
A Proof of Theorem 2

(i) If the likelihood ratio p(X|θi)/p(X|θj) is an absolutely continuous random vari-

able for any i 6= j, then p(X|θj), j = 1, . . . ,m, have the same support and the

posterior distribution is well defined for any prior π and ν-almost all x ∈ X . More-

over, ties in the posterior probabilities (p(θi|X) = p(θj|X), i 6= j) happen with

probability zero under any θ ∈ Θ. An HPD credible set ϕ(·, ·; π) is uniquely defined

and continuous in π whenever there are no ties in the posterior probabilities. The

function z(π) defined in Theorem 1 is therefore continuous in π and Theorem 1

implies that there exists a prior π? for which ϕ(·, ·; π?) has coverage of at least 1−α.

(ii) Next, let us show that π?j > 0 for any j and ϕ(·, ·; π?) is a similar 1 − α

confidence set. If π?j = 0 for some j then θj is not contained in the 1 − α HPD

credible set for any x and ϕ(·, ·; π?) has zero coverage at θj. Thus, π?j > 0 for all j.

Since ϕ(·, ·; π?) is a 1− α credible set

m∑
j=1

ϕ(θj, x; π?)p(x|θj)π?j = α
m∑
j=1

p(x|θj)π?j .

Integration of the last display implies

m∑
j=1

[∫
ϕ(θj, x; π?)p(x|θj)dν(x)

]
π?j = α. (12)

Since the coverage of ϕ(·, ·; π?) is at least 1− α,
∫
ϕ(θj, x; π?)p(x|θj)dν(x) ≤ α. Be-

cause π?j > 0 for all j the equality in (12) can hold only if
∫
ϕ(θj, x; π?)p(x|θj)dν(x) =

α for all j or, in other words, ϕ(·, ·; π?) is similar.

(iii) It suffices to show that if
∑m

j=1 ϕ
′(θj, x) ≥

∑m
j=1 ϕ(θj, x; π?) for all x ∈

X and
∑m

j=1 ϕ
′(θj, x) >

∑m
j=1 ϕ(θj, x; π?) for all x ∈ Xl with ν(Xl) > 0, then
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∫
ϕ′(θj, x)p(x|θj)dν(x) > α for some j.

The HPD set ϕ(θ, x; π?) can be defined for ν-almost all x by the mini-

mum length property that for all ϕ′′ with
∑m

j=1 ϕ
′′(θj, x) =

∑m
j=1 ϕ(θj, x; π?),∑m

j=1 ϕ(θj, x; π?)p(θj|x) ≤
∑m

j=1 ϕ
′′(θj, x)p(θj|x). Thus, for ν-almost all x ∈ Xl,

m∑
j=1

ϕ(θj, x; π?)p(x|θj)π?j <
m∑
j=1

ϕ′(θj, x)p(x|θj)π?j

and for all x ∈ X the inequality holds weakly. Integrating this inequality with

respect to ν yields
∑m

j=1 π
?
j

∫
(ϕ(θj, x; π?) − ϕ′(θj, x))p(x|θj)dν(x) < 0. Since∑m

j=1 π
?
j

∫
ϕ(θj, x; π?)p(x|θj)dν(x) = α by part (ii), this implies that there exists

j such that
∫
ϕ′(θj, x)p(x|θj)dν(x) > α.

B Proof of Theorem 3

(i) By the assumed uniform continuity and maxj diam(Θ̃m
j ) → 0, there exists Mε

such that for any m ≥Mε and θ̃1, θ̃2 ∈ Θ̃m
j , j = 1, . . . ,m,

∫
|p̃(x|θ̃1)− p̃(x|θ̃2)|dν(x) < ε. (13)

In order to obtain a contradiction, assume there exists j∗ and θ̃∗ ∈ Θ̃m
j∗ such that

∫
ϕ̃m(θ̃∗, x; πm?)p̃(x|θ̃∗)dν(x) < α− ε. (14)

For any θ̃1 ∈ Θ̃m
j∗ , ϕ̃m(θ̃∗, x; πm?) = ϕ̃m(θ̃1, x; πm?) as ϕ̃m is constant on Θ̃m

j∗ by

definition. Therefore, by (13) and (14),
∫
ϕ̃m(θ̃1, x; πm?)p̃(x|θ̃1)dν(x) < α, ∀θ̃1 ∈

Θ̃m
j∗ , which would make the equality in (6) impossible. A contradiction for∫
ϕ̃m(θ̃∗, x; πm?)p̃(x|θ̃∗)dν(x) > α + ε can be obtained in the same way.
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(ii) Suppose the claim does not hold. Then, there exists a subsequence {mk}

with ∫
φ̃(θ̃, x)dθ̃ ≥ (1 + ε) ·

∫
ϕ̃mk(θ̃, x; πmk?)dθ̃

for ν-almost all x. Pick mk > Mαε, with Mε defined in part (i) of this proof. For

this mk, and any θ̃ ∈ Θ̃mk
j , define

φ′(θj, x) = φ̃′(θ̃, x) =

∫
Θ̃j

φ̃(θ̃1, x)dθ̃1/Vj and φ′′(θj, x) = φ̃′′(θ̃, x) = φ̃′(θ̃, x)/(1 + ε),

where Vj = vol(Θ̃mk
j ), j = 1, . . . ,mk. Note that∫

φ̃(θ̃, x)dθ̃ =

∫
φ̃′(θ̃, x)dθ̃ = (1 + ε)

∫
φ̃′′(θ̃, x)dθ̃ = (1 + ε)

∑
j

φ′′(θj, x)Vj.

Thus,
∑

j φ
′′(θj, x)Vj ≥

∫
ϕ̃mk(θ̃, x; πmk?)dθ̃ =

∑
j ϕ

mk(θj, x; πmk?)Vj, and since

ϕmk(θ, x; πmk?) maximizes
∑

j ϕ(θj, x)Vj subject to
∑

j[α−ϕ(θj, x)]p(x|θj)πmk?
j ≤ 0,

∑
j

φ′′(θj, x)p(x|θj)πmk?
j ≥

∑
j

ϕmk(θj, x; πmk?)p(x|θj)πmk?
j .

Integration of this inequality with respect to ν gives

∑
j

πmk?
j

∫
φ′′(θj, x)p(x|θj)dν(x) ≥ α.

Thus, there exists j∗ such that
∫
φ′′(θj∗ , x)p(x|θj∗)dν(x) ≥ α and∫

φ′(θj∗ , x)p(x|θj∗)dν(x) ≥ (1 + ε)α. (15)

At the same time,∫
φ′(θj∗ , x)p(x|θj∗)dν(x) =

∫
Θ̃

mk
j∗

∫
Θ̃

mk
j∗

∫
φ̃(θ̃1, x)p(x|θ̃2)dν(x)dθ̃1dθ̃2/V

2
j∗ .

Because
∫
φ̃(θ̃1, x)p(x|θ̃1)dν(x) ≤ α for all θ̃1 ∈ Θ̃ by assumption on φ̃,∫

φ′(θj∗ , x)p(x|θj∗)dν(x) ≤ α+ sup
θ̃1,θ̃2∈Θ̃

mk
j∗

∫
|p̃(x|θ̃1)−p̃(x|θ̃2)|dν(x) < (1+ε)α. (16)

Combining (15) and (16) yields the desired contradiction.
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C Computational Details for Applications

C.1 Algorithm

The fixed point iterations described in Section 3 require repeated evaluation of

coverage probabilities. These may be computed using an importance sampling ap-

proach: Let p̄ be a proposal density such that p(θj|x) is absolutely continuous with

respect to p̄, and let Xi, i = 1, . . . , N be N i.i.d. draws from p̄. Then non-coverage

probability of a set ϕ at θj can then be written as RPj =
∫
ϕ(θj, x)p(θj|x)dν(x) =∫

ϕ(θj, x)
p(θj |x)

p̄(x)
p̄(x)dν(x), yielding the approximation

R̂Pj(ϕ) = N−1

N∑
i=1

ϕ(θ̃, Xi)
p(θj|Xi)

p̄(Xi)
.

Write ϕπ for the set ϕ(θj, x; π) of Theorem 1. We employ the following algorithm

to obtain an approximate π? such that the HPD set ϕπ? has nearly coverage close

to the nominal level:

1. Compute and store
p(θj |Xi)

p̄(Xi)
, i = 1, . . . , N , j = 1, . . . ,m.

2. Initialize π(0) at π
(0)
j = 1/m, j = 1, . . . ,m.

3. For l = 0, 1, . . .

(a) Compute zj = R̂Pj(ϕπ(l))− α, j = 1, . . . ,m.

(b) If maxj zj −minj zj < ε, set π? = π(l) and end.

(c) Otherwise, set π
(l+1)
j = exp(ωzj)π

(l)
j /
∑m

k=1 exp(ωzk)π
(l)
k , j = 1, . . . ,m,

and go to step 3a.
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We set ε = 0.0003, and found ω = 1.5 to yield reliable results as long as N is

chosen large enough.

In the context of obtaining a credible set with approximately uniform coverage

in a bounded but continuous set Θ̃, we employ the above algorithm for a given

partition m with ϕπ = ϕm(θj, x; π) now defined as described in Section 2.3.3. In

addition, we evaluate the uniform coverage properties of the resulting set estimator

on Θ̃, ϕ̃m(θ̃, x; πm?), by computing the (approximate) non-coverage probabilities

R̂P(θ̃) = N−1
∑N

i=1 ϕ̃
m(θ̃, Xi; π

m?)p(θ̃|Xi)
p̄(Xi)

over a fine grid of values of θ̃. If these

uniform properties are unsatisfactory, then the algorithm is repeated using a finer

partition.

For an unbounded parameter space Θ̃, we implement the guess and verify ap-

proach described in Section 2.3.4. We first choose an appropriate κS by computing

the coverage of the HPD set relative to a flat prior on Θ̃, and select κS to be just

large enough for coverage to be sufficiently close to 1−α for all θ̃ with ς(θ̃) > κS. We

then partition Θ̃NS into m − 1 subsets, and set Θ̃m
m = Θ̃S. As discussed in Section

2.3.4, it makes sense to rule out a large discontinuity of Π̄m(θ̃, πm?) at the boundary

between Θ̃NS and Θ̃S. Thus, in the above algorithm, we directly adjust the m − 1

values of Π̄m(θ̃, π) on Θ̃m
j , j = 1, . . . ,m − 1 without any scale normalization, and

simply set Π̄m(θ̃, π) on Θ̃S equal to the value of Π̄m(θ̃, π) of a subset Θ̃m
j neighboring

Θ̃S. This has the additional advantage of avoiding computation of the potentially

ill-defined RPm. After the iterations have concluded, we evaluate the coverage prop-

erties of the resulting set estimator φ̄m(θ̃, x; πm?) on a fine grid on Θ̃NS, and on a

fine grid in the part of Θ̃S where φ̄m(θ̃, x; πm?) is affected by the shape of the prior
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Π̄m(θ̃, π) on Θ̃NS. If these are unsatisfactory, we increase m and/or κS.

C.2 Details for Break Date and Magnitude

The continuous process X is approximated with 800 steps. Uniform coverage

is evaluated on the Cartesian grid with λ ∈ {0.15, 0.15125, 0.1525, . . . , 0.85} and

δ ∈ {−15.0,−14.99,−14.98, . . . , 15}. We set N = 3 · 106, and p̄ to be uniform on

{(λ, δ) : 0.13 ≤ λ ≤ 0.87, −16 ≤ δ ≤ 16}, which yields Monte Carlo standard

deviations of coverage probabilities uniformly smaller than 0.001. We impose sym-

metry with respect to the sign of δ, and around λ = 0.5, in the computation of πm?.

Computations for the finer partition take about 6 hours on a modern PC.

In the application, we use Elliott and Müller’s (2014) estimate of 2.6 for the

long-run standard deviation of the quarterly data yt.

C.3 Details for Autoregressive Root Near Unity

The continuous process X is approximated with 800 steps. Uniform coverage is

evaluated on 5001 values θ̃ ∈ {120( j
5000

)2}5000
j=0 . We set N = 1.5 · 106, and set p̄ to be

uniform on the 101 values θ̃ ∈ {160( j
100

)2}100
j=0, which yields Monte Carlo standard

deviations of coverage probabilities uniformly smaller than 0.001.

For the application, we rely on output of the DF-GLS regression also em-

ployed in Lopez, Murray, and Papell (2013) to obtain small sample analogues

to
∫ 1

0
X(s)dX(s) and

∫ 1

0
X(s)2ds. Specifically, let ρ̂, σ̂ρ and φ̂ be the usual

OLS estimate of ρ, its standard error and the additional coefficients in an aug-

30



mented Dickey-Fuller regression using GLS demeaned data (with lag length as de-

termined by Lopez, Murray, and Papell (2013)). We then employ the analogue

(T−1φ̂(1)(ρ̂ − 1)/σ̂2
ρ, T

−2φ̂(1)2/σ̂2
ρ) ⇒ (

∫ 1

0
X(s)dX(s),

∫ 1

0
X(s)2ds) for the empirical

results in Table 1.
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