A Proof of Theorem 2

(i) If the likelihood ratio $p\left(X \mid \theta_{i}\right) / p\left(X \mid \theta_{j}\right)$ is an absolutely continuous random variable for any $i \neq j$, then $p\left(X \mid \theta_{j}\right), j=1, \ldots, m$, have the same support and the posterior distribution is well defined for any prior π and ν-almost all $x \in \mathcal{X}$. Moreover, ties in the posterior probabilities $\left(p\left(\theta_{i} \mid X\right)=p\left(\theta_{j} \mid X\right), i \neq j\right)$ happen with probability zero under any $\theta \in \Theta$. An HPD credible set $\varphi(\cdot, \cdot ; \pi)$ is uniquely defined and continuous in π whenever there are no ties in the posterior probabilities. The function $z(\pi)$ defined in Theorem 1 is therefore continuous in π and Theorem 1 implies that there exists a prior π^{\star} for which $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ has coverage of at least $1-\alpha$.
(ii) Next, let us show that $\pi_{j}^{\star}>0$ for any j and $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ is a similar $1-\alpha$ confidence set. If $\pi_{j}^{\star}=0$ for some j then θ_{j} is not contained in the $1-\alpha$ HPD credible set for any x and $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ has zero coverage at θ_{j}. Thus, $\pi_{j}^{\star}>0$ for all j. Since $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ is a $1-\alpha$ credible set

$$
\sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) \pi_{j}^{\star}=\alpha \sum_{j=1}^{m} p\left(x \mid \theta_{j}\right) \pi_{j}^{\star}
$$

Integration of the last display implies

$$
\begin{equation*}
\sum_{j=1}^{m}\left[\int \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) d \nu(x)\right] \pi_{j}^{\star}=\alpha \tag{12}
\end{equation*}
$$

Since the coverage of $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ is at least $1-\alpha, \int \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) d \nu(x) \leq \alpha$. Because $\pi_{j}^{\star}>0$ for all j the equality in (12) can hold only if $\int \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) d \nu(x)=$ α for all j or, in other words, $\varphi\left(\cdot, \cdot ; \pi^{\star}\right)$ is similar.
(iii) It suffices to show that if $\sum_{j=1}^{m} \varphi^{\prime}\left(\theta_{j}, x\right) \geq \sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right)$ for all $x \in$ \mathcal{X} and $\sum_{j=1}^{m} \varphi^{\prime}\left(\theta_{j}, x\right)>\sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right)$ for all $x \in \mathcal{X}_{l}$ with $\nu\left(\mathcal{X}_{l}\right)>0$, then
$\int \varphi^{\prime}\left(\theta_{j}, x\right) p\left(x \mid \theta_{j}\right) d \nu(x)>\alpha$ for some j.
The HPD set $\varphi\left(\theta, x ; \pi^{\star}\right)$ can be defined for ν-almost all x by the minimum length property that for all $\varphi^{\prime \prime}$ with $\sum_{j=1}^{m} \varphi^{\prime \prime}\left(\theta_{j}, x\right)=\sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right)$, $\sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(\theta_{j} \mid x\right) \leq \sum_{j=1}^{m} \varphi^{\prime \prime}\left(\theta_{j}, x\right) p\left(\theta_{j} \mid x\right)$. Thus, for ν-almost all $x \in \mathcal{X}_{l}$,

$$
\sum_{j=1}^{m} \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) \pi_{j}^{\star}<\sum_{j=1}^{m} \varphi^{\prime}\left(\theta_{j}, x\right) p\left(x \mid \theta_{j}\right) \pi_{j}^{\star}
$$

and for all $x \in \mathcal{X}$ the inequality holds weakly. Integrating this inequality with respect to ν yields $\sum_{j=1}^{m} \pi_{j}^{\star} \int\left(\varphi\left(\theta_{j}, x ; \pi^{\star}\right)-\varphi^{\prime}\left(\theta_{j}, x\right)\right) p\left(x \mid \theta_{j}\right) d \nu(x)<0$. Since $\sum_{j=1}^{m} \pi_{j}^{\star} \int \varphi\left(\theta_{j}, x ; \pi^{\star}\right) p\left(x \mid \theta_{j}\right) d \nu(x)=\alpha$ by part (ii), this implies that there exists j such that $\int \varphi^{\prime}\left(\theta_{j}, x\right) p\left(x \mid \theta_{j}\right) d \nu(x)>\alpha$.

B Proof of Theorem 3

(i) By the assumed uniform continuity and $\max _{j} \operatorname{diam}\left(\tilde{\Theta}_{j}^{m}\right) \rightarrow 0$, there exists M_{ϵ} such that for any $m \geq M_{\epsilon}$ and $\tilde{\theta}_{1}, \tilde{\theta}_{2} \in \tilde{\Theta}_{j}^{m}, j=1, \ldots, m$,

$$
\begin{equation*}
\int\left|\tilde{p}\left(x \mid \tilde{\theta}_{1}\right)-\tilde{p}\left(x \mid \tilde{\theta}_{2}\right)\right| d \nu(x)<\epsilon . \tag{13}
\end{equation*}
$$

In order to obtain a contradiction, assume there exists j^{*} and $\tilde{\theta}^{*} \in \tilde{\Theta}_{j^{*}}^{m}$ such that

$$
\begin{equation*}
\int \tilde{\varphi}^{m}\left(\tilde{\theta}^{*}, x ; \pi^{m \star}\right) \tilde{p}\left(x \mid \tilde{\theta}^{*}\right) d \nu(x)<\alpha-\epsilon . \tag{14}
\end{equation*}
$$

For any $\tilde{\theta}_{1} \in \tilde{\Theta}_{j^{*}}^{m}, \tilde{\varphi}^{m}\left(\tilde{\theta}^{*}, x ; \pi^{m \star}\right)=\tilde{\varphi}^{m}\left(\tilde{\theta}_{1}, x ; \pi^{m \star}\right)$ as $\tilde{\varphi}^{m}$ is constant on $\tilde{\Theta}_{j^{*}}^{m}$ by definition. Therefore, by (13) and (14), $\int \tilde{\varphi}^{m}\left(\tilde{\theta}_{1}, x ; \pi^{m \star}\right) \tilde{p}\left(x \mid \tilde{\theta}_{1}\right) d \nu(x)<\alpha, \forall \tilde{\theta}_{1} \in$ $\tilde{\Theta}_{j^{*}}^{m}$, which would make the equality in (6) impossible. A contradiction for $\int \tilde{\varphi}^{m}\left(\tilde{\theta}^{*}, x ; \pi^{m \star}\right) \tilde{p}\left(x \mid \tilde{\theta}^{*}\right) d \nu(x)>\alpha+\epsilon$ can be obtained in the same way.
(ii) Suppose the claim does not hold. Then, there exists a subsequence $\left\{m_{k}\right\}$ with

$$
\int \tilde{\phi}(\tilde{\theta}, x) d \tilde{\theta} \geq(1+\epsilon) \cdot \int \tilde{\varphi}^{m_{k}}\left(\tilde{\theta}, x ; \pi^{m_{k} \star}\right) d \tilde{\theta}
$$

for ν-almost all x. Pick $m_{k}>M_{\alpha \epsilon}$, with M_{ϵ} defined in part (i) of this proof. For this m_{k}, and any $\tilde{\theta} \in \tilde{\Theta}_{j}^{m_{k}}$, define

$$
\phi^{\prime}\left(\theta_{j}, x\right)=\tilde{\phi}^{\prime}(\tilde{\theta}, x)=\int_{\tilde{\Theta}_{j}} \tilde{\phi}\left(\tilde{\theta}_{1}, x\right) d \tilde{\theta}_{1} / V_{j} \text { and } \phi^{\prime \prime}\left(\theta_{j}, x\right)=\tilde{\phi}^{\prime \prime}(\tilde{\theta}, x)=\tilde{\phi}^{\prime}(\tilde{\theta}, x) /(1+\epsilon)
$$ where $V_{j}=\operatorname{vol}\left(\tilde{\Theta}_{j}^{m_{k}}\right), j=1, \ldots, m_{k}$. Note that

$$
\int \tilde{\phi}(\tilde{\theta}, x) d \tilde{\theta}=\int \tilde{\phi}^{\prime}(\tilde{\theta}, x) d \tilde{\theta}=(1+\epsilon) \int \tilde{\phi}^{\prime \prime}(\tilde{\theta}, x) d \tilde{\theta}=(1+\epsilon) \sum_{j} \phi^{\prime \prime}\left(\theta_{j}, x\right) V_{j}
$$

Thus, $\sum_{j} \phi^{\prime \prime}\left(\theta_{j}, x\right) V_{j} \geq \int \tilde{\varphi}^{m_{k}}\left(\tilde{\theta}, x ; \pi^{m_{k} \star}\right) d \tilde{\theta}=\sum_{j} \varphi^{m_{k}}\left(\theta_{j}, x ; \pi^{m_{k} \star}\right) V_{j}$, and since $\varphi^{m_{k}}\left(\theta, x ; \pi^{m_{k} \star}\right)$ maximizes $\sum_{j} \varphi\left(\theta_{j}, x\right) V_{j}$ subject to $\sum_{j}\left[\alpha-\varphi\left(\theta_{j}, x\right)\right] p\left(x \mid \theta_{j}\right) \pi_{j}^{m_{k} \star} \leq 0$,

$$
\sum_{j} \phi^{\prime \prime}\left(\theta_{j}, x\right) p\left(x \mid \theta_{j}\right) \pi_{j}^{m_{k} \star} \geq \sum_{j} \varphi^{m_{k}}\left(\theta_{j}, x ; \pi^{m_{k} \star}\right) p\left(x \mid \theta_{j}\right) \pi_{j}^{m_{k} \star}
$$

Integration of this inequality with respect to ν gives

$$
\sum_{j} \pi_{j}^{m_{k^{\star}}} \int \phi^{\prime \prime}\left(\theta_{j}, x\right) p\left(x \mid \theta_{j}\right) d \nu(x) \geq \alpha
$$

Thus, there exists j^{*} such that $\int \phi^{\prime \prime}\left(\theta_{j^{*}}, x\right) p\left(x \mid \theta_{j^{*}}\right) d \nu(x) \geq \alpha$ and

$$
\begin{equation*}
\int \phi^{\prime}\left(\theta_{j^{*}}, x\right) p\left(x \mid \theta_{j^{*}}\right) d \nu(x) \geq(1+\epsilon) \alpha \tag{15}
\end{equation*}
$$

At the same time,

$$
\int \phi^{\prime}\left(\theta_{j^{*}}, x\right) p\left(x \mid \theta_{j^{*}}\right) d \nu(x)=\int_{\tilde{\Theta}_{j^{*}}^{m_{k}}} \int_{\tilde{\Theta}_{j^{*}}^{m_{k}}} \int \tilde{\phi}\left(\tilde{\theta}_{1}, x\right) p\left(x \mid \tilde{\theta}_{2}\right) d \nu(x) d \tilde{\theta}_{1} d \tilde{\theta}_{2} / V_{j^{*}}^{2}
$$

Because $\int \tilde{\phi}\left(\tilde{\theta}_{1}, x\right) p\left(x \mid \tilde{\theta}_{1}\right) d \nu(x) \leq \alpha$ for all $\tilde{\theta}_{1} \in \tilde{\Theta}$ by assumption on $\tilde{\phi}$,

$$
\begin{equation*}
\int \phi^{\prime}\left(\theta_{j^{*}}, x\right) p\left(x \mid \theta_{j^{*}}\right) d \nu(x) \leq \alpha+\sup _{\tilde{\theta_{1}}, \tilde{\theta}_{2} \in \tilde{\theta}_{j^{*}}^{m_{k}}} \int\left|\tilde{p}\left(x \mid \tilde{\theta}_{1}\right)-\tilde{p}\left(x \mid \tilde{\theta}_{2}\right)\right| d \nu(x)<(1+\epsilon) \alpha \tag{16}
\end{equation*}
$$

Combining (15) and (16) yields the desired contradiction.

C Computational Details for Applications

C. 1 Algorithm

The fixed point iterations described in Section 3 require repeated evaluation of coverage probabilities. These may be computed using an importance sampling approach: Let \bar{p} be a proposal density such that $p\left(\theta_{j} \mid x\right)$ is absolutely continuous with respect to \bar{p}, and let $X_{i}, i=1, \ldots, N$ be N i.i.d. draws from \bar{p}. Then non-coverage probability of a set φ at θ_{j} can then be written as $\mathrm{RP}_{j}=\int \varphi\left(\theta_{j}, x\right) p\left(\theta_{j} \mid x\right) d \nu(x)=$ $\int \varphi\left(\theta_{j}, x\right) \frac{p\left(\theta_{j} \mid x\right)}{\bar{p}(x)} \bar{p}(x) d \nu(x)$, yielding the approximation

$$
\widehat{\mathrm{RP}}_{j}(\varphi)=N^{-1} \sum_{i=1}^{N} \varphi\left(\tilde{\theta}, X_{i}\right) \frac{p\left(\theta_{j} \mid X_{i}\right)}{\bar{p}\left(X_{i}\right)}
$$

Write φ_{π} for the set $\varphi\left(\theta_{j}, x ; \pi\right)$ of Theorem 11. We employ the following algorithm to obtain an approximate π^{\star} such that the HPD set $\varphi_{\pi^{\star}}$ has nearly coverage close to the nominal level:

1. Compute and store $\frac{p\left(\theta_{j} \mid X_{i}\right)}{\bar{p}\left(X_{i}\right)}, i=1, \ldots, N, j=1, \ldots, m$.
2. Initialize $\pi^{(0)}$ at $\pi_{j}^{(0)}=1 / m, j=1, \ldots, m$.
3. For $l=0,1, \ldots$.
(a) Compute $z_{j}=\widehat{\mathrm{RP}}_{j}\left(\varphi_{\pi(l)}\right)-\alpha, j=1, \ldots, m$.
(b) If $\max _{j} z_{j}-\min _{j} z_{j}<\varepsilon$, set $\pi^{\star}=\pi^{(l)}$ and end.
(c) Otherwise, set $\pi_{j}^{(l+1)}=\exp \left(\omega z_{j}\right) \pi_{j}^{(l)} / \sum_{k=1}^{m} \exp \left(\omega z_{k}\right) \pi_{k}^{(l)}, j=1, \ldots, m$, and go to step 3a.

We set $\varepsilon=0.0003$, and found $\omega=1.5$ to yield reliable results as long as N is chosen large enough.

In the context of obtaining a credible set with approximately uniform coverage in a bounded but continuous set $\tilde{\Theta}$, we employ the above algorithm for a given partition m with $\varphi_{\pi}=\varphi^{m}\left(\theta_{j}, x ; \pi\right)$ now defined as described in Section 2.3.3. In addition, we evaluate the uniform coverage properties of the resulting set estimator on $\tilde{\Theta}, \tilde{\varphi}^{m}\left(\tilde{\theta}, x ; \pi^{m \star}\right)$, by computing the (approximate) non-coverage probabilities $\widehat{\operatorname{RP}}(\tilde{\theta})=N^{-1} \sum_{i=1}^{N} \tilde{\varphi}^{m}\left(\tilde{\theta}, X_{i} ; \pi^{m \star}\right) \frac{p\left(\tilde{\theta}\left(X_{i}\right)\right.}{\bar{p}\left(X_{i}\right)}$ over a fine grid of values of $\tilde{\theta}$. If these uniform properties are unsatisfactory, then the algorithm is repeated using a finer partition.

For an unbounded parameter space $\tilde{\Theta}$, we implement the guess and verify approach described in Section 2.3.4. We first choose an appropriate κ_{S} by computing the coverage of the HPD set relative to a flat prior on $\tilde{\Theta}$, and select κ_{S} to be just large enough for coverage to be sufficiently close to $1-\alpha$ for all $\tilde{\theta}$ with $\varsigma(\tilde{\theta})>\kappa_{S}$. We then partition $\tilde{\Theta}_{N S}$ into $m-1$ subsets, and set $\tilde{\Theta}_{m}^{m}=\tilde{\Theta}_{S}$. As discussed in Section 2.3.4 it makes sense to rule out a large discontinuity of $\bar{\Pi}^{m}\left(\tilde{\theta}, \pi^{m \star}\right)$ at the boundary between $\tilde{\Theta}_{N S}$ and $\tilde{\Theta}_{S}$. Thus, in the above algorithm, we directly adjust the $m-1$ values of $\bar{\Pi}^{m}(\tilde{\theta}, \pi)$ on $\tilde{\Theta}_{j}^{m}, j=1, \ldots, m-1$ without any scale normalization, and simply set $\bar{\Pi}^{m}(\tilde{\theta}, \pi)$ on $\tilde{\Theta}_{S}$ equal to the value of $\bar{\Pi}^{m}(\tilde{\theta}, \pi)$ of a subset $\tilde{\Theta}_{j}^{m}$ neighboring $\tilde{\Theta}_{S}$. This has the additional advantage of avoiding computation of the potentially ill-defined RP_{m}. After the iterations have concluded, we evaluate the coverage properties of the resulting set estimator $\bar{\phi}^{m}\left(\tilde{\theta}, x ; \pi^{m \star}\right)$ on a fine grid on $\tilde{\Theta}_{N S}$, and on a fine grid in the part of $\tilde{\Theta}_{S}$ where $\bar{\phi}^{m}\left(\tilde{\theta}, x ; \pi^{m \star}\right)$ is affected by the shape of the prior
$\bar{\Pi}^{m}(\tilde{\theta}, \pi)$ on $\tilde{\Theta}_{N S}$. If these are unsatisfactory, we increase m and/or κ_{S}.

C. 2 Details for Break Date and Magnitude

The continuous process X is approximated with 800 steps. Uniform coverage is evaluated on the Cartesian grid with $\lambda \in\{0.15,0.15125,0.1525, \ldots, 0.85\}$ and $\delta \in\{-15.0,-14.99,-14.98, \ldots, 15\}$. We set $N=3 \cdot 10^{6}$, and \bar{p} to be uniform on $\{(\lambda, \delta): 0.13 \leq \lambda \leq 0.87,-16 \leq \delta \leq 16\}$, which yields Monte Carlo standard deviations of coverage probabilities uniformly smaller than 0.001 . We impose symmetry with respect to the sign of δ, and around $\lambda=0.5$, in the computation of $\pi^{m \star}$. Computations for the finer partition take about 6 hours on a modern PC.

In the application, we use Elliott and Müller's (2014) estimate of 2.6 for the long-run standard deviation of the quarterly data y_{t}.

C. 3 Details for Autoregressive Root Near Unity

The continuous process X is approximated with 800 steps. Uniform coverage is evaluated on 5001 values $\tilde{\theta} \in\left\{120\left(\frac{j}{5000}\right)^{2}\right\}_{j=0}^{5000}$. We set $N=1.5 \cdot 10^{6}$, and set \bar{p} to be uniform on the 101 values $\tilde{\theta} \in\left\{160\left(\frac{j}{100}\right)^{2}\right\}_{j=0}^{100}$, which yields Monte Carlo standard deviations of coverage probabilities uniformly smaller than 0.001 .

For the application, we rely on output of the DF-GLS regression also employed in Lopez, Murray, and Papell (2013) to obtain small sample analogues to $\int_{0}^{1} X(s) d X(s)$ and $\int_{0}^{1} X(s)^{2} d s$. Specifically, let $\hat{\rho}, \hat{\sigma}_{\rho}$ and $\hat{\phi}$ be the usual OLS estimate of ρ, its standard error and the additional coefficients in an aug-
mented Dickey-Fuller regression using GLS demeaned data (with lag length as determined by Lopez, Murray, and Papell (2013)). We then employ the analogue $\left(T^{-1} \hat{\phi}(1)(\hat{\rho}-1) / \hat{\sigma}_{\rho}^{2}, T^{-2} \hat{\phi}(1)^{2} / \hat{\sigma}_{\rho}^{2}\right) \Rightarrow\left(\int_{0}^{1} X(s) d X(s), \int_{0}^{1} X(s)^{2} d s\right)$ for the empirical results in Table 1.

