition 1 also
accommodates regressions with only weakly exogenous regressors. As in Bai (1997b), both
the second moment of fQtg and the long-run variance of fQtutg are allowed to change at
the break date t0.

The state-of-the-art econometric method to obtain confidence intervals for t0 developed
by Bai (1997b) proceeds as follows: minimize the sum of squared residuals of the linear
regression (1) over all coefficient vectors and break dates. Denote the minimizing choice
for the break magnitude and break date by d̂ and t̂, respectively. A level C confidence
interval for t0 is then constructed as

½t̂� ½lð1þCÞ=2m� � 1; t̂� ½lð1�CÞ=2m� þ 1�, (2)
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where m ¼ d̂0O1d̂=ðd̂
0SX1d̂Þ

2 and lc is the 100c percentile of the distribution of an
absolutely continuous random variable whose distribution depends on two parameters
that can be consistently estimated by d̂0O2d̂=ðd̂

0O1d̂Þ and d̂0SX2d̂=ðd̂
0SX1d̂Þ—see Bai (1997b)

for details. In the special case where O1 ¼ O2 and SX1 ¼ SX2, lc is the 100c percentile of
the distribution of arg minsW ðsÞ � jsj=2. This distribution is symmetric, so that the level C

confidence interval becomes ½t̂� ½lð1þCÞ=2m� � 1; t̂þ ½lð1þCÞ=2m� þ 1� with m ¼ d̂0Od̂=
ðd̂0SX d̂Þ

2. Typically, Oi and SXi for i ¼ 1; 2 are unknown, but can be consistently
estimated. For expositional ease, we abstract from this additional estimation problem and
assume Oi and SXi known in the following discussion of the properties of the confidence
intervals (2).
As shown by Bai (1997b), intervals (2) are asymptotically valid when d ¼ T�1=2þ�d

for some 0o�o1
2 and da0. Although the magnitude of the break d shrinks under these

asymptotics, the generated breaks are still large in the sense that they will be detected with
probability one with any reasonable test for breaks: the neighborhood in which the tests of
Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994) and Elliott and Müller
(2006) have nontrivial local asymptotic power is where � ¼ 0. In other words, under
asymptotics that justify the confidence intervals (2) the p-values of any standard test for
breaks converge to zero. With 0o�o1

2
, there is ample information about the break in the

sense that it is obvious that there is a break, the only question concerns its exact date.
In fact, when 0o�o1

2, t̂=T is a consistent estimator of r0—see Bai (1997b). The break is
large enough to pinpoint down exactly its date in terms of the fraction of the sample. The
uncertainty that is described by the confidence interval (2) arises only because the break
date t0 is an order of magnitude larger than r0, since t0 ¼ ½Tr0�.
As argued above, it is unclear whether breaks typically encountered in practice are

necessarily large enough for this asymptotic analysis to yield satisfactory approximations.
The p-values of tests for breaks are never zero, and quite often indicate only borderline
significance. Also from an economic theory standpoint there is typically nothing to suggest
that breaks are necessarily large in the sense that their statistical detection is guaranteed.
This raises the question as to the accuracy of the approximation that underlies (2) when in
fact the break is smaller.
In order to answer this question, we consider the properties of the confidence interval (2)

when d ¼ T�1=2d, i.e. where � ¼ 0. These asymptotics provide more accurate representa-
tions of small samples in which the break size is moderate in the sense that p-values of tests
for breaks are typically significant, but not zero. This applies to large breaks in a relatively
small sample, or smaller breaks in a large sample. When kdk is very large, then the
probability of detecting the break is very close to one. One might hence think of
asymptotics with d ¼ T�1=2d as providing the continuous bridge between a stable linear
regression (when d ¼ 0) and one with a large break (kdk large).
In contrast to the setup with 0o�o1

2
, r0 is not consistently estimable when d ¼ T�1=2d

for any finite value of kdk. The reason is simply that if even efficient tests cannot
consistently determine whether there is a break (although for kdk large enough their
power will become arbitrarily close to one), there cannot exist a statistic that con-
sistently estimates a property of that break. In other words, the uncertainty about
the break date in asymptotics with d ¼ T�1=2d extends to the fraction r0. It is interesting
to note that running regression (1) with t0 replaced by t̂ and ignoring the fact
that t̂ is estimated will therefore not yield asymptotically correct inference about d and b,
in contrast to asymptotics where d ¼ T�1=2þ�d for some 0o�o1

2
.
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For expositional ease and to reduce the notational burden, the following proposition
establishes the asymptotic properties of the confidence interval (2) when d ¼ T�1=2d in the
special case where O1 ¼ O2 ¼ O and SQ1 ¼ SQ2 ¼ SQ ¼

SX

SZX

SXZ

SZ

� �
.

Proposition 1. For any 1
2
4l̄40, define for a standard k � 1 Wiener process W ð�Þ,

MðsÞ ¼ O1=2W ðsÞ þ 1½sXr0�ðs� r0ÞSX d,

GðsÞ ¼
MðsÞ0S�1X MðsÞ

s
þ
ðMð1Þ �MðsÞÞ0S�1X ðMð1Þ �MðsÞÞ

1� s
.

Then under Condition 1, when GðsÞ has a unique maximum with probability one on ½l̄; 1� l̄�,
O1 ¼ O2 ¼ O, SQ1 ¼ SQ2 ¼ SQ and d ¼ T�1=2d,

T�1ðt̂;mÞ ) r̂a;
d̂0aOd̂a

ðd̂0aSX d̂aÞ
2

 !
,

where t̂ minimizes the sum of squared residuals in the linear regression (1) with t0 replaced by

t over all t 2 ðl̄T ; ð1� l̄ÞTÞ and

r̂a ¼ arg max
l̄psp1�l̄

GðsÞ,

d̂a ¼ S�1X

r̂aMð1Þ �Mðr̂aÞ

r̂að1� r̂aÞ
.

Several comments can be made regarding Proposition 1. First, in the statement of the
proposition, the potential choices of the break date are trimmed away from the endpoints.
Such trimming is standard in the literature on tests for breaks (Andrews, 1993; Andrews
and Ploberger, 1994).

Second, the margin of error of the confidence intervals (2) is m�T (i.e. m ¼ OpðTÞ and m

is not opðTÞ). As discussed, the uncertainty about the break date under these local
asymptotics extends to uncertainty about r0. Although the confidence intervals (2) have
not been constructed for this case, they automatically adapt and cover (with probability
one) a positive fraction of all possible break dates asymptotically.

Third, note that the asymptotic distribution of T�1ðt̂;mÞ is the same for d ¼ d0 and
d ¼ �d0 for any d0, so that asymptotic coverage properties are symmetric in the sign of the
break.

Finally, the asymptotic distribution of ðt̂� t0Þ=m is no longer given by
argminsW ðsÞ � jsj=2, but it depends on r0, O and SX in a complicated way. It is hence
not possible to construct asymptotically justified confidence intervals for local asymptotics
by adding and subtracting the margin of error m from t̂. The precise magnitude of the
effects and whether the confidence interval (2) undercovers or overcovers are unclear and
require a numerical evaluation.

Table 1 depicts the asymptotic coverage rates of nominal 95% confidence intervals (2)
for k ¼ 1, O ¼ SX ¼ 1 and various values of d and r0, along with the asymptotic local
power of a 5%-level Nyblom (1989) test for a break in b. The trimming parameter l̄ is set
to l̄ ¼ 0:05; smaller values of l̄ lead to worse coverage for breaks with dp8, while leaving
results for larger breaks largely unaffected. For d ¼ 8, coverage rates are below 88%, and
much smaller still for d ¼ 4. This is despite the fact that breaks with d ¼ 8 have a high
probability of being detected with Nyblom’s tests for breaks, at least as long as they do not
occur close to the beginning or end of the sample. The asymptotic distribution of p-values



ARTICLE IN PRESS

Table 1

Local asymptotic properties of Bai’s (1997b) CIs

d r0 ¼ 0:5 r0 ¼ 0:35 r0 ¼ 0:2

Cov. Nybl. Cov. Nybl. Cov. Nybl.

4 0.711 0.438 0.707 0.375 0.700 0.204

8 0.877 0.953 0.870 0.915 0.840 0.651

12 0.923 1.000 0.918 0.999 0.907 0.956

16 0.936 1.000 0.939 1.000 0.930 0.999

For each r0, the first column is asymptotic coverage of the confidence intervals (2), and the second column is local

asymptotic power of the 5%-level Nyblom (1989) test for the presence of a break. Based on 10,000 replications

with 1000 step approximations to continuous time processes.

G. Elliott, U.K. Müller / Journal of Econometrics 141 (2007) 1196–12181202
of the Nyblom test for d ¼ 4 and r0 ¼ 0:35 is such that 17% are below 1%, 20% are
between 1% and 5% and 13% are between 5% and 10%. This corresponds at least roughly
to the distribution of p-values found by Stock and Watson (1996) for the stability of 76
macroseries, although this comparison obviously suffers from the lack of independence of
the macroseries. When d ¼ 16, which corresponds to a break that is big enough to be
almost always detected, the asymptotic approximation that justifies (2) seems to become
more accurate, as effective coverage rates become closer to the nominal level.
Returning to the example of US GDP growth introduced in the Introduction, suppose

one wanted to date a break in mean growth with a sample of T ¼ 180 quarterly
observations. When quarterly growth is i.i.d. with unit variance (which roughly
corresponds to the sample variance), then d ¼ 12 corresponds to a break in the quarterly
growth rate of 12ffiffiffiffiffiffi

180
p ¼ 0:89 percentage points. For the asymptotic approximation

underlying (2) to be somewhat accurate, the break in mean growth has hence to be larger
than 3.5% on a yearly basis!
This asymptotic analysis suggests that the standard way of constructing confidence

intervals based on (2) leads to substantial undercoverage when the magnitude of the break
is not very large, but large enough to be detected with high probability by a test for
structural stability. A small sample Monte Carlo study in Section 4 below confirms this to
be an accurate prediction for some standard data generating processes.

3. Valid confidence sets for small breaks

As shown in the preceding analysis, the standard method for constructing a confidence
interval for the date of a break in the coefficient of a linear regression does not control
coverage when the break is small. At the same time, small breaks are often plausible from a
theoretical point of view and are found to be relevant empirically. This raises the question
of how to construct confidence sets that maintain nominal coverage rates when breaks are
small or large.
A level C confidence set can be thought of as a collection of parameter values that

cannot be rejected with a level 1� C hypothesis test; see, for instance, Lehmann (1986,
p. 90). In standard setups, estimators are asymptotically unbiased and Gaussian with a
variance that, at least locally, does not depend on the parameter value. If one bases the
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sequence of tests on this estimator, the set of parameter values for which the test does not
reject becomes a symmetric interval around the parameter estimator.

The problem at hand is not standard in this sense, as the asymptotic distribution of the
estimator r̂ is not Gaussian centered around r0—see Proposition 1 above. What is more,
the asymptotic distribution of r̂ depends on r0 in a highly complicated fashion. Basing valid
tests for specific values of r0 (or equivalently t0) on r̂ therefore becomes a difficult
endeavor. But this does not alter the fact that a valid level C confidence set for t0 can be
constructed by inverting a sequence of level ð1� CÞ tests, each maintaining that under the
null hypothesis, the true break date t0 coincides with the maintained break date tm, i.e.
H0: t0 ¼ tm for tm ¼ 1; . . . ;T . As long as the test with the true null hypothesis has correct
level, the resulting confidence set has correct coverage, as the probability of excluding the
true value t0 is identical to the type I error of the employed significance test. For tests with
tmat0, the break occurs at a date different from the maintained break. Tests that reject
with high probability when faced with a break that occurs at a date other than the
maintained break date tm will result in short confidence sets. The more powerful the tests
are against this alternative, the shorter the confidence set becomes on average (cf. Pratt,
1961).

Confidence sets for the break date of the coefficient in a linear regression model hence
can be obtained by inverting a sequence of hypothesis tests of the null hypothesis of a
maintained break at date tm against the alternative that the break occurs at some other
date

H0: t0 ¼ tm against H1: t0atm. (3)

The construction of these tests faces three challenges: (I) Their rejection probability under
the null hypothesis must not exceed the level for any value of the break size d. (II) It is
powerful against alternatives where t0atm. (III) A practical (but not conceptual)
complication is that the critical value of test statistics of (3) will typically depend on the
maintained break date tm. For the construction of a confidence set, one would hence need
to compute T test statistics, and compare them to T different critical values, which is highly
cumbersome.

Consider these complications in turn. First, concerning (I), in order to control the
rejection probability under the null hypothesis for any value of d, we impose invariance of
the test to transformations of yt that correspond to varying d. Specifically, we consider
tests that are invariant to transformations of the data

fyt;X t;Ztg ! fyt þ X 0tb0 þ 1½t4tm�X 0td0 þ Z0tg0;X t;Ztg for all b0; d0; g0. (4)

When fX t;Ztg is strictly exogenous, this invariance requirement will make the distribution
of the test statistic independent of the values of b, g and d under the null hypothesis. But
even if fX t;Ztg is not strictly exogenous, the asymptotic null distribution of the invariant
test statistics will still be independent of b, g and d under Condition 1, as shown in
Proposition 3 below. For a scalar AR(1) process with no Zt and X t ¼ yt�1, for instance,
the requirement of invariance to the transformations fyt; yt�1g ! fyt � b0yt�1; yt�1g for all
b0 amounts to the sensible restriction that the stability of the regression of fytg on fyt�1g

should not be decided differently than the stability of the regression of fDytg on fyt�1g. In
practice, the invariance will be achieved by basing tests on OLS residuals of regression (1)
with t0 replaced by tm.
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Second, in order to ensure that the tests to be inverted are powerful (II), one would like
to choose the most powerful test of (3). For the construction of efficient tests based on the
Neyman–Pearson lemma, one needs an assumption concerning the distribution of the
disturbance futg and other properties of model (1).

Condition 2. (i) ut is i.i.d. Nð0;s2Þ.
(ii) futg

T
t¼1 and fQtg

T
t¼1 are independent.

Part (i) of the condition specifies the distribution of futg to be Gaussian. Only the
efficiency of the following test depends on this (often unrealistic) assumption, but not the
validity of the resulting test. In fact, the asymptotic local power of the efficient test tailor-
made for Gaussian disturbances turns out to be the same for all models with i.i.d.
innovations of variance s2. The assumption of Gaussianity of futg for the construction of
efficient tests is least favorable in this sense. If futg were serially correlated with known
correlation structure, then efficient tests would be constructed from the GLS transforma-
tion of the model. This will result in a different small sample optimal test, which will in
general have higher power even asymptotically.
Part (ii) of Condition 2 requires Qt to be strictly exogenous. To the best of our

knowledge, all small sample optimality results for invariant tests, such as those derived in
Andrews et al. (1996) and Forchini (2002), make this assumption. Again, Condition 2 (ii) is
only required for the small sample efficiency of the test derived in Proposition 2 below; the
test remains asymptotically valid under much weaker assumptions, which include models
with weakly exogenous fX t;Ztg.
Unfortunately, even under Condition 2, a uniformly most powerful test does not exist,

as efficient test statistics depend on both the true break date t0 and d, both of which are
unknown. In fact, under the invariance requirement (4), the parameter d that describes the
magnitude of the break under the alternative is not identified under the null hypothesis, as
the distribution of any maximal invariant to (4) does not depend on d (at least in the case
of strictly exogenous fX t;Ztg). As in Andrews and Ploberger (1994), we therefore consider
tests that maximize weighted average power: a test j is an efficient level a test j� of t0 ¼ tm
against t0atm when it maximizes the weighted average power criterionX

tatm

wt

Z
Pðj rejectsjt0 ¼ t; d ¼ dÞdntðdÞ (5)

over all tests which satisfy Pðj rejects jt0 ¼ tmÞ ¼ a, where fwtg
T
t¼1 is a sequence of

nonnegative real numbers, and fntg
T
t¼1 is a sequence of nonnegative measures on Rk. The

prespecified sequences fwtg
T
t¼1 and fntg

T
t¼1 direct the power towards alternatives of certain

dates t0 and break magnitudes, respectively. From a Bayesian perspective, the weights fwtg

and fntg, suitably normalized to ensure their integration to one, can be interpreted as
probability measures: if t0 and d were random and followed these distributions under the
alternative, then j� is the most powerful test against this (single) alternative.
The efficient tests depend on the weighting functions fwtg and fntg, so the question is how

to make a suitable choice. As demonstrated in Elliott and Müller (2006), however, the
power of tests for structural stability does not greatly depend on the specific choice of
weights, at least as long as they do not concentrate too heavily on specific values for t0 and
d. With power roughly comparable for alternative weighting schemes, ease of computation
becomes arguably a relevant guide.
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A solution to the final complication (III), the dependence of the critical value of the
sequence of tests on the maintained break date, can hence be generated by a judicious
choice of the weighting functions with little cost in terms of inadequate power properties.
Specifically, consider measures of the break size nt that are probability measures of mean
zero k � 1 Gaussian vector with covariance matrix b2Ht, where

Ht ¼
t�2m O�11 for totm
ðT � tmÞ

�2O�12 for t4tm

(
and wt ¼ 1 8tatm. (6)

This choice of weighting functions puts equal weight on alternative break dates.
Furthermore, the direction of the break as measured by the covariance matrix of the
measures nt is proportional to the long-run covariance matrix of fX tutg (which depends on
whether totm or t4tm). The magnitude of the potential break is piecewise constant before
and after the maintained break date tm. Even if O1 ¼ O2, the break size will not be
identical, though, but depends on tm: when tm is close to T, for instance, then this choice
of nt puts less weight on large breaks that occur prior to tm compared to those that occur
after.

While not altogether indefensible, this choice of weighting scheme is mostly motivated
by the fact that the resulting efficient test statistic has an asymptotic distribution that does
not depend on tm. This makes the construction of an (asymptotically) valid confidence set
especially simple, as the sequence of test statistics can be compared to a single critical
value, as in Hansen (2000).

Proposition 2. Under Condition 2, the locally best test with respect to b2 of (3) that is

invariant to (4) and that maximizes the weighted average power (5) with weighting functions

(6) rejects for large values of the statistic

UT ðtmÞ ¼ t�2m

Xtm
t¼1

Xt

s¼1

vs

 !0
O�11

Xt

s¼1

vs

 !

þ ðT � tmÞ
�2

XT

t¼tmþ1

Xt

s¼tmþ1

vs

 !0
O�12

Xt

s¼tmþ1

vs

 !
, ð7Þ

where vt ¼ X tet and et are the residuals of the ordinary least-squares regression (1) with t0
replaced by tm.

Busetti and Harvey (2001) and Kurozumi (2002) suggest a specialized version of UT ðtmÞ
for constant and trending fX tg as a test statistic for the null of stationarity under a
maintained break at date tm, although they do not derive optimality properties. The locally
best test against martingale variation in the coefficients of a linear regression model has
been derived by Nyblom (1989). Specialized to the test of a single break of random
magnitude and occurring at a random time (which results in a martingale for the now
random coefficient), the usual Nyblom statistic applied to a stable linear regression model
puts equal probability on the break occurring at all dates, and the covariance matrix of the
break size is constant. It is possible to apply the Nyblom statistic to the breaking regression
model (1) with t0 replaced by the maintained break date tm, although one would not
recover the asymptotic distribution derived by Nyblom (1989), as the regressor
f1½t4tm�X tg does not satisfy the necessary regularity conditions.
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From this perspective, the weighting scheme (6) can be understood as yielding the sum of
two Nyblom statistics, at least when there is no Zt: one for the regression for t ¼ 1; . . . ; tm
and one for the regression t ¼ tm þ 1; . . . ;T . This makes perfect intuitive sense: when the
maintained break tm is not equal to the true break date t0, there is one break either prior or
after tm. One way to test this is to use a Nyblom statistic for the (under the null hypothesis
stable) standard regression model for t ¼ 1; . . . ; tm, and another Nyblom statistic for the
(under the null hypothesis also stable) standard regression model for t ¼ tm þ 1; . . . ;T .
Proposition 2 shows that this procedure does not only make intuitive sense, but is also
optimal for the weighting scheme (6).
As described in Proposition 2, the test statistic UT ðtmÞ is not a feasible statistic, as O1

and O2 are typically unknown. But under the null hypothesis of t0 ¼ tm, under weak
regularity conditions on X t and ut, O1 and O2 can typically be consistently estimated by
any standard long-run variance estimator applied to fvtg

tm
t¼1 and fvtg

T
t¼tmþ1—for primitive

conditions see, for instance, Newey and West (1987) or Andrews (1991). Denote by ÛT ðtmÞ
the statistic UT ðtmÞ with O1 and O2 replaced by such estimators Ô1 and Ô2.

Proposition 3. If Ô1!
p
O1 and Ô2!

p
O2, then under Condition 1

ÛT ðt0Þ )
Z 1

0

BðsÞ0BðsÞds,

where BðsÞ is a ð2kÞ � 1 vector standard Brownian bridge.

The distribution of the integral of a squared Brownian bridge has been studied by
MacNeill (1978) and Nabeya and Tanaka (1988). For convenience, critical values of
ÛT ðtmÞ for k ¼ 1; . . . ; 6 are reproduced in Table 2.
As required, the asymptotic null distribution of ÛT ðtmÞ does not depend on d. For any

size of break d, the collection of values of tm ¼ 1; . . . ;T for which the test ÛT ðtmÞ does not
exceed its asymptotic critical value of significance level ð1� CÞ hence has asymptotic
coverage C, i.e. is a valid confidence set: the only way the true value is excluded from this
confidence set is when ÛT ðtmÞ ¼ ÛT ðt0Þ exceeds the critical value. Note that this in
particular implies that the confidence set is valid under asymptotics with d ¼ T�1=2d for
some fixed d, in contrast to the confidence interval (2).
In detail, one proceeds as follows:
�

Tab

Cri

k (

10

5

1

Bas
For any tm ¼ pþ 2k þ 1; . . . ;T � p� 2k � 1, compute the least-squares regression of
fytg

T
t¼1 on fX t; 1½t4tm�X t;Ztg

T
t¼1.
�
 Construct fvtg
T
t¼1 ¼ fX tetg

T
t¼1, where et are the residuals from this regression.
le 2

tical values of ÛT ðtmÞ

%) 1 2 3 4 5 6

0.600 1.063 1.482 1.895 2.293 2.692

0.745 1.238 1.674 2.117 2.537 2.951

1.067 1.633 2.118 2.570 3.036 3.510

ed on 50,000 replications and 1000 step approximations to continuous time processes.
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�

Ta

Em

r0 ¼

ÛT

ÛT

Ba

Ba

Ba

Ny

r0 ¼

ÛT

ÛT

Ba

Ba

Ba

Ny

r0 ¼

ÛT

ÛT

Ba

Ba

Ba

Ny

Th

pro

Ny

cri
Compute the long-run variance estimators Ô1 and Ô2 of fvtg
tm
t¼1 and fvtg

T
t¼tmþ1,

respectively. An attractive choice is to use the automatic bandwidth estimators of
Andrews (1991) or Andrews and Monahan (1992). If it is known that O1 ¼ O2, then it is
advisable to rely instead on a single long-run variance estimator Ô based on fvtg

T
t¼1.
�
 Compute ÛT ðtmÞ as in (7) with O1 and O2 replaced by Ô1 and Ô2, respectively.

�
 Include tm in the level C confidence set when ÛT ðtmÞocv1�C and exclude it otherwise,

where cv1�C is the level ð1� CÞ critical value of the statistic ÛT ðtmÞ from Table 2.

There is no guarantee that this method yields contiguous confidence sets. The reason for
this is straightforward. The confidence set construction procedure looks for dates that are
compatible with no breaks elsewhere. When the break is small, there may be a number of
possible regions for dates that appear plausible candidates for the break. The confidence
set includes all these regions. Note that this is not a sign that there are multiple breaks, but
rather that the exact date of one break is difficult to determine. A confidence set with good
coverage properties will reflect this uncertainty.

It is also possible that the confidence set is empty—this will happen when the test rejects
for each possible break date. When the model contains multiple large breaks, this will
ble 3

pirical small sample coverage and length of confidence sets: model (M1): constant regressor, i.i.d. disturbances

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

0:5

ðtmÞ.eq 0.949 77.7 0.949 42.4 0.949 22.1 0.949 15.1

ðtmÞ.neq 0.950 77.2 0.950 42.3 0.950 22.7 0.950 15.8

i.eq 0.698 54.5 0.890 33.1 0.940 17.0 0.959 10.5

i.het 0.698 54.5 0.890 33.1 0.940 17.0 0.959 10.5

i.hneq 0.686 53.0 0.882 33.1 0.938 17.0 0.956 10.5

blom 0.428 0.948 1.000 1.000

0:35

ðtmÞ.eq 0.952 79.0 0.952 44.3 0.952 22.5 0.952 15.0

ðtmÞ.neq 0.954 78.7 0.954 44.1 0.954 23.1 0.954 15.7

i.eq 0.692 52.5 0.878 32.8 0.937 17.1 0.962 10.5

i.het 0.692 52.5 0.878 32.8 0.937 17.1 0.962 10.5

i.hneq 0.676 50.8 0.873 32.6 0.932 17.1 0.959 10.5

blom 0.366 0.902 0.999 1.000

0:2

ðtmÞ.eq 0.949 83.2 0.949 55.7 0.949 27.1 0.949 15.3

ðtmÞ.neq 0.951 83.3 0.951 56.1 0.951 27.9 0.951 16.2

i.eq 0.660 46.8 0.851 31.3 0.926 17.4 0.955 10.7

i.het 0.660 46.8 0.851 31.3 0.926 17.4 0.955 10.7

i.hneq 0.631 44.4 0.832 30.2 0.914 17.0 0.947 10.5

blom 0.189 0.617 0.939 0.997

e model is yt ¼ bþ dT�1=21½t4½r0T �� þ ut, ut�iid Nð0; 1Þ, T ¼ 100. Cov. and Lgth. refer to the coverage

bability and average number of dates in the confidence sets of the various methods described in the text.

blom indicates the rejection probability of 5%-level Nyblom (1989) test for stability of b, using the asymptotic

tical value. Based on 10,000 replications.
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happen asymptotically with probability one. In practice then one would take this as a
signal that the maintained model of a single break is not appropriate for the data. The
converse situation, where there are no breaks, will result in confidence sets that suggest a
break could be anywhere and so for models without a break most dates will be included in
the confidence set. The reason for this is that the test, looking for a break in the sample
away from the maintained break date, will fail to reject with probability equal to one
minus the level of the test. Also this property makes sense. If there is weak to no evidence
of a break, then a procedure that tries to locate the break finds it could be anywhere.

4. Small sample evaluation

This section explores the small sample properties of the confidence sets suggested here
and those derived in Bai (1997b). We find that the analytic results of Section 2 accurately
predict the performance of Bai’s (1997b) confidence intervals, as they tend to substantially
and systematically undercover when the break magnitude is not very large. In most
practical applications this renders these intervals uninterpretable. Since we do not know a
priori the size of the break, we cannot tell whether the intervals provide an accurate idea as
Table 4

Empirical small sample coverage and length of confidence sets: model (M2): constant regressor, disturbances with

breaking variance

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

r0 ¼ 0:5

ÛT ðtmÞ.eq 0.936 85.1 0.936 68.8 0.936 46.0 0.936 29.1

ÛT ðtmÞ.neq 0.950 85.4 0.950 67.5 0.950 44.6 0.950 28.6

Bai.eq 0.572 54.2 0.735 49.5 0.846 34.9 0.894 22.5

Bai.het 0.572 54.2 0.735 49.5 0.846 34.9 0.894 22.5

Bai.hneq 0.614 53.5 0.762 47.5 0.869 34.8 0.918 23.0

Nyblom 0.204 0.613 0.922 0.996

r0 ¼ 0:35

ÛT ðtmÞ.eq 0.963 87.5 0.963 74.5 0.963 53.6 0.963 34.9

ÛT ðtmÞ.neq 0.954 86.9 0.954 71.4 0.954 48.6 0.954 30.7

Bai.eq 0.562 60.1 0.735 55.7 0.856 40.8 0.906 26.6

Bai.het 0.562 60.1 0.735 55.7 0.856 40.8 0.906 26.6

Bai.hneq 0.584 53.7 0.747 45.9 0.866 34.5 0.916 23.5

Nyblom 0.135 0.469 0.834 0.983

r0 ¼ 0:2

ÛT ðtmÞ.eq 0.978 90.2 0.978 83.2 0.978 69.0 0.978 49.9

ÛT ðtmÞ.neq 0.951 89.3 0.951 80.6 0.951 64.4 0.951 44.4

Bai.eq 0.550 62.4 0.694 55.7 0.829 43.4 0.904 30.6

Bai.het 0.550 62.4 0.694 55.7 0.829 43.4 0.904 30.6

Bai.hneq 0.552 54.6 0.681 43.5 0.814 32.1 0.897 23.3

Nyblom 0.071 0.196 0.442 0.717

The model is yt ¼ bþ dT�1=21½t4½r0T �� þ ut, ut ¼ ð1þ 1½t4½r0T ��Þet, et�iid Nð0; 1Þ;T ¼ 100. The notes of

Table 3 apply.
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to the uncertainty in the data over the break date. A comparison of confidence set lengths
reveals that confidence sets constructed by inverting the sequence of tests based on ÛT ðtmÞ
tend to be somewhat longer even for breaks that are large enough for Bai’s (1997b) method
to yield adequate coverage. At the same time, effective coverage rates of confidence sets
constructed by inverting the tests ÛT ðtmÞ are very reliable and thus can be interpreted in
the usual way.

The small sample data generating processes we consider are special cases of model (1)

yt ¼ X 0tbþ 1½t4t0�X 0tdþ Z0tgþ ut; t ¼ 1; . . . ;T (8)

with T ¼ 100. Specifically, we consider six models: (M1) a break in the mean, such that
X t ¼ 1 and there is no Zt, and i.i.d. Gaussian disturbances futg; (M2) same as model (M1),
but with disturbances that are independent Gaussian with a variance that quadruples at
the break date; (M3) same as model (M1), but with disturbances that are a mean zero
stationary Gaussian AR(1) with coefficient 0.3; (M4) same as model (M1), but with
disturbances that are a mean zero stationary Gaussian MA(1) with coefficient �0:3; (M5)
fX tg a mean zero stationary Gaussian AR(1) with coefficient 0.5 and unit variance, Zt ¼ 1
and i.i.d. Gaussian disturbances futg independent of fX tg; (M6) a heteroskedastic version
Table 5

Empirical small sample coverage and length of confidence sets: model (M3): constant regressor, AR(1)

disturbances

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

r0 ¼ 0:5

ÛT ðtmÞ.eq 0.965 82.6 0.965 58.2 0.965 38.4 0.965 30.2

ÛT ðtmÞ.neq 0.971 81.2 0.971 57.9 0.971 42.3 0.971 37.9

Bai.eq 0.734 55.8 0.890 32.2 0.942 16.5 0.962 10.2

Bai.het 0.734 55.8 0.890 32.2 0.942 16.5 0.962 10.2

Bai.hneq 0.708 53.7 0.874 33.0 0.930 17.1 0.952 10.6

Nyblom 0.359 0.884 0.994 1.000

r0 ¼ 0:35

ÛT ðtmÞ.eq 0.963 83.2 0.963 59.7 0.963 39.1 0.963 30.3

ÛT ðtmÞ.neq 0.970 82.3 0.970 60.8 0.970 45.1 0.970 40.5

Bai.eq 0.727 54.2 0.880 31.9 0.937 16.6 0.965 10.3

Bai.het 0.727 54.2 0.880 31.9 0.937 16.6 0.965 10.3

Bai.hneq 0.691 51.2 0.860 32.2 0.922 17.1 0.953 10.6

Nyblom 0.298 0.810 0.982 0.998

r0 ¼ 0:2

ÛT ðtmÞ.eq 0.965 85.8 0.965 68.7 0.965 47.8 0.965 34.6

ÛT ðtmÞ.neq 0.970 85.9 0.970 72.9 0.970 59.9 0.970 53.9

Bai.eq 0.710 49.7 0.857 31.0 0.928 17.0 0.961 10.5

Bai.het 0.710 49.7 0.857 31.0 0.928 17.0 0.961 10.5

Bai.hneq 0.644 44.0 0.815 29.4 0.896 16.9 0.942 10.6

Nyblom 0.149 0.455 0.762 0.905

The model is yt ¼ bþ dT�1=21½t4½r0T �� þ ut, ut ¼ 0:3ut�1 þ et, et�iid Nð0; 0:49Þ, T ¼ 100. The notes of Table 3

apply.
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of (M5), where the disturbances futg are given by fetjX tjg, where fetg are i.i.d. Gaussian
independent of fX tg. The variance of the disturbances is normalized throughout such that
the long-run variance O1 of fX tutg prior to the break is unity (that is, the spectral density of
the stationary process fX tutg of the prebreak data generating process evaluated at zero
is 1=ð2pÞ).
In models with uncorrelated fX tutg, i.e. (M1), (M2), (M5) and (M6), we estimate

variances rather than long-run variances of fX tutg. For models (M3) and (M4), we employ
in all methods the Andrews and Monahan (1992) AR(1) prewhitened second stage
automatic bandwidth quadratic spectral estimator, where the bandwidth selection is based
on an AR(1) model. We consider a version of ÛT ðtmÞ that imposes equivalence of the long-
run variances of fX tutg prior to and after the break, O1 ¼ O2, denoted by ÛT ðtmÞ.eq, and
one that does not, denoted by ÛT ðtmÞ.neq. While ÛT ðtmÞ is automatically robust against
heteroskedasticity, this is not the case for the basic Bai confidence set (2). We therefore
compute three versions of Bai confidence sets: one imposing both O1 ¼ O2 and
homoskedasticity (Bai.eq), one imposing O1 ¼ O2 but allowing for heteroskedasticity
(Bai.het) and one allowing for both O1aO2 and heteroskedasticity (Bai.hneq). In models
(M1)–(M4), of course, Bai.eq ¼ Bai.het.
Table 6

Empirical small sample coverage and length of confidence sets: model (M4): constant regressor, MA(1)

disturbances

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

r0 ¼ 0:5

ÛT ðtmÞ.eq 0.975 82.7 0.975 55.0 0.975 31.2 0.975 21.1

ÛT ðtmÞ.neq 0.978 81.8 0.978 54.5 0.978 32.6 0.978 23.3

Bai.eq 0.685 57.2 0.893 38.7 0.950 20.6 0.967 12.6

Bai.het 0.685 57.2 0.893 38.7 0.950 20.6 0.967 12.6

Bai.hneq 0.684 57.0 0.887 39.4 0.943 21.0 0.959 12.9

Nyblom 0.291 0.875 0.998 1.000

r0 ¼ 0:35

ÛT ðtmÞ.eq 0.976 83.4 0.976 57.0 0.976 31.8 0.976 21.1

ÛT ðtmÞ.neq 0.977 82.7 0.977 56.9 0.977 33.7 0.977 23.7

Bai.eq 0.674 54.4 0.886 37.8 0.948 20.6 0.966 12.6

Bai.het 0.674 54.4 0.886 37.8 0.948 20.6 0.966 12.6

Bai.hneq 0.674 54.3 0.880 38.3 0.939 21.0 0.957 12.9

Nyblom 0.235 0.797 0.992 1.000

r0 ¼ 0:2

ÛT ðtmÞ.eq 0.972 86.2 0.972 67.6 0.972 40.3 0.972 22.8

ÛT ðtmÞ.neq 0.976 86.0 0.976 69.1 0.976 44.9 0.976 28.4

Bai.eq 0.654 48.0 0.845 34.2 0.931 20.5 0.956 12.8

Bai.het 0.654 48.0 0.845 34.2 0.931 20.5 0.956 12.8

Bai.hneq 0.640 48.0 0.830 34.4 0.917 20.8 0.946 13.0

Nyblom 0.113 0.433 0.820 0.978

The model is yt ¼ bþ dT�1=21½t4½r0T �� þ ut, ut ¼ et � 0:3et�1, et�iid Nð0; 2:04Þ, T ¼ 100. The notes of Table 3

apply.
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Table 7

Empirical small sample coverage and length of confidence sets: model (M5): stochastic regressor, i.i.d.

disturbances

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

r0 ¼ 0:5

ÛT ðtmÞ.eq 0.954 79.7 0.954 51.7 0.954 31.0 0.954 21.9

ÛT ðtmÞ.neq 0.955 79.1 0.955 51.2 0.955 32.0 0.955 23.5

Bai.eq 0.699 54.7 0.856 33.7 0.899 17.5 0.902 10.7

Bai.het 0.682 51.8 0.842 31.9 0.889 16.8 0.893 10.4

Bai.hneq 0.647 49.6 0.819 32.2 0.873 17.3 0.886 10.7

Nyblom 0.373 0.882 0.994 1.000

r0 ¼ 0:35

ÛT ðtmÞ.eq 0.953 80.5 0.953 54.0 0.953 32.1 0.953 22.2

ÛT ðtmÞ.neq 0.954 80.2 0.954 53.9 0.954 33.3 0.954 23.9

Bai.eq 0.693 53.1 0.856 33.3 0.896 17.6 0.903 10.8

Bai.het 0.671 50.3 0.841 31.6 0.885 16.9 0.896 10.5

Bai.hneq 0.639 47.7 0.820 31.6 0.866 17.3 0.880 10.7

Nyblom 0.313 0.803 0.978 0.998

r0 ¼ 0:2

ÛT ðtmÞ.eq 0.954 83.3 0.954 63.6 0.954 41.4 0.954 27.3

ÛT ðtmÞ.neq 0.958 83.8 0.958 65.1 0.958 44.0 0.958 30.4

Bai.eq 0.666 48.4 0.819 31.8 0.881 18.0 0.900 11.0

Bai.het 0.650 46.1 0.803 30.2 0.870 17.2 0.893 10.7

Bai.hneq 0.601 42.6 0.760 28.8 0.832 17.2 0.865 10.8

Nyblom 0.169 0.505 0.782 0.914

The model is yt ¼ X tbþ dT�1=2X t1½t4½r0T �� þ gþ ut, ut�iid Nð0; 1Þ, X t ¼ 0:5X t�1 þ xt, xt�iid Nð0; 0:75Þ,
T ¼ 100. The notes of Table 3 apply.
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Tables 3–8 show the empirical coverage rates and average confidence set lengths for the
confidence interval (2) and confidence sets constructed by inverting the test statistics

ÛT ðtmÞ as described in Section 3, based on 10,000 replications. In all experiments, we
consider confidence sets of 95% nominal coverage, and breaks that occur at date ½r0T �,
where r0 ¼ 0:5, 0:35 and 0:2. The tables also include the rejection probability of a 5%-level
Nyblom test for the presence of a break in b, i.e. based on the test statistic

Ny ¼ T�2
PT

t¼1ð
Pt

s¼1X sûsÞ
0Ô�1ð

Pt
s¼1X sûsÞ, where ût are the residuals of a regression of

fytg on fX t;Ztg, Ô ¼ T�1
PT

t¼1û
2
t X tX

0
t in models without autocorrelation and in models

(M3) and (M4), Ô is Andrews and Monahan’s (1992) long-run variance estimator of
fX tûtg. The Nyblom test is based on the asymptotic critical value; unreported results show
size control to be very reasonable.

Overall, the small sample results confirm the asymptotic results of Section 2: the Bai
method fails to cover the true break date with the correct probability so long as the break is
small. For all six models and three break dates, the usual method for constructing
confidence intervals has coverage far below nominal coverage whenever the break is small
enough for the Nyblom statistic to have power substantially below one. For example, in
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Table 8

Empirical small sample coverage and length of confidence sets: model (M6): stochastic regressor, heteroskedastic

disturbances

d ¼ 4 d ¼ 8 d ¼ 12 d ¼ 16

Cov. Lgth. Cov. Lgth. Cov. Lgth. Cov. Lgth.

r0 ¼ 0:5

ÛT ðtmÞ.eq 0.959 78.6 0.959 47.5 0.959 27.7 0.959 20.0

ÛT ðtmÞ.neq 0.964 77.7 0.964 46.5 0.964 28.5 0.964 21.4

Bai.eq 0.547 27.4 0.745 12.7 0.857 6.9 0.921 4.8

Bai.het 0.742 53.9 0.879 29.0 0.938 15.0 0.969 9.4

Bai.hneq 0.674 48.1 0.849 27.6 0.923 14.6 0.958 9.1

Nyblom 0.413 0.922 0.996 1.000

r0 ¼ 0:35

ÛT ðtmÞ.eq 0.959 79.5 0.959 49.6 0.959 28.9 0.959 20.5

ÛT ðtmÞ.neq 0.964 78.8 0.964 48.6 0.964 29.3 0.964 21.7

Bai.eq 0.544 27.2 0.742 12.8 0.848 7.0 0.922 4.8

Bai.het 0.736 52.7 0.878 29.0 0.939 15.1 0.970 9.4

Bai.hneq 0.665 46.0 0.843 27.0 0.916 14.4 0.958 9.1

Nyblom 0.349 0.857 0.987 0.999

r0 ¼ 0:2

ÛT ðtmÞ.eq 0.956 82.7 0.956 59.9 0.956 36.9 0.956 24.4

ÛT ðtmÞ.neq 0.965 82.9 0.965 59.9 0.965 37.9 0.965 26.1

Bai.eq 0.515 27.6 0.712 13.5 0.844 7.2 0.914 4.9

Bai.het 0.716 50.1 0.852 28.8 0.930 15.5 0.965 9.6

Bai.hneq 0.629 41.4 0.795 24.5 0.900 13.8 0.947 8.7

Nyblom 0.191 0.556 0.825 0.934

The model is yt ¼ X tbþ dT�1=2X t1½t4½r0T �� þ gþ ut, ut ¼ etjX tj, et�iid Nð0; 0:333Þ, X t ¼ 0:5X t�1 þ xt,

xt�iid Nð0; 0:75Þ, T ¼ 100. The notes of Table 3 apply.
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model (M2) with r0 ¼ 0:35 and d ¼ 8, the Nyblom test rejects for half of the samples, yet
confidence intervals based on (2) have coverage below 75%. When power of the test for a
break gets closer to one, coverage of these confidence intervals is closer but not necessarily
at the nominal 95% rate. For example, in model (M5) with r0 ¼ 0:35 and d ¼ 12, the
Nyblom test rejects the null hypothesis of no break 98% of the time, yet coverage for these
confidence intervals is still below 90%. It is only when the breaks are large enough to be
essentially always detected that empirical coverage of the Bai confidence intervals equals
nominal coverage.
For the cases where coverage is not controlled, there is no way of comparing the average

lengths of the confidence sets. However, it is clear from the experiments that the
undercoverage translates into confidence intervals (2) that are relatively short, giving a
misleading impression as to the uncertainty over the break date. In contrast, confidence
sets based on inverting ÛT ðtmÞ control coverage remarkably well. For the case where both
the Bai method and the method suggested here result in confidence sets of correct coverage,
however, it is seen that the Bai method delivers the smaller set. This effect is especially
pronounced in models (M3) and (M4) that yield autocorrelated fX tutg. Pronounced
autocorrelations of the underlying disturbances render Nyblom (1989)-type tests ill
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behaved, with size and power of these tests strongly dependent on the long-run variance
estimator employed—see Müller (2005). In addition, as pointed out by Vogelsang (1999)
and Crainiceanu and Vogelsang (2002), long-run variance estimation adversely affects
the power of stationarity tests, as the low-frequency component of the time varying
deterministics are mistakenly attributed to low-frequency dynamics. This latter
effect increases the length of the confidence sets based on ÛT ðtmÞ, but has no effect on
coverage.

When the break in the regression coefficient is accompanied by a break in the variance of
fX tutg, as in model (M2), the methods that account for that possibility perform somewhat
better in terms of coverage and confidence set lengths. As one might expect, in the presence
of heteroskedasticity as in model (M6), the Bai method that fails to account for
heteroskedasticity does not do well. The effective coverage rates of the asymptotically
robust versions of the Bai statistic get closer to the nominal level in model (M6) compared
to the homoskedastic model (M5). The reason for this is that the normalization of the
variance of futg—in order to ensure a long-run variance of fX tutg ¼ fjX tjX tetg equal to
unity—makes the disturbance variance of model (M6) smaller than in model (M5).

Overall, the small sample experiments are encouraging for constructing reliable
confidence sets for the break date by inverting a sequence of tests based on ÛT ðtmÞ.
Empirical coverage rates are very close to nominal coverage rates for all data generating
processes considered here, making the method developed in this paper an attractive choice
for applied work.
5. Conclusion

It is more difficult to determine the date of a break than it is to distinguish between
models with and without breaks. In practice, breaks that can be detected reasonably well
with hypothesis tests are often difficult to date and standard methods of constructing
confidence intervals for the break date fail to deliver an accurate description of this
uncertainty. It may be possible to use subsampling or bootstrap techniques to account for
these difficulties.

The approach taken in this paper is to use an alternative method of constructing a
confidence set by inverting a sequence of tests. Each of the tests maintains the null
hypothesis that the break occurs at a certain date. By imposing an invariance requirement,
the tests control coverage for any magnitude of the break. The confidence sets so obtained
hence control coverage also for a small break. In addition, the test statistics that are
inverted have an (asymptotic) critical value that does not depend on the maintained break
date. The confidence set can hence be computed relatively easily by comparing a sequence
of T test statistics with a single critical value, where T is the sample size.
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Appendix

Proof of Proposition 1. For tm 2 ½l̄T ; ð1� l̄ÞT �, let l ¼ tm=T . Define Zt ¼ utþ

T�1=21½t4t0�X 0td, and let f ~Ztg be the least-squares residuals of a regression of fZtg on
fX t; 1½t4tm�X tg. By standard linear regression algebra, the sum of squared residuals of an
OLS regression of fZtg on fX t; 1½t4tm�X t;Ztg is given by

ST ðtmÞ ¼
XT

t¼1

Z2t �
Xtm
t¼1

X tZt

 !0 Xtm
t¼1

X tX
0
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 !�1Xtm
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For tptm ¼ ½lT �, ~Zt ¼ Zt � ð
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Ptm

s¼1X sX
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sÞ
�1X t and, similarly, for t4tm,
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0
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t¼1ZtZtk ¼ Opð1Þ we find
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where �Zt ¼ Zt � SZXS�1X X t. Note that �Zt does not depend on tm. Furthermore, T�1
Ptm

t¼1

X tX
0
t!

p
lSX , T�1=2

Ptm
t¼1X tZt )MðlÞ, T�1
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l̄Tptmpð1�l̄ÞT
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l̄plp1�l̄
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GðlÞ,

where supl̄plp1�l̄ jRT ðlÞj ¼ opð1Þ and the last line follows from the continuous mapping

theorem. The continuous mapping theorem is applicable due to the arguments put forward
in Kim and Pollard (1990), as an application of their Theorem 2.7.
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Let d̂ðtmÞ be the least-squares estimator of d with t0 replaced by tm ¼ ½lT �, 0plp1,
in (1), and let f ~X tg be the residuals of a regression of f1½t4tm�X tg on fQtg. Then,

d̂ðtmÞ ¼
XT

t¼1

~X t
~X 0t

 !�1XT

t¼1

~X tZt.
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and also
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since T�1=2
PT

t¼1ZtZt ¼ Opð1Þ. The application of the continuous mapping theorem now
yields the result for m. &

Proof of Proposition 2. Let B be the T � ðT � 2k � pÞ matrix that satisfies B0B ¼ IT�2k�p

and BB0 ¼MR, where MR is the projection matrix off the column space spanned by fRtg,
where Rt ¼ ðX

0
t; 1½t4tm�X 0t;Z

0
tÞ
0. Let y ¼ ðy1; . . . ; yT Þ

0, and denote by fetg the OLS
residuals from a regression of fytg on fRtg. Then ðB

0y;QÞ is a maximal invariant to the
group of transformations (4). Furthermore, conditional on Q, B0y�NðB0Xðt0Þd;
s2IT�2k�pÞ, where XðtÞ is a T � k matrix with sth row X 0s when s4t and a 1� k zero
row vector otherwise. By the Neyman–Pearson lemma, Fubini’s theorem and the
likelihood structure in Condition 2, an efficient invariant test of (3) maximizing (5) can
hence be based on
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Under the choice of weight functions (6), we compute for totm,
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Proceeding analogously for t4tm and collecting terms whose distribution depends on d
and t0 yield the result. &

Proof of Proposition 3. Proceed similarly as in the proof of Proposition 1 to show that
under Condition 1, for spr0,
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With the analogous result for s4r0, the proposition becomes a consequence of the
continuous mapping theorem. &
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